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OPERATORS WHICH FACTOR THROUGH CONVEX 
BANACH LATTICES 

SHLOMO REISNER 

Introduction and notations. We investigate here classes of operators 
T between Banach spaces E and F, which have factorization of the form 

where L is a Banach lattice, V is a ^-convex operator, U is a g-concave 
operator (definitions below) and jF is the cannonical embedding of F in 
F". We show that for fixed p, q this class forms a perfect normed ideal of 
operators MPtQy generalizing the ideal Ip>q of [5]. We prove (Proposition 5) 
that MPtQ may be characterized by factorization through ^-convex 
and g-concave Banach lattices. We use this fact together with a variant 
of the complex interpolation method introduced in [1], to show that an 
operator which belongs to MPtQ may be factored through a Banach lattice 
with modulus of uniform convexity (uniform smoothness) of power type 
arbitrarily close to q (to p). This last result yields similar geometric 
properties in subspaces of spaces having G.L. — l.u.st. 

This is a revised version of a previous work under the same title. After 
completing that work we received T. Figiel's paper [2] and learned that, 
using the Lions-Peetre's interpolation method he gets the main results 
(Proposition 4) of § 3 here. 

We use here standard notations of Banach space theory. Banach spaces 
are considered over the field of real numbers (the results are true, with 
appropriate definitions, in the complex case as well). 

If E is a Banach space, E' is its dual space, for x G £ , x' £ E', we use 
alternatively the notations x'(x), (x, x'), (x', x). We denote 

B(E) = {x £ E\ \\x\\ g 1} S(E) = {x G E\ ||x|| = 1). 

An ''Operator" between Banach spaces is a bounded linear operator, 
L(E, F) is the space of all operators between E and F. 

Received April 10, 1979. This work is a part of a Ph.D. thesis, written at the Technion, 
Israel Institute of Technology, under the supervision of Prof. P. Saphar, to whom the 
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BANACH LATTICES 1483 

A standard reference to ideals of operators is [5] ; specifically we use the 
ideals wp of ^-absolutely summing operators, Ip of ^-integral operators 
and Tp of Lp-factorizable operators. Let a be an ideal norm on tensor 
products E ®F (considered as subspaces of L(Ef, F)). Then a is a 
0-norm if for all u £ E ® F, a(u) — inf a(u, M, N) where the inf is 
taken over all finite dimensional subspaces M C E and N C F such that 
u G M ® N, a{u, M, N) is the a-norm of u as an element of M ® N. 

[A*, a*] is the adjoint ideal of the ideal of finite rank operators with 
the norm a (if a is a 0-norm then [A*(F, E'),a*] = (E ®aF)'). As a 
standard reference to Banach lattices we use [9] ; in particular, if L is a 
Banach lattice, I ^ p, q < co and T 6 L(E, L) (resp. T 6 L(L, £ ) ) 
then T is ^-convex (g-concave) if there exists K > 0 such that for all 
X i , . . . , Xn KZ J-; j 

IIŒIT*,!*)1^! û K(Z\\xi\\p)Up 

(for all/!, . . . J . G I , ( S H O T ) 1 " £ X||(EI/*l')1/ffll) 

we denote inf X = K(P)(T)(= K(q)(T)). If the identity /of L is ^-convex 
(g-concave) we say that Z is a ^-convex (g-concave) lattice and denote 
K^(L) = K<*>(I) (K(Q)(L) = K(g)(I)). We say that L has an upper-p-
estimate M(p)(L) (a lower q-estimate M(q)(L)) if the inequalities of ^-con
vexity (g-concavity) are valid for disjoint elements in L,M(P)(L) 
(M(Q)(L)) is then, the infimum of the appropriate constants. 

A basis (^ I )^N °f a Banach space E is called a monotone unconditional 
basis (monotone u.c. basis) if for all {ai, . . . , an) £ Rw, 

n 

= 
n J 

i i=i i 

The concept of local unconditional structure in the sense of Gordon and 
Lewis (G.L. — l.u.st) is defined in [3]. It is well known that E has 
G.L. — l.u.st if and only if the cannonical embedding j : E —» E" has a 
factorization J = VU where U £ L{E,L), V £ L(L, E") and L i s a 
Banach lattice. 

We are grateful to Dr. Y. Benyamini for helpful discussions concerning 
the revised form of this paper. 

