THE LINEARISATIONS OF CYCLIC PERMUTATIONS HAVE RATIONAL ZETA FUNCTIONS

Bau-Sen Du

Let \(\mathbb{Z} \) be an integer. Let \(\mathbb{P} \) be the set of all integers in \([1, n+1]\) and let \(\sigma \) be a cyclic permutation on \(\mathbb{P} \). Assume that \(f \) is the linearisation of \(\sigma \) on \(\mathbb{P} \). Then we show that \(f \) has rational Artin-Mazur zeta function which is closely related to the characteristic polynomial of some \(n \times n \) matrix with entries either zero or one. Some examples of non-conjugate maps with the same Artin-Mazur zeta function are also given.

Let \([a, b] \) be a nondegenerate compact interval on the real line and let \(f \) be a continuous map from \([a, b]\) into itself. For every positive integer \(k \), let \(f^k \), the \(k \)'th iterate of \(f \), be defined by: \(f^1 = f \) and \(f^k = f \circ f^{k-1} \) if \(k > 1 \). For \(x_0 \in [a, b] \), we call \(x_0 \) a periodic point of \(f \) if \(f^m(x_0) = x_0 \) for some positive integer \(m \) and call the smallest such positive integer \(m \) the least period of \(x_0 \) (under \(f \)). We call the set \(\{ f^k(x_0) \mid k \text{ is any nonnegative integer} \} \) the periodic orbit of \(x_0 \) (under \(f \)). It is easy to see that, if \(f^m(x_0) = x_0 \) for some positive integer \(m \), then the least period of \(x_0 \) must divide \(m \). We shall need this fact later. A periodic point of least period 1 is also called a fixed point. In discrete dynamical systems theory, one problem related to the numbers of periodic points is: For every positive integer \(k \), let \(P_k = \{ x \in [a, b] \mid f^k(x) = x \} \). Let \(N(f^k) \) be the number of points in \(\{ x \in P_k \mid x \text{ is isolated in } P_m \text{ for some positive integer } m \text{ dividing } k \} \). Assume that, for every positive integer \(k \), the number \(N(f^k) \) is finite. (Note that this definition of \(N(f^k) \) is a slight generalisation of that of Artin and Mazur [1].) Find the reduced Artin-Mazur zeta function [5] \(\bar{\zeta}_f(z) = \sum_{k=1}^{\infty} N(f^k) z^k \) of \(f \) or find the Artin-Mazur zeta function [1, 5] \(\zeta_f(z) = \exp \left(\sum_{k=1}^{\infty} \left(N(f^k)/k \right) z^k \right) \) of \(f \), where \(z \) is the complex variable.

When we actually compute [2, 3] the reduced Artin-Mazur zeta functions of some special types of continuous piecewise linear maps \(f \) on \([a, b]\), we find some \(n \times n \) matrices \(A_f \) (depending on \(f \)) such that \(N(f^k) = \text{tr} \left(A_f^k \right) \), the trace of \(A_f^k \), for every positive integer \(k \) (see also [6]) and the reduced Artin-Mazur zeta functions of \(f \) are closely
related to the characteristic polynomials of the matrices A_f. In this note, we extend this result to a class called the linearisations of cyclic permutations. To this end, we shall need the following result from matrix theory.

Theorem 1. Let A be an $n \times n$ complex matrix and let $\det (xE_n - A) = z^n + \sum_{j=0}^{n-1} \beta_j z^j$ be the characteristic polynomial of A, where E_n is the $n \times n$ identity matrix. Then

$$
\sum_{k=1}^{\infty} \frac{\text{tr} (A^k) z^k}{k} = -z \frac{d}{dz} \left(1 + \sum_{j=1}^{n} \beta_{n-j} z^j \right) \quad \text{or} \quad \exp \left(\sum_{k=1}^{\infty} \frac{\text{tr} (A^k) z^k}{k} \right) = \frac{1}{1 + \sum_{j=1}^{n} \beta_{n-j} z^j}.
$$

