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The Cauchy problem for a second-order
nonlinear hyperbolic equation
with initial data on a line
of parabolicity

John M.S. Rassias

In this paper we study the Cauchy problem for the second order

nonlinear hyperbolic partial differential equation

)

2
(*)  Lu = k(y) " (x, y, u, Ups U )'uxx -u = flx, ¥, u, Uy U

Y vy Y

with initial conditions

(*%) u(z, 0) = r(x) , uy(x, 0) = vwx) ,

where

x €I = [a, b],

k(y) = y* (a>0),
H = H(x Yy U, U, U ) € 02(')
£ s > ok y s
2
F=rle, ysuu, uy] € Co()
and |ul|, Ju_|, |u | < >0 r = r(x) ¢ Ch(-)
> x b y 3 y_ 3 b

v =v(z) € ()

These conditions on k, H, f, r , and Vv are assumed to be
satisfied in some sufficiently small neighborhood of the segment

I, y =0, in the upper half-plane y > 0 .
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This paper generalizes the results obtained by N.A. Lar'kin
(Differencial 'nye Uravnenija 8 (1972), T6-84), who has treated
the special case H = H(x, y, u) ; that is, the quasi-linear

hyperbolic equation (¥*).

Introduction
In this paper we study the Cauchy problem for the second order non-

linear hyperbolic partial differential equation

= . 2 . =
Lu = K(y)+H (x, y, u, Up» uy) Mo = Yy flx, v, u, U uy) ,

with initial conditions

u(x, 0) = r(x) , uy(x, 0) =v(x) , x €I=[a,b],

wvhere X = K(y) = yOl (@ >0) , H=4H(x, y, u, Uy uy) #0,
f = fﬂr, Ys Us Uy, uy) are all twice continuously differentiable functions
defined for x € I (an interval), y =0, Jul, qul, ]uy] < ® , and

r = r(x) , v =v(x) are given functions having continuous derivatives up
to the fourth order inclusive. These conditions on X, #, f, r , and v
are assumed to be satisfied in some sufficiently small neighborhood of the

segment I , y =0 , in the upper half-plane y > O .
Frank! [8] solved the Cauchy problem for the equation

‘u. - u tawu +be tecu=0,
Y ¥z vy x uyy e

a=alx,y), b=>blx,y), c=clz,y),
under the assumption that the coefficients are analytic.

Berezin (1] treated the same problem for the equation

h(x, y)-ya'uxx - uyy +acu + b-uy +eu+ =0,

with restrictions on the coefficients similar to those for Lu = f , but

with the condition a € (0, 2) . Starting from a different point of view

3

Bers [Z] solved the Cauchy problem for the equation K(y)'uxx - uyy =0

where K = K(y) is a continuous monotone increasing function of y with
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K(0) = 0 . A solution to the same problem has been obtained for the

equation K(y)-uxx - uyy = 0 by Germain and Bader [9]. They make the

additional assumption that X(y) ~ ey as y > 0 and thus make use of
Riemann's method. The result of Bers shows that if the lower order terms

are absent in an equation such as

h(zx, y)°ya-uxx - uyy +aou, + b-uy +cu+f=0,

there is no restriction on the rate of growth of the coefficient of uxx .

On the other hand, Berezin gives an example to show that for o > 2 the

Cauchy problem is not correctly set for the equation

h(z, y)°ya-uxx - Yy +acu, + b*uy +cu+ f=0

Conti [6] has shown that the Cauchy problem for the equation

)

h(zx, y)'ya‘uxx -y = Fles vy us uy, v

Y
is correctly set for the range « € (0, 2) , if

y'fu (x, Yo Uy Uy, U )/Vf >0
e Y

as y >0 .
Protter [18] showed that the Cauchy problem for the equation

K(y)-hlz, y)’uxx -yt alz, y)*u, + blx, y)‘uy +cele, y)ou+ flx, y) =0

is correctly set, if ye<alz, y)/VKk >0 as y >0
Lick [711, [12], [13] showed that the Cauchy problem for the equation
2 28, 21,
z

ro(z, y)u -u +alz, y)u, +blx, y)'uy +elx, y)u=0,

Xz yy
with homogeneous initial conditions, has only the trivial solution.
Besides, he showed that the Cauchy problem for