1. The (g)-norm rjPtQ. 

Definition 1. For u G E ® F we define 

(1) vP,q(u) = inf (dPtQ({xi ® :y<}n«=i)). 

The inf is taken over all representations of u of the form 

n 

u = J^Xi ® yt 
i=i 
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and 0PtQ is defined by 

/ \ ( n I oo \ 1/p/ œ \ 1/5' 

V«(j*< ® y*H-i) = «up j g ( g l ^ ' M ' ) (^g \y{{yMa') 

|(**')?-ilkun ^ l; ll(y«7?-i||^<) i i ; | + ]/ = i 
We omit the proof of the next proposition since it is just a simple veri

fication. 
PROPOSITION 2. rjPtQ is a ®-norm. 

PROPOSITION 3. For u Ç E' <S> F 

Vp,q(u) = inî KM (a)KiQ)(l3). 

The inf is taken over all finite dimensional spaces U with a monotone u.c. 
basisj and factorizations of u (considered as an operator u: E —> F) of the 
form 

(2) 
E • + F 

lcT 

Proof. Suppose w has a factorization of the form (2). Let {eu e/} be a 
monotone u.c. basis in U. Define x/ = a(e/) and yt = (3(ei). We get 

n 

i=i 

Moreover, by definition we have: 

K("\a) = s u p { | | g ( ç | x < ' ( * t ) | ' ) \ | | | | ( * * ) l l « , « ) ^ l } 

Klt){0) =K(«'}(0 = s u p { | g ( g |(y,'(y,)|8')1/8Ci'| 

|||(y,')IU'«')^l}. 

Therefore for an appropriate choice of (#*) and (yp') we have: 

o,.taxt' ® y<}) ^ g ( g ix/(x,)r)1/!,(g b/(yor')1/? + e 
r rc / \ l / f f ' "1 / n / \ 1/2? \ 

= [ g \ g \y/(yi)\Q') e/\ ( g ( g |x/(x,)r) et) +1 

Hence {%,,,(«) g i^>(a)K(,)(/3). 
^ i ^ («)#«) (£)+<• 
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T o prove the other inequality, suppose u = ^ L i X * ® yt is a rep
resentation which satisfies 

0P.Q({xi ® yiVi=i) ^ %>,<?0) + e-

We define the space U to be Rn with the norm: 

(3) !a! = s u P { g [ « . ( ç |y/Cy*)la')1/ff ||llCy/)ll«v^> ^ 1} 

for a = (a,)n«-i € Rw. 
T h e unit vector in U has u.c. constant 1 (lal is determined by |a| 

alone). 
Define a: E •—> U by 

2: U->Fby 

eu 

i=l 

Then clearly u = /3 o a and 

i£ ( p )(a) = sup 

2£(ff)(/3) = sup 

n I \ 1/p 

|fe)|k(/f) ^ 1 

Op,Q(\xi' ® y*n=i) ^ V*fa ) + e; 

« / \ i /ff ' 

è M ( L b « ' ( y * ) l 4 ' ) 1 / 4 | l l 
z = l \ I / I 

ICy«')lli,'(F<) £ i 

( y i ' ) l k ' ( m ^ l ; ! a ! = l = Slip 

= 1. 

Therefore 

2. Operators fac tor ing t h r o u g h a B a n a c h la t t i c e . We say tha t 
T e L(E, F) factors p, g through a Banach lattice (T G MPjQ(E, F)) if 

jFT has the factorization 

( i ) 

T JF 
E • F • F" 

U V 

where jV is the canonical embedding, L is a Banach lattice, V a (/-concave 
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operator and U a ^-convex operator. We define 

toAT) =iniK^(U)K(q)(V), 

the inf being taken over all factorizations of the form (1). 