Proof: Write $z^n + \sum_{j=0}^{n-1} \beta_j z^j = \prod_{j=1}^{n} (z - \lambda_j)$. Then, by replacing z by $1/z$ and simplifying, we obtain that $1 + \sum_{j=1}^{n} \beta_{n-j} z^j = \prod_{j=1}^{n} (1 - \lambda_j z)$. Since A is similar to an upper triangular matrix with main diagonal entries the eigenvalues of A, we easily obtain that $\text{tr} (A^k) = \sum_{j=1}^{n} \lambda_j^k$ for all positive integers k. This fact will also be used later. So,

$$
\sum_{k=1}^{\infty} \text{tr} (A^k) z^k = \sum_{k=1}^{\infty} \left(\sum_{j=1}^{n} \lambda_j^k \right) z^k = \sum_{j=1}^{n} \left(\sum_{k=1}^{\infty} (\lambda_j z)^k \right) = \sum_{j=1}^{n} \frac{\lambda_j z}{1 - \lambda_j z} = -z \frac{d}{dz} \left(\frac{\prod_{j=1}^{n} (1 - \lambda_j z)}{\prod_{j=1}^{n} (1 - \lambda_j z)} \right) = -z \frac{d}{dz} \left(1 + \sum_{j=1}^{n} \beta_{n-j} z^j \right).
$$

Or, by formal integration,

$$
\exp \left(\sum_{k=1}^{\infty} \frac{\text{tr} (A^k) z^k}{k} \right) = \frac{1}{1 + \sum_{j=1}^{n} \beta_{n-j} z^j}.
$$

We now return to the discrete dynamical systems theory on the interval. Let $n \geq 2$ be an integer. Let P be the set of all integers in $[1, n+1]$ and let σ be a map from P into itself. For every integer $1 \leq k \leq n$, let $J_k = [k, k+1]$. Assume that f is the continuous map from $[1, n+1]$ into itself such that $f(i) = \sigma(i)$ for every integer $1 \leq i \leq n+1$ and f is linear on J_k (and so, the absolute value of the slope of f on J_k is ≥ 1) for every integer $1 \leq k \leq n$. This continuous map f is called the linearisation.
of σ on P. Let \(A_f = (\alpha_{ij}) \) be the \(n \times n \) matrix defined by \(\alpha_{ij} = 1 \) if \(f(J_i) \supset J_j \) and \(\alpha_{ij} = 0 \) otherwise. This matrix \(A_f \) is called the Markov matrix of \(f \). Note that, for every positive integer \(k \), since \(f \) is piecewise linear, so is \(f^k \) and the slope of every linear piece of \(f^k \) is the product of the slopes of \(k \) linear pieces of \(f \). Now, for every positive integer \(k \), if \(\alpha_{i_1i_2} \alpha_{i_2i_3} \cdots \alpha_{i_{k+1}i_{k+2}} \) is nonzero (in this case, this product is 1) for some integers \(i_1, i_2, \cdots, i_{k+1} \) in \([1, n]\) then, by definition of \(A_f \), \(f(J_{i_s}) \supset J_{i_{s+1}} \) for every integer \(1 \leq s \leq k \). If \(I \) and \(J \) are closed subintervals of \([1, n+1]\) such that \(f(J) \supset J \), then it is well-known that there is a closed interval \(L \subset I \) such that \(f(L) = J \). So, since \(f(J_{ik}) \supset J_{ik+1} \), there is a closed interval \(L_1 \subset J_{ik} \) such that \(f(L_1) = J_{ik+1} \). Since \(L_1 \subset J_{ik} \subset f(J_{ik-1}) \), there is a closed interval \(L_2 \subset J_{ik-1} \) such that \(f(L_2) = L_1 \). Inductively, there are closed intervals \(L_1, L_2, \cdots, L_k \) such that \(L_s \subset J_{ik+1-s} \) and \(f(L_s) = L_{s-1} \) for every integer \(1 \leq s \leq k \), where we define \(L_0 = J_{ik+1} \). Consequently, \(f^k \) is linear on \(L_k \) and \(f^k(L_k) = J_{ik+1} \). Note that, since \(f^k \) is linear on \(L_k \), the slope of \(f^k \) on \(L_k \) is nonzero.