2y, B
Uy Ui < U + flz, y, u, Uy uy) =0 (y>0),

with initial conditions u{x, 0) =0 , uy(x, 0) =d¢(x) : x € I = [a, b],

Y-l)

is correctly set whenever fb(x, Yy, U, P, q) = O(y as y >0,
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Ogawa [15], [161, [17] showed that the Cauchy problem for the

equation

Pz, g uu, cu + Fe0, Fefley, uu, ) >0,

with the initial conditions u(x, 0) =0 ,

u, (@, 0) = 0(z) : & €I = la, B]

is well-posed if f?(x, Y, U, P, q) = O(yB—l) as y > 0

It has also been proved recently by Singer [20] that the (singular)
Cauchy problem for the second order, quasi-linear, hyperbolic partial

differential equation

2u,r2( 2B,u§{_

z, y)tu u_ -u_ +flesy, u,u,u) =0 (y>0),

y xx T Yyy Yy

with initial conditions u(x, 0) =0 , uy(x, 0) = ¢(x) : x € T , has one

and only one solution in a neighborhood (y > 0) of I = [a, b] , if
o, B, and Y are non-negative real numbers with a + B8 + Yy >0, I is

any finite interval on the x-axis, and fb(x, Y, U, p, q) = 0(yu+S+Y—l]

as y >0, By<a1

Lar'kin [10] showed that the Cauchy problem for the second-order
quasi-linear hyperbolic equation with initial data on a line of parabol-
icity, namely, for the equation

u - ym‘K2(

yy x! y, u).u

_— Nz, y, u) =0, y>0, m>0,

where KX(x, y, u) # 0 and %(x, y, u) are twice continuocusly
differentiable for =z € [a, b] , ¥ = 0, Jul < , with initial data
u{x, 0) = ¢(=z} , uy(x, 0) =Y(x) :x €[a,b] =T, y=0, ¢ and ¥

continuously differentiable up to the fourth order inclusive, has a unique

regular solution.

In the developments mentioned above the authors have applied mainly
Schauder's fixed point theorem to a system of integral equations, the

Picard method of iteration, and the Ascoli-Arrela theorem, as well as the
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classical mean value theorem.

THEOREM

Let us consider the non-linear hyperbolic equation of second order

= - 2 - - =
(1) Lu = K(y)+H (=, y, u, U uy) Upw ~ My flx, v, u, U uy) ,

with initial data on a line of parabolicity; namely,

ulx, 0) = r(x) ,

(2)

i\
=
&
.

u (=, 0)
Yy

where H = H(z, y, u, Uy uy) £0, Ky =% (a>0)

f= f[x, Ys Us U, uy] are twice continuously differentiable functions

defined for x € [a, b] , y =20, |ul, |ux|, [uy| <o p=rix),

v = vWx) are given functions having continuous derivatives up to the

fourth order inclusive.

Equation (1) is hyperbolic for y > 0 and is parabolically degenerate
for y =0.

If H = H(x, Yo Us U uy) , f= f(x, Ys Uy U, uy] , r=r(x), and

v = W x) satisfy the above conditions in some sufficiently small
neighborhood of the segment a =x=b , y =0 <in the half-plane y > 0,
then the Cauchy problem (1) and (2) has a unique regular solution

u = ulx, y) in some sufficiently small neighborhood of the segment
a=x< b, y =0 in the half-plane y > 0 , which is twice continuously

di fferentiable for y > 0 and continuous for y = O .

Proof
"¢l us introduce the new unannown function
(i) v:u_y-\)_r’

for which the ipi-.i~L conditions (2) become homogeneous, and for which

obvicusly there is nn loss of generality.

By (3), conditions (1) and (2) become
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Ty = .yl . =
(l)' v = K(y) H (.’L‘, Y, Y, Ux, vy) Um - vyy = F(JC, Y, v, vxa vy] £
v(x, 0) =0,
(2)
vy(x’ 0) =0,
where H = H(x, Y, Vs U, vy) , and F = F(x, Ys Vs Vo, vy) are known
functions. For convenience, let u=v , H =K = K(x, Yy U, ux, uy] in

(1) and (2)', such that

= - o 2
(l)" Lu = Y X .uxx - uyy = F(.’,C, Y, U, u.‘L" uy) ’
(2)" ulz, 0) = uy(x, 0) =0 .

(1). At first, we reduce the non-linear hyperbolic partial
differential equation of second order, (1)", to a system of integral

equations, as follows.