PROPOSITION 1. a) [MPtq, nPtQ] is a perfect norrned ideal of operators; 
b ) [MPiq, Hptq] = 7]p>q ** 

Proof. It is clear that b) implies a). We prove b). 
(0 [MP,q, Mp.J C rjp. ** 

Q ' 

LEMMA 2. Let G be a finite dimensional sub space of an order complete 
Banach lattice L. Given 8 > 0 there are %\, . . ., xn in L, xt A_ Xj for 
i ?± j , xt ^ 0 for all i, such that there is an operator 

S: G —> span {x^^ i 

which satisfies for all yu . . . , ym in G and all I ^ p < oo : 

(2) gb/) -(,§1*1') LH5IM'') • 
Proof of Lemma 2. Let 0 ^ a Ç L be such that B(G) C [ — a, a], / (a ) 

(the completion of span [ — a, a] with respect to the norm for which 
[ — a, a] is the unit ball) is isometric and order isomorphic to a C(K) 
space, which is order complete since L is order complete. Therefore K is 
Stonian. The extension j : C(K) —> L of the inclusion 1(a) C £ is of 
norm ||a||. An element x G 1(a) will be considered alternatively as an 
element of L or of C(K). The subspace G\ spanned by G in C(K) is iso
morphic to G. Let a7 > 0 be such that for all x Ç G, 

\\X\\C(K) ^ d\\x\\L. 

Since K is Stonian we have, for given rj > 0, clopen sets Ai, . . . , An C 
i£, disjoint, and an operator [/: Gi —> span {xA;h=in such that for all 
x G G, 

H* - £/x||c(io ^ *?||*||c(Jo-

Then, for all t £ i£ we have for Wi, . . . , wm £ Gi: 

/ \ I / P / \ I / P 

^ ( E KW - (c^Kor)1* ̂  (z ik, - E ÎISUO)1* 

^U(EIKIISOO)1". 

W e i low define 5: G —» L by Sx = jUx, and * i = JXAi'-
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Then, for yu . . . , ym Ç G we have (since j is a homomorphism of lattices) 

- (z iwT 
^ Ikl |(çw-)' 

I^ÇII^II^))1" 

so that a choice of rj < b/\\a\\d will give (2). 

Using Lemma 2 and an argument which is dual to it, combined with a 
perturbation argument and local refiexivity, one can prove the following 
lemma, whose standard proof we omit. 

LEMMA 3. If at least one of E or F is finite dimensional and T £ L(E, F) 
has a factorization of jFT of the form 

T 

(3) 
A 

* F 

' L 

JF 
¥ F" 

^B 

with L a Banach lattice, A a p-convex operator and B a q-concave operator 
then for every e > 0, there is a finite dimensional U with a monotone u.c. 
basis Xi, . . . , xm and a factorization 

E-
(4) r 

u 

-+F 

withKW(a)K(g)(P) g (1 + e)K^(A)K(q)(B). 

We are ready now to prove (i). If jFT factors in the form (1), then by 
Lemma 3, for every finite dimensional Ei C E and finite dimensional 
F1 C Fr the operator j'Ti (i: Ei ^ E, j : F1 ^ F') has a factorization 

£, -^X F" 

\j 
with [/finite dimensional with a monotone u.c. basis and such that 

K*>(a)KM(fl) g (1 + e)K^(U)K(Q)(V). 

It follows that T e VP,,** and w.**(T) è *,.*<?). 
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ii) VP.Q** C [MPtQ1 Up,J. This is proved by standard ultra-product 
methods. 

From Proposition 1 it follows that the adjoint ideal [MPtQ* nP,q*] is 
the adjoint ideal of 7]v<q. Let T G L(E, F). Denote by K\ the unit ball of 
lq'(E

f) with the relative w* topology in it with respect to lq(E). K2 is 
the unit ball of lp{F") with the analogous topology. The following result 
is proved by the same method as that of [4]. 

PROPOSITION 4. fAp<q*(T) = inf b. The inf is taken over all b > 0 such 
that there is a Radon probability measure /x on K\ X K2 such that for all 
x G E and y' G F' holds: 

/ . (Tx,y')\ ^b ||(**'(*))S.i||,.,||(y«"(y'))'?.1|k^((**')(y«"))-V 

We now refer to the following concepts: 
An operator h\ L —> M between two Banach lattices is called a homo-

morphism if it is positive and h(x+) = (h(x))+, h(x~) = (h(x))~ for 
every x G L. (x = x+ — x~, x± ^ 0, x+ _L x~, is the canonical represen
tation of x G L.) We call h a strong homomorphism if /&(L) is an ideal of 
M. We call & a very strong homomorphism if /&(L) is an ideal of M (not 
necessarily closed). 

PROPOSITION 5. Let T G L(E, F). T G MVA{E, F) if and only if j FT has 
a factorization of the form: 

(5) 

where L is a p-convex Banach lattice, KiP) (L) = 1, M is a q-concave 
Banach lattice, K{q) (M) = 1 and Q is a very strong lattice homomorphism. 
Also \\U\\, \\V\\ ^ 1. Moreover, 

»P,Q(T) = mi{\\Q\\;Qasin (5)}. 