Conversely, let \(k \) be a fixed positive integer and let \(T_k \) be a maximum closed interval on which \(f^k \) is linear with nonzero slope. Since the \(y \)-coordinates of the turning points and the boundary points, \((1, f(1))\) and \((n+1, f(n+1))\), of \(f \) are contained in \(P \), \(f^k(T_k) \) is a compact interval whose endpoints are distinct and contained in \(P \). So, for some integers \(1 \leq u_k \leq v_k \leq n \), \(f^k(T_k) = \bigcup_{i=u_k}^{v_k} J_i \). Let \(i_{k+1} \) be any integer such that \(u_k \leq i_{k+1} \leq v_k \). Then \(f^k(T_k) \supset J_{i_{k+1}} \) and there is a closed subinterval \(L_k \) of \(T_k \) such that \(f^k(L_k) = J_{i_{k+1}} \). Since \(f^k \) is linear on \(L_k \), \(f \) is linear on the interval \(f^k(L_k) \) for every integer \(0 \leq s \leq k - 1 \). In particular, \(f \) is linear on the interval \(f^{k-1}(L_k) \) and since the interior of \(f(f^{k-1}(L_k)) = J_{i_{k+1}} \) contains no point of \(P \), neither does the interior of \(f^{k-1}(L_k) \). This implies that \(f^{k-1}(L_k) \subset J_{i_k} \) for some integer \(1 \leq i_k \leq n \). Similarly, since \(f \) is linear on the interval \(f^{k-2}(L_k) \) and the interior of \(f(f^{k-2}(L_k)) = f^{k-1}(L_k) \subset J_{i_k} \) contains no point of \(P \), neither does the interior of \(f^{k-2}(L_k) \). Therefore, \(f^{k-2}(L_k) \subset J_{i_{k-1}} \) for some integer \(1 \leq i_{k-1} \leq n \). Similar arguments imply that there are integers \(i_k, i_{k-1}, \cdots, i_3, i_2, i_1 \) in \([1, n]\) such that \(f^t(L_k) \subset J_{i_{t+1}} \) for every integer \(0 \leq t \leq k - 1 \) and \(f^k(L_k) = J_{i_{k+1}} \). Note that, when \(t = 0 \), \(L_k \subset J_{i_1} \). Thus, \(f^s(L_k) \subset f(J_{i_s}) \) for every integer \(1 \leq s \leq k \). Consequently, \(f^s(L_k) \subset J_{i_{s+1}} \cap f(J_{i_s}) \) for every integer \(1 \leq s \leq k - 1 \). So, \(f(J_{i_s}) \) contains some interior points of \(J_{i_{s+1}} \) for every integer \(1 \leq s \leq k - 1 \). Since both endpoints of \(f(J_{i_s}) \) are distinct points in \(P \), this implies that \(f(J_{i_s}) \supset J_{i_{s+1}} \), and so, \(\alpha_{i_s,i_{s+1}} = 1 \) for every integer \(1 \leq s \leq k-1 \). Furthermore, since \(J_{i_k} \supset f^{k-1}(L_k) \), we have \(f(J_{i_k}) \supset f(f^{k-1}(L_k)) = J_{i_{k+1}} \). Thus, \(\alpha_{i_k,i_{k+1}} = 1 \). Hence \(\alpha_{i_1i_2} \alpha_{i_2i_3} \cdots \alpha_{i_ki_{k+1}} = 1 \). Therefore, for every positive integer \(k \), there is a one-to-one correspondence between the collection of nonzero products \(\alpha_{i_1i_2} \alpha_{i_2i_3} \cdots \alpha_{i_ki_{k+1}} \) and the collection of closed
intervals $L_k \subset J_i$ such that f^k is linear on L_k and $f^k(L_k) = J_{i_{k+1}}$. Consequently, if $A_f^k = (\alpha_{ij}^{(k)})$; then every entry $\alpha_{ij}^{(k)}$ represents the number of closed intervals $L_k \subset J_i$ with disjoint interiors such that f^k is linear on L_k and $f^k(L_k) = J_{j}$. In the following, we shall show how to relate this number $\sum_{j=1}^n \alpha_{jj}^{(k)}$ to the number $N(f^k)$. We have two cases to consider:

Case 1. Assume that, for some positive integer t, the absolute value of the slope of every linear piece of f^t is > 1. Then, it is easy to see that, for every integer $j > t$, the absolute value of the slope of every linear piece of f^j is > 1. So, for any integers $1 \leq i \leq n$, $k \geq 1$ (we do not require $k \geq t$) and any closed interval $L \subset J_i$, if f^k is linear on L and $f^k(L) = J_i \supset L$, then the slope of f^k on L cannot be equal to 1 and hence the equation $f^k(x) = x$ has exactly one solution in L. So, we can associate this unique solution to the interval L. This implies that, for every positive integer k, $N(f^k) = \sum_{j=1}^n \alpha_{jj}^{(k)} = \tr(A_f^k) = \sum_{j=1}^n \lambda_j^k$, where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of the Markov matrix A_f of f.

Case 2. Assume that the absolute value of the slope of some linear piece of f^n is 1. Let T_n be a maximum closed interval on which f^n is linear and the absolute value of the slope of f^n on T_n is 1. As was just shown above, there exist integers $i_1, i_2, \ldots, i_{n+1}$ in $[1, n]$ and a closed interval $L_n \subset T_n$ such that $J_{i_{n+1}} \subset f^n(T_n), f^n(L_n) = J_{i_{n+1}}$ and $f^s(L_n) \subset J_{i_{s+1}}$ for every integer $0 \leq s \leq n - 1$. Since the absolute value of the slope of f^n on L_n (which is 1) equals the product of the absolute values of the slopes of f on $f^s(L_n)$ (which are ≥ 1) for all integers $0 \leq s \leq n - 1$, the absolute value of the slope of f on $f^s(L_n)$ must be 1 for every integer $0 \leq s \leq n - 1$. So, the length of $f^s(L_n)$ is equal to that of $f^{s+1}(L_n)$ for every integer $0 \leq s \leq n - 1$. Since the length of $f^n(L_n)(= J_{i_{n+1}})$ is 1, we obtain that the length of $f^s(L_n)(\subset J_{i_{s+1}})$ is also 1 for every integer $0 \leq s \leq n - 1$. This, together with the fact that $f^n(L_n) = J_{i_{n+1}}$, implies that $f^s(L_n) = J_{i_{s+1}}$ for every integer $0 \leq s \leq n$. Note that, when $s = 0$, $L_n = J_{i_1}$. Thus, $f(J_{i_1}) = f(f^{s-1}(L_n)) = f^s(L_n) = J_{i_{s+1}}$ for every integer $1 \leq s \leq n$. Since there are $n + 1$ closed intervals $J_{i_{s+1}}(= f^s(L_n))$, $0 \leq s \leq n$, taken from the n distinct J_i's, some interval J_{i_s} appears at least twice. Without loss of generality, we may assume that $J_{i_1} = J_{i_{m+1}}$ for some integer $1 \leq m \leq n$ and the J_{i_s}'s are distinct for all integers $1 \leq s \leq m$. Since $f(J_{i_s}) = J_{i_{s+1}}$ and f is linear on J_{i_s} for all integers $1 \leq s \leq m$, we obtain that, for every integer $1 \leq s \leq m$, $f^m(J_{i_s}) = J_{i_s}$ and f^m is linear on J_{i_s}, and hence, we have either $f^m(x) = x$ for all $x \in J_{i_s}$ and all integers $1 \leq s \leq m$ or $f^m(x) = -x + a_s + b_s$, where $J_{i_s} = [a_s, b_s]$, for all $x \in J_{i_s}$ and all integers $1 \leq s \leq m$. In the following, we assume, for simplicity, that σ is a cyclic permutation on P. If, for some integer $1 \leq j \leq m$, $f^m(x) = x$ for all $x \in J_{i_j}$, then, in particular,