Let us introduce the new unknown functions

w = u(x, y) =z (z, y) ,

u=z
u, = uy(z, y) = H(z Uy U, U ) 2, 42

2 2 ’y ’y’ b x’ y y 2 3 3

() {

Uy = Ey s U = Eg
u ulz, y) = -H(xc U, U u]'a/e-z + 2
3 3 ’y 5y’ k4 iohd y 2 3 3
H=K-= K[x, Yo Uy Uy, uy)

Y Yy x
(5) (z3)y = ya'K2(x, Y, U, Uy, uy)'(zg)x - Flx, y, u, gx, uy] s
(6) zl(x, 0) = zz(x, 0) = z3(x, 0) =0 .
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N
1]

z (x, y) = u

1 1 1’
(&) 2, = ze(x, y) = [ue(:x:, y)-u3(:z;, y)]/(Zy'a/ek) .
a2y = 3w, y) = [ue(x, y)+uslz, w12
(1) (u2)y - ;.:.yot/z-(uz)x = (Az/y)°("2‘”3) +5,,
where
r (a+2)/2‘ . —l. . .
4, = Ex—zy K +2y°K (Ky+1<zl “3+Kz2 (22)y
. Slava)/e o, .
(8) { +Kz3 (23)y)-2 y (Kzg (32)x+Kz3 () ) | /%
and
32 = -F ,
(9) (u3]y + K yalz'(%)x = (ay/y) - (upuy) + B5
where
A3 B -EL+2.y(a+2)/2'Kx+2y'K_l' [Ky+Kzl.u2+K22. (22)14
. lax2)/2 o, . :l .
(10) ﬁ +Kz3 (23)y)+2 Y (Kzg (32)x+1(z3 [23)1') /b,
and
By = -F

Hence (1)" may be written equivalently as the following system of

three equations, namely:

Uy, = [uz(x, y)+u3(x, y)]/2,
(k-3 - 2, [ (x, y)-uylz, y)] + B
uzy— y u2x_y U\Z, Y)-uslz, y 2
A

/2 3

o
u3y + Koy Uz, = 7 [uz(x, y)-u3(x, y)] + B

or
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U, (u2+u3)/2 ,
(11)
u (l)i°(1{'a/2]-u =2(u-u]+3 (2 =1, 2)
iy~ Y iz y V23 i R
It is worth noting that
= = = ao 2. .
(12) By=By=-F=y B (yv s ) -f.

In fact, by (3), u=v + y*v + r , whence

Uy SV YV T, U EU YV e,
u =v_ +v, yu =
y y vy vy
Therefore,
2 - . 2. -
K(y)+H Ui = Uy = K(y)-H (vxx+y vxx+Pxx) - vyy
= . 2. - . 2. .
= {K(y) Hov vyy) + K(y) B (y vmmm)
= . 2. L] -
=F + K(y) H (y \)xx+rxx) - f >
and thus

2
F=fle, y, u, U, uy) A S CRIR Uy uy)'(y'\)m*‘rm)

The characteristics of (11) are the lines x = const and the two
. -Q -
families of curves given by dy/dr = %y /2,41

Let P = P(x, y) be a point in D and construct the three
characteristics of {11) passing through the point P .

The left side of each of the equations in (11) represents a derivative

in a characteristic direction.

If we denote by 52 the member of the family

d /2 -1
passing through P , and by 53 the member of the family
%{C_ - +y-a/2_K-1
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passing through P , we can write (11) in the form

dul
& - (u2+u3)/2 ,
(13) du . a
t. . (u -u ) +B. (i=2,3)
a§; y 273 7 > >
where
~ % ~ %
a; = Ai/[l+ya‘K2]2 (2 =1, 2) , B, = —F/[;+ya°K2]2 .
In fact
duy e\ | dy 0/3] [ dy
352 = (uixdx+uiydy]/dsi = [uiy U ag) . dSi = [%iy-uix.K.y :]-[dsi) ,
where
du.
dy _ |2 . o, ,21%
dSi dSi [l+y K ]

By integrating (13) along the characteristics, we obtain the required

system of non-linear singular integral equations, equivalent to (1)":

n
ul(ﬁ, n) =% - J [ug(x, y)+u3(x, y)]-dy ,

0

n .
(1k) “i(ga n) IO {[Ai(xi’ Yo Uys Uy u3) /y]'[u2(xi’ y)-u3(xi’ y)]