The proof of Proposition 5 will be done in a number of steps. 
Let L be a Banach lattice and B: L —> F a g-concave operator we 

define on L: 

( I m \l/9\ I \1/Q ) 

IIWII = sup j (El ix i r ) | ( E W ) £\x\j. 
LEMMA 6. | | |- | | | is a lattice semi-norm on L and is continuous with 

respect to the norm in L. (In fact ||| • ||| ^ K(q)(B)\\ • |[.) 
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Proof, a) HI • HI is finite and continuous. Let x Ç L and 

g W) è \x\. 
Then 

( m \ 1/0 II / m \ l/ff|| 

Therefore for all x £ £, 

Hlxlll è Kit)(B)\\x\\. 

b) Positive homogeneity of ||| • ||| is clear. 
c) It is clear from the definition that 

|||x||| = HI |«| HI and |*| ^ |y| => |||*||| Û \\\y\\\. 

d) The triangle inequality. Let x, y d L and z = |x| + \y\. If I(z) = 
span [—z, z] then /(z) = CCfiT) for some compact K. We have the 
following diagram: 

I(z) —^C(K)^-+ L —?-+ F 

(6) 1. 
B(K) ' > L ' 5" 

• F" 

where i is the inclusion, j is the extension of the inclusion I(z) C £, B(K) 
is the space of bounded Borel functions on K, C(K) C B(K) in a natural 
way and B{K) is considered as a subspace of C{K)" by the identification 
of h (= -B(Z) with A 6 C f f l " : 

AOi) = I MM 0* € W ) . 

Let F = (/,, . . . , /„) 6 W ) m with (ZI/ i |«)1 / J = 1- We put 

iigii. = yL\\B"j"{imq) • 

It is easy to check that 

(7) suPF HgH, = suP {(Z\\B"j"(gi)\\
q)Uq; ŒUil4)1" ^ Ul}. 

The term on the right-hand side of (7) will be denoted by P(g). For 
each F, \\'\\F is clearly a semi-norm on B(K), therefore P{g) is a semi-
norm on B(K). It is possible now to verify that for w £ I(z), \\\w\\\ = 
P(iw); therefore ||| • ||| is a semi-norm on I(z), and in particular, 

\x + y\ + 
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This proves Lemma 6. 

Let J/ be the closed subspace of L: 

JV = {x G L\ IIMH = Oj. 

Let M be the completion of L/JV with respect to the norm ||Cx|| = 
|||x||| where C is the quotient map. Then M is a Banach lattice under the 
natural order. Since for all x Ç L, \\Bx\\ ^ ||W||, B induces in a natural 
way an operator B\\ M —> F, with ||5i|| ^ 1. 

We have also that C is a strong homomorphism and from (a) in the 
proof of Lemma 6, we conclude that ||C|| ^ K(q)(B). It is easily verified 
that M is a g-concave Banach lattice and K(q) (M) = 1. 

Proof of Proposition 5. Suppose jFT has a factorization of the form (1). 
The operator U': L' —> E' is ^/-concave. By the preceding lemmas we 
have a factorization 

* Ef 

where M\ is ^/-concave, K(P>)(Mi) = 1, C\ is a strong homomorphism, 
||Ci|| g #<*>(£/) and || Z71!! ^ 1-

By passing to the dual diagram and repeating the argument, we get the 
factorization (5) (we can always pass from Q to Q", thus, by [7] we may 
assume Q is a very strong homomorphism). 

The ideal [IPtQ, iPtQ] was defined in [5]. 

COROLLARY 7. For p > q, [MPtQ1 nPtQ\ = [IPtQJ iPiQ\. (We remark that for 
p — q, [MPiQJ nPtQ] = [Tp, yp], this was proved by Krivine [6].) 

Proof. Due to Proposition 5, it is enough to consider a lattice homo
morphism Q: L —> M where L is ^-convex and M is g-concave and to 
show that Q has a factorization 

L Q • M 

A B 

LM / , >LM 

where (fi, /x) is some measure space, ||-4||, \\B\\ ;g 1 and IQ is the operator 
of multiplication by a function 0 ^ ^ L r W (q~l = p~l + r_ 1) with 
Ikllr = ||OH. M is ç-concave. i£(p) (Q) = ||Q|| (L is ^-convex and Q a 
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homomorphism), and since p > q we have also K(Q) (Q) ^ \\Q\\. Then, by 
[7] there is a LQ(n) and a factorization 

- M 

\B 

with ||JB|| ^ 1, ||C|| ^ ||Q||, C is a positive operator. Hence by [7], it is 
a ^-convex operator (L being ^-convex). By [13, Theorem 8] C has a 
factorization 

L C • LM 

A\ 
Y 

for an appropriate g £ Lp(n). 

COROLLARY 8. a) Z,e£ E be a space of cotype q (2 ^ g < oo ) and L a 
Banach lattice which is p-convex for some p > q. Then for all r, s with 
q<r<s^pwe have T £ Is,r(L, E) for all T G L(L, E). 

b) Let E' be of cotype p' (1 < p ^ 2) L a q-concave Banach lattice 
(g < p). Then for all r, s; q ^ r < s < p, we have T G Is r(E, L) for all 
T£L(E,L). 

If g = 2 in a) or p = 2 in &), we may put r = 2 in a), s = 2 in b). 

Proof, b) follows from a) by duality. To prove a), from [12] it follows 
that for all r > g and T G L(L, E), Tis r-concave. Since L is s-convex for 
all s ^ p, we have T £ MStT(L, E) and Corollary 8 completes the proof. 

A consequence of Corollary 7 and the results of [14] and [8] is 

COROLLARY 9. Let L be a g-concave Banach lattice with q < 2 and E a 
sub space of L. Then one of the following mutually exclusive possibilities 
holds: 

a) There exists p, 1 S P S q such that E contains uniformly / / . 
b) There exists r, q < r ^ 2 and there is a probability measure space 

(12, 2, /x) such that E is isomorphic to a subspace of Lr(/x), and on E all the 
Ls(ii) norms with 0 < s ^ r are equivalent. 

PROPOSITION 10. Let L be a p-convex Banach lattice, and T £ L(E, L) 
with T' G Up(L

f, E'). Then T is lattice bounded in L"; that is, there exists 
/ , 0 ^ / a " such that 

jT(B(E))C[~f,f] 
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(j: L —• L" the cannonical injection). Moreover, 

Proof. We use the following construction. Let M be a Banach lattice 
with M' p-convex (1 g p < GO). (We assume, for simplicity, i£(p) (M') = 
1.) Let (12, 2, M) be a measure space and let L/(12, 2, /x, M') (in short, 
L*p(n, Mr)) be the Banach space of w*-scalarly measurable functions </> 
from 12 into M', such that 

$ = sup{|(0, x)\, \\x\\L ^ 1} 

exists and belongs to Lv(n). The norm in L*p(/x, AT) is ||<£|| = ||$||Lp(M) 
(see [17]). Let <£ G WOx, M') and let ,4 = {A3)%i be a finite collection 
of disjoint measurable subsets of 12 with n(Aj) < oo (j = 1, . . . , n). We 
define fA Ç M' by 

(8) /A = ( Z M ( ^ ) H f «(co)dM(co) j 1 ^ . 

I I cj)(o:)diJL is the element of Mf defined by I I <l>(œ)dfA(x) 

= J (0(co),x)rf/i.jj. 

Since K^(M') = 1, we have 

/ n II /• | | p \ 1/P 

II/AII ^ Z M W ^ I *(«)dJ 

< 
w / f \p"|l /P / n f \ 1 / : 

j = l W A j / J \ ^=1 ^ Ay / 

= M ^ I I L ^ C M . M ' ) -

There is therefore a subnet (^4a) of the net of such finite collections with 
the order induced by refinement, such that 

fAa > /£ M". 

Of course, / ^ 0 and 

H/ll ^ IMkpc.*'). 
Let O ^ x Ç ¥ and 4̂ = (Aj)j=in the same collection of sets as before. 
Then 

/ n \ (* \p\l/p 

\ ; = 1 I «̂  A I 

- j = l M ^ A y I / 

1/P 
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The last expression is equal, for some w-tuple (c^)n=iw with £|c^|p / = 1, 
to 

= 1 \JAJ I 

= [È«;M(^) ( 1 ~H f *(«)dJ](*) 

Now, if for all a, Aa = (A f) js=in(a) then 

(9) [jj(^),x)\pd^))1/P = 

We now use (9) to prove the proposition; we assume K{v)(L) = 1. 
Since Tf G wp(E', Z/)> there is a positive Radon measure /x on 12 = S(L") 
such that 

(io) M(Q)1/P = *-„(n 

and for all y' G Z/ 

(11) \\Vy'\\ £ (fjy"(y')Wy''))1/p. 