+Bi(xi, Yo Uy Uy, “3)}’dy (¢ =2,3),

where

(15) =z (y; &, n) =& - (-1)% - [: &2k (=, ¢, s Uy u3)'dt

(¢ =2, 3,
and subject to the initial conditions
(16) ui(x, 0) =0, i=1,2,3, z € [a, b]

(I1). By applying the above reduction (I}, we achieve the main part

of the proof of our theorem, as follows.

https://doi.org/10.1017/50004972700011060 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011060

354 John M.S. Rassias

Let D= {(x, y) | (x € [a, b]) and (y € [0, yo])} be a closed domain
in R? , where Yo is arbitrarily chosen.

Let us define in D the following set of continuous functions,

namely:
(D) = {d> | ¢ = ¢(x, y) is continuous in D such that ‘bx is equicontinuous
with respect to xz and ¢(x, 0) = 03
max{](t)l, ld)x], Id)y'} < M, where M is a fixed number}
_ 3 _ _
Let D.= 0N Dji , Where Dji are the closed domains of definition
1=1

of arbitrary functions ¢ji € C(D) replacing the functions ui

(Z =1, 2, 3) and such that these domains are bounded by

y = ¢ < yO s, Y = 0 N
o mas | M2k (x, £, 0. (x, £), 6. (5, t), b.(z, t))-dt
2 JO 3 3 Jl 2 k] J2 k4 3> J3 E] b
and
x, =b + Jy (~0)2k(z, £, 0. (z, ), ¢..(x, t), ¢..(x, ¢))-dt
3 O b b Jl 2 b J2 3 9 J3 2] b
where 4 =1, 2,3 and j =1, 2, 3, ... , and the function

XK = K(x, Y, ¢1, ¢2, ¢3) is bounded in the closed parallelepiped

T={(z, y, ) | (& €[a, p]) and (y € [0, y,]) ana
(6= 0,0 0, 0) € [, 1)} CR® .

LEMMA 1. Let max |K| <M where K = K(x, Y, b5 O, 0.}
> 1 %2 3

Let D,= N D., and 5_= {6 | ¢ =9(x, y) is defined in D_} ,
J=1 J [ €

where € > 0 is sufficiently small.

We define the norm of continuously differentiable functions
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¢ = ¢le, y) in S, as ol | = max {11, |¢x|} .
e D
€
We prove that the following inequalities hold, namely:

¢

(1.1) g

ys € n)=ab(ys £, n)| = Alo-vll (k =2, 3),

where

+

e
Dlys £, n) = £ - (-DF - Jn t"/g-x[xd’, £y b5 0, ¢3)-dt ,

b, =6, (e, 8) (=1,2,3), (k=2,3),

Y
”i(y; gom) = - (-1)F - J t“/Z-K[x“’, £y s Voo w3)-dt ,

n
b = (x, ) (2=1,2,3), (k=2,3);
(1.2) fx,(ys &, n)-xy(ys &, n)| = u-n(a+2)/2 , 1= lxg(y; g, | <2,
dx ox
2 2)/2
(1.3) B (y; &, n) - 3—53- {y; €&, M| = A-n(o‘Jr )/ s
such that
u=byf{a+2) , A<1, 0=<y=nsc¢g,
and
, -1 51\ <5
e {1l 1,1 Lo M 1B 1E) 1B, 1) =7,
€
where
B = 52 = 53 , B=Blz, y, ¢), K=Kz, y, ¢) .

Proof. The proof of this lemma is an immediate application of the
classical mean-value theorem. We prove only the inequalities {(1.1) and

(1.2) and observe that (1.3) is clear. In fact,

1A

M-

Y
1) s € n) - s 6 ) = [ 2l oy ]t
n

2= Aello=wll 5 X <1,

IA
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because

o+2)/2

1 = max \xk-xz( . (2+]o-u])e fyn] «(2Mfa+2) = T,

and therefore,

1+ [1-(2H/ar2) » y-n| 23] < (d/ara) . [y-n| 2 2oy |

and by letting € be so that 0=y =n=¢,

Y _
(1.2) |ey(ys &, n)-wqlys £, n)] =2 J 1£%/2 x| ~at < 20 j /2, 5,
0 0
— N
S oM . J o724t
0
= (uﬁ/a+2).n(a+2)/2 _ u-n(a+2)/2 ’
where U = LM/a + 2 .
The rest of the inequalities is clear. //

LEMMA 2. For all n the following inequalities hold in S¢ s

namely:
(n) = &g _
(2.1) uy (g, Ml=w- Y &en (=1, 2,3 ,
=0
n .
2.2 e, malPe, | =5 3 elanleR)/2
J=0
n .
(2.3) u7(;n) (5 y)-ui-n) (@5, )| =0 - ¥ 69nl*/2 (5 a3,
J=0

where O ig taken sufficiently close to 1 .