We define / G Z," as in the above construction, with <j> G L^(L"), 
<t>(y") = y". We have 

11/11 ^ iiÇty» = TP(T'). 

We need to show that for all x G E with ||x|| ^ l , j ( | ^ | ) = /• That is, 
for all y' with 0 ^ 3" G Z/, / ( | 7 * | ) g / ( / ) . If 0 ^ c/ G L', then for 
||x|| ^ 1, we have by (g) 

(12) W(Tx)\ S ||7V|| ^ ( / l / V i ^ W ) ) 1 * ^ /(«')• 

Now if 0 S y' 6 L' and ||x|| ^ 1, (12) yields: 

y'( |7*|) = sup{w'(7*) + z'(7x)|o>', 2' ^ 0, «' + 3' = / } 

^ sup{|u'(7x)| + |z'(7x)| | « ' ,8 ' H , w ' + 2' = / } 

g SUP{/(«') + /(*')!«' ,*' è 0 ,« ' + * ' = / } = / ( / ) . 

PROPOSITION 11. Let F be a Banach space and L any Banach lattice. Let 
A G L(F, L) be a p-convex operator and T G L(E, F) with T' G TP(F',E'). 
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Then there exists / , 0 S f G L" with 

II/II gjfw(4)i,(n 
such that 

AT(B(E))C[-f,f]. 

Proof. By the proof of Proposition 5 we have the following factoriza
tion: 

E — ^ > F —^U Z, —^-* L" 

IN /V 
M V 

where ||^4i|| ^ 1, Q is a lattice homomorphism, ||Q|| ^ i£(p)(^4) and i f is 
a ^-convex Banach lattice. By Proposition 10, there exists g, 0 ^ 
£ G M, ||g|| ^ 7 r , (U 1 r ) / ) ^ 7r , ( r ) and 

A 1 ( r ( 5 ( £ ) ) ) C [ - g , g ] . 

Tak ing / = Q(g) completes the proof. 

COROLLARY 12. If E' is of cotype a' (1 < a ^ 2), and T G L(£ , L) 
(Z, aw}/ Banach lattice), then for every S G L(G, E) with S' G Trr(G, E) 
(r < g), Ĵ S is order bounded in L". 

THEOREM 13. Let T G MPtQ(E, F). Then for any Banach space G and 
operator S G 7iy (F, G) we have 

T'Sf G IP'(G,
1E

/) andiv\T
lSf) ^ M ™ ( 7 > X S ) . 

Proof. By Proposition 5, T has a factorization of the form (5) with 

lieu ^ . « ( n a + o. 
Let 5 G TTQ'(F, G); the diagram dual to (5) is 

£ ' < Zv «-^— G' 

H Q, lF' 
L'4r*— M' 

where F1 = 7'|,«-
By Proposition 10 there is 0 è f G M', \\f || g ay (S) such that 

^ 5 ' ( 5 ( G ' ) ) C [ - / , / ] . 
Let C(X) be the completion of / ( / ) with respect to the norm for 
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which [—/,/] is the unit ball, and let i: C(K) —» M'" be the extension 
of the inclusion. 

NI g | | / | | £TAS). 

Let j : M' —> M'" and k: M"' -> M' be the cannonical injection and 
projection. 

We have the diagram 

E' <r± F' +^— G' 

L'<£— C(K) 

where 72 is the operator that jVW induces into C(K) (||72 | | ^ 1). Q1 

is Q'ki and of course Q1 is a homomorphism from C(X") into L'. From 
^'-concavity of L' we have for <£i, . . . , 0OT € C(K): 

(£IGV)1/P ' ^ IIŒIQ^r)1^!!^ 
^ II^IMKEI^n1^!*» = ll̂ lMto*)*-!")-

Hence Q1 is ^'-summing and 

^ ' ( G 1 ) = IIQ'II ^^AT)(l + e)\\i\\. 
Since Q1 is defined on a C(X) space we have 

v(Q') ^ ^,e(r)(i + *)||t|| g (i + e)M,,s(r)^(5), 
hence 

v(rs ') = VCC/'^T2) g llE/'llvCG1)»̂ » 
^ (1 + €)/!„,, (r)TT^ (5). 