Proof. To establish the existence of a solution of the system (1k4) we

(0)

proceed by iterations. We define Uy (¢, n) =0 (Z =1, 2, 3) , and the

s n
quantities ué )(&, y) by the relations
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n
uin) =% - Jo E{(2n-l)+ugn-l)],dy s

. n - _ -
(1) *u{n) = Jo {lAi(xi’ Y, ¢l’ ¢2, ¢3)/yl-[%én l)[xi, y)-ugn l)(xi, yi]

+Bi(xl, Y 4)1’ ¢25 ¢3)}'dy ('L = 2, 3)

We proceed by induction on #n ; +that is, we show that all the
inequalities (2.1), (2.2), and (2.3) hold for »n =1 , and then by assuming
they all hold for n = k , we establish each inequality for n =k + 1

We establish all inequalities simultaneously.

Case 1. n =1

1 .
(1) L _ _
(2.1) |u (£, n)\ < ’[o 1B;(2;> 4> 015 0, 0] [rdy sHen =t - ¥ &en
J=0
(z =1, 2),
where § is taken sufficiently close to 1 . The case 7 =1 is
trivially true.
(2.2) |u{1) ol e, ml = [ B
. u2 (Ea n ‘u3 E: n = o |Be(x23 Y, ¢)—B3(1'3, Y, ¢) 'dy

n . ~
- [ 1Bl v 0)Bleg v )|y
0

LA

n -~ ~
J DBIIB e ] 2gtys € mglys €, ) |-dy

(at+2)/2 a+2)/2

6J,n( i

1A

2MepeMon =M -

oo

J

where B =B, (£=2,3, §<1, € issuchthat 0sn<e (in
SE), and 2u*Men <1 . Besides, we have applied Lemma 1 through this

proof. Similarly
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n .
oy W) = | 1B (5 = 4, b 0)

51‘_4 . Z 6j.n(a+2)/2 .

J=0
The case % = 1 is trivially true.

Case 2, n=%k+1

We suppose that Lemma 2 holds for »n =k .

n k K L
% lu | "+ |uy | ody < % oM
oL =2 3 0

IA

Koo
(2.1) Mkﬂ)(i, n)‘ X 5‘7de9
j=0

k . k+1 .
=7 - o= ¥ 0,
J=0 J=0
k L P k k
< e, m| = | {0 v @l [0 e 08 0[]
+ Iéi(xi’ Y, ¢) }°dy .
But
- % .
4,1 = |Ai-[1+ya-k2| | =§+vy~-7,a y>0 (i=23)
Therefore,
n _ k. _
u(k+1)(£, n)‘ = J [%-+ y°y)-M . Z GJ'ya/2+M ~dy
v 0 j=0

A

_ k. ksl
A 1+[Z GJ}.S m=H- Y &en (i=2,3)

J=0

by choosing the width € of the strip so that for 0=y =n=¢ ,

[%+Y'y)'ya/255<l,and Yy >0,as y=>0.
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(2.2)

(k+1)
ug (&, n)‘

s k k
< Jo ‘{Ag(xQ, y, ¢)]}(2 )(xe, y)—u(3 )(x3, y)]
Ayl v 0)- [ g )8 oy )b

+ B[z, ¥, ¢)~§3(x3, ¥, ) l'dy

Koo \
J (o ) ¥ ¥ 57,2, 5w
< ) . sy CroMels |x ~x | b edy
{Lu % 273! |
( koo
5H'n(o‘+2)/Q-FM'M'W[’*/(GQ)]'[%+Y°y) - ¥ s7
Jj=0
<M. k;} Gj-n(a+2)/2
J= =0

by choosing € such that 0 =n =€ , and

Ly MM
arz " MM =800

2usMen = 2 s <l,

LN [%—+ y-y) =86 <1, limywy =

a+2 y~0
Similarly,
(2.3) |ud (=, 9)-al" (s, y)‘
< " s 2 ) v 98] [ )
- 0 [1 l ’ 25y’y’¢/y u2 x’l: ,xg,y),y
—ugk)(xi(t; x,, ¥}, v) +B., [ (t x2, y) }
W e (5 20 8), w) 4B, (t = }| dy
k+1 .
=iy 9nl®2 g p gy
Jg=0
The case % = 1 is trivial. //

LEMMA 3. For all n the following inequalities hold:
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.0 [, m-d e, | sEeT (1=1, 2, 3)
(3.2 ™ e, mad ™V e, m-dP e, mndPie, | = wsta0R2
(3.3 [d™ (e, )™ (g, )P (0 )4l (s y)’

(a+2)/2

< M8 (£ =1, 2, 3) .

Proof. We prove only (3.1) and (3.2), while (3.3) can be proved in
the same way as in the cases (3.1) and (3.2). In fact, by induction on

n.,

G [ e, madPie, m|

[ {1 v 9 [ 0L 0]

(.20 [, M-l e, m-dPie, madPie, )

: ]2 |Gy s 0087 (o )-8 (2, y)]
Gy v 000 [ ey ) ey 4
gl vs )01 1D s )P (a0 0)]
+[A5(z5, ¥, ¢) /y]']}(;'l)(xy y)—ugn'l)[x?), y)] "dy

n ¢
a 1
o B -3

_u(2n-l) (:1:2, y) +u(3n_l) (

S ) A s O y)+ug"_ (0 ) ”'dy

) Rl < 22

A

i (2,0 y)-u ( )(x2, y)

uy" (@4, ¥)

k]

1A
AV
——
Q

.E.”
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6 =&8y) =vy, 1imadly) =0 .
y>0
(3.3) follows similarly, as in the above case. //

Then by applying Lemmas 1, 2, 3, and Ascoli-Arzela's theorem we get
the required result. (See also [10].)

In fact, by Lemma 3 it is clear that the sequences {uin)(x, y)}

(n) (n)(

(7 = 2, 3) converge uniformly in S8 . Since each u, =u
Z

continuous in SE , So are the limits, which we denote by ui = ui(x, y)

The resulting linear system is solvable, and the solutions satisfy the

following inequalities uniformly in Se :

1A

|ui(xa y)l M- Z 5j'y H

() fuylz, y)ugle, y)| =m - ¥ 5J‘y\a+2)/2 , where 6 <1, =1, 2, 3.
J=0

For an appropriate choice of € , |ui(€, n)| =M for all ¢ ¢ S

Similar inequalities hold for the derivatives (ui)g(ﬁ, n) and
(ui)n(g, n) in 5. (£ =1, 2, 3) . Moreover, if € is sufficiently

small, I(ui)£| =M, |(ui)nl =¥ in 5 (£ =1, 2, 3)

Then by taking into account (1k4), (15), and (16), we are done.

As a matter of fact to prove that the system of integral equations
(14) has a unique solution in a neighborhood (y > 0) of I = [a, B] , we
apply the well-known Schauder Fixed Point Theorem (namely: a continuous
mapping of a convex, compact subset of a Banach space into itself has a
fixed point).
5 into

Let the continuous operator T : e —_— SE be defined as follows:
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n
iTl(<1>) =% . Jo [uz(x, y)+uq(z, y)ledy ,
n -
0 = [ (ol o ] et o)t o e o)

(£ =2, 3),

where ¢ = ¢[x$, y)

By applying the classical mean value theorem and the above lemmas, we

get
Iz, (6)-7, ) Il = Xen+llo-vll
2
I7,(o)-7 (W)l s A+ B« flo-pll , < =2,3, A= const.
Therefore
(19) I7(o)-TW) | = A+ fo-vll

where X = A.(hn+n2)/2 ; and now we choose € sufficiently small, such
that 0 Sy =<n<g=2% <1 ; and hence by (19),
(20) 7 . 5 -ioto, SE is a contraction operator;

€

and from Schauder's Fixed Point Theorem it follows that T has a unique

fixed point in S€

We note the uniform convergence of {uiJ)} (£ =1, 2, 3),
. N (4) (j)l
(§ =1, 2, 3, ...) , and of the derivatives of ui , namely uiE J and
{uii)}, in S€ is a consequence of Ascoli-Arzela's Theorem. For a more
detailed proof see also [10]. //
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