3. Relations with uniform convexity and uniform smoothness. 
For further information concerning vector lattices we refer to [18]. 

The following construction was introduced in [1] and further investi
gated in [10,11]. 

Let Xo and X\ be Banach lattices which are embedded lattice-isomor-
phically as ideals of the same complete vector lattice W. It is easy to 
check that in this case X0 + Xi and X0 H Xi (definitions of [1]) are 
Banach lattices, Xt(i = 0, 1) are ideals of X0 + Xu X0 Pi Xi is an ideal 
of the other three, and all four are ideals of W. 

Let 0 < 0 < 1. We define: 

(l)Xe = -XV-'AV = {x £ W\ \x\ ^ Xlu^-'lvl* for some u £ X0, 
veXuX^O; with ||^|Uo S 1, \\v\\Xl ^ 1}. 

Xe is a Banach lattice equipped with the norm 

\\x\\xe = inf {X|X as in (1)}. 
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It is easy to check that the following set-theoretic inclusions hold: 

loniiC^^c^io + ii 
and that i and j are very strong lattice homomorphism of norms not 
greater than 1. 

The following result is from [11]. 

THEOREM (Lozanovskii). Suppose X0, X\ and W are as above. Then there 
exists an order complete vector lattice V and lattice-isontorphic embeddings of 
XQ and Xi as ideals of V such that (Xe)' is isometric and lattice isomorphic 
to (XoT-'CXV)'-

THEOREM 1. Under the assumptions of the preceding theorem, 
a) Suppose that Xt(i = 0, 1) has an upper-pi estimate (u-prest.) 

M{Vi)(Xi) and lower-q ̂ estimate (l-qrest.) M(Q.)(Xi). Let pe, qe satisfy 

ï-if1 + 7r->L- — + e- <o<*<i>. 
pe Po pi qe qo <?i 

Then Xe has u-pe-est. and l-qe-est. and 

M^(Xe) S [M^(Xo)]1-e[AI^^(X1)]
e, 

M(Qe)(Xe) g [M(Qo)(X0)y-^[M(Ql)(X1)y. 

b) Suppose X{ is prconvex and qrconcave. Then X) is pi-convex and 
qe-concave and 

K^iX,) ^ [K(p°HXo)Y-l>lK<-''^(X1)]<1, 

Klti)(Xt) ^ [Klto)(Xt)y-'[Kltl)(X1)]>. 

Proof. We prove only a) ; the proof of b) is similar. By duality and 
using Lozanovskii's theorem it is enough to prove the first assertion and 
the first inequality. Let xif . . . , xn G X$. For each i let 0 ^ ut G Xo, 
0 ^ vt e Xx with \\ui\\Xo ^ 1, \\vi\\Xi ^ 1 and X ^ O b e such that for all 
1 fg i :g n 

\xt\ <; \iUil-eVie and \ t ^ ||xf||X0(l + e). 

Then 

V \Xi\ ^ V x^-^^u^X^'^/ 
1 = 1 1=1 

< 

( n \l-e/n \6 

y xW'oui) [ v \yip^t). 
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Hence 

v i*, 
*e 

V XtW'out 
i=l 

V xy^vÀ 
t-i ii 

/ n \ (1-9) lp0 I n \ (9) /p 

z (i + «)[M('«')(A-o)]i-'iiiff,,>,(A-1)]'(x: I H I . * / » ) 1 " . 

Since e is arbi trary, the last inequality proves the assertion. 

PROPOSITION 2. Let L, M be Banach lattices, L with a u-p-est., M with 
an l-q-est. (1 < p, q < oo ) and M-order complete. Let Q: L —> Mbe a very 
strong homomorphism of Banach lattices. Then for every 0 < 6 < 1, Q has a 
factorization 

L Q + M 

X 

•where Qu Q2 are very strong homomorphisms, \\Qi\\ \\Qz\\ = \\Q\\, X has an 
u-pe-est and l-qe-est 

\pe P Qo Q' 
and 

P ' 'go ql 

MW(X) S [M^(L)Y-°; M%)(X) ^ [M(q)(M)]°. 

A similar assertion is true if we replace upper and lower estimates by 
ccnvexity and concavity, in the assumptions and in the result. 

Proof. We may suppose Q is one to one; this is because the quotient 
Banach lattice L / K e r Q has 

M™(L/KerQ) S M™(L). 

We may therefore consider L as an ideal of M on which the L-norm is 
another norm. We may, then, apply Theorem 1 (with X0 = L, X\ = M, 
W = M, po = p, pi = 1, qo = oo , gi = q). We have then the factoriza
tion 

L - £ - • M 

Q\ A 
Xe 
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where Xe = Ll~dMd and Qu Q2 are the set-theoretic inclusion operators. 
It is easily checked that ||Qi|| ^ \\Q\\l~e, H&H ^ \\Q\\e\ the estimations of 
the upper and lower estimates of Xe are those of Theorem 1. 

COROLLARY 3. Under the assumptions of Proposition 2 with 1 < p ^ 
2 ^ g < 00, /or all r < p, Q factors through a uniformly smooth Banach 
lattice with modulus of smoothness of power type r. Also for all s > q, Q 
factors through a uniformly convex Banach lattice with modulus of convexity 
of power type s. 

Proof. It is a result of [9] that a Banach lattice L with an u-p-est. and 
l-q-est. (l<p^2^q<co) can be given two lattice norms, || ||i and 
|| ||2, both equivalent to the original norm, such that (L, || || 1) has modulus 
of smoothness of power type p and (L, || H2) has modulus of convexity of 
power type q. This, together with Proposition 2, proves the assertion. 

PROPOSITION 4. Let E be a subspace of a Banach space F such that the 
following hold: 

i) F has G.L.-l.u.st and cotype q < co . 
ii) E' has cotype p' < 00 {p~l + (p')~l = 1). 

Then 
iii) For all s > q, E can be equivalently renormed to be uniformly convex 

with modulus of convexity of power type s. 
iv) For all r < p, E can be equivalently renormed to be uniformly smooth 

with modulus of smoothness of power type r. 
v) l/p(E) + l/q(E') = 1 where p(E) = sup [p\E is of type p), 

q(E') = inf {q\Ef is of cotype q\. 

Proof. Under the assumptions i) and ii) we have the following fac
torization 

E —!-+ F —^-> F" 

where i is the inclusion map, L is a Banach lattice and [/, V are operators 
which are r-convex and s-concave respectively, for all r < p and s > q. 
Therefore for all r < p and s > q, we have Mr,s(i) < co. iii) and iv) are 
therefore consequences of the preceding propositions and Proposition 2.5 
(note that in the proof of Proposition 2.5, M, being bi-dual, is order com
plete). Note that E is isomorphic to a subspace of Banach lattices with 
the desired moduli of convexity and smoothness, v) is a direct conse
quence of iv). 

Remark 5. Recently Pisier used in [15] the same method of interpola
tion used here. A further use of interpolation leads to a special case of one 
of his main results (Theorem 3.4 and Corollary 3.5): 
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PROPOSITION. Let F be a Banach space with G.L.-l.u.st and cotype 
q < oo . Let X be a subspace of F such that X' has cotype p' < oo . Then for 
every a > § - 1 / 0 ' + q) (l/p + l/p' = 1) holds: 

(Pa) There exists Ca > 0 such that for every subspace Y of X and operator 
u 6 L(Y, Z) of rank n < GO, there is an extension ïl G L(X, Z) of u with 

yi(û) S Can
a\\u\\. 

Proof. By the preceding results, for every q, p, 6 with q < q < oo , 
1 < p < p, 0 < 0 < I there is a Banach lattice L which is ^-convex and 
r-concave with 

s p r q 

such that X is isomorphic to a subspace of L. Now, the result of [15] 
shows that X satisfies (Pa) for 

(l 1 1 l \ (l + d(p- 1) 1 1 6»\ 
a = maX t " 2 '2 " ~rl = maX I "I " 2 '2 " 'q! ' 

It is left only to choose 6 = q/ (pf + q) to complete the proof. 

One should compare the estimate of a obtained here with the estimate 
l/p — 1/q obtained by Kônig, Retherford and Tomczak-Jaegerman in 
[6] (see [16]) for general type-p, cotype-g Banach spaces. For p and q 
close to 2 the last estimate is better than a, however a is always smaller 
than 1/2 if p > 1 and q < oo. 
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