f^m(a_j) = a_j$. Since a_j is a periodic point of f with least period $n + 1$, we must have $n + 1 \leq m$ which contradicts the assumption that $1 \leq m \leq n$. This contradiction implies that $f^m(x) = -x + a_s + b_s$ and hence $f^{2m}(x) = x$ for all $x \in J_i$, and all integers $1 \leq s \leq m$. In particular, $f^{2m}(a_s) = a_s$ for all integers $1 \leq s \leq m$. Since the least period of a_s is $n + 1$, we have $n + 1 \mid m$ for some positive integer r. But, since $1 \leq m \leq n$, we must have $r = 1$, and so, $n + 1 = 2m$. Furthermore, since f^m maps every endpoint of J_i to the other for every integer $1 \leq s \leq m$, the m closed intervals J_i's are pairwise disjoint. Since there are exactly $n = 2m - 1 = m + (m - 1)$ distinct closed intervals J_i's, we obtain that $\{J_i, 1 \leq s \leq m\} = \{J_{2j-1}, 1 \leq j \leq m\}$. Consequently, $f^m(x) = -x + 4s - 1$ and $f^{2m}(x) = x$ for all $x \in J_{2j-1}$ and all integers $1 \leq s \leq m$. This also implies that $T_n = J_{2j-1}$ for some integer $1 \leq j \leq m$ and the absolute value of the slope of the linear piece of f^n and hence of f^k for every integer $k \geq n$ on any closed interval contained in J_{2j} for any integer $1 \leq i \leq m - 1$ is > 1. Thus, for any positive integer k (we do not require $k \geq n$), any integer $1 \leq i \leq m - 1$ and any closed interval $L \subset J_{2i}$, if f^k is linear on L and $f^k(L) = L_{2i} \supset L$, then the slope of f^k on L cannot be equal to 1 and hence the equation $f^k(x) = x$ has a unique solution in L. So, we can associate this unique solution to the interval L. Furthermore, since f permutes cyclically the intervals J_{2j-1}, $1 \leq j \leq m$, and since f^m maps every endpoint of any J_{2j-1}, $1 \leq j \leq m$, to the other, we obtain that there exists a cyclic permutation ρ on the set of all integers in $[1, m]$ such that $\sigma^{j}(1) \in \{2\rho^{j}(1) - 1, 2\rho^{j}(1)\}$ and $\{\sigma^{j}(1), \sigma^{m+j}(1)\} = \{2\rho^{j}(1) - 1, 2\rho^{j}(1)\}$ for all integers $1 \leq j \leq m$. On the other hand, since f permutes cyclically the intervals J_{2j-1}, $1 \leq j \leq m$, and since $f^m(x) = -x + 4s - 1$ and $f^{2m}(x) = x$ for all $x \in J_{2j-1}$ and all integers $1 \leq j \leq m$, we see that, for any positive integer k, (i) if k is not a multiple of m, then the equation $f^k(x) = x$ has no solution in J_{2j-1} for any integer $1 \leq j \leq m$; (ii) if k is an odd multiple of m, then each midpoint of J_{2j-1} is the unique (and isolated) solution of the equation $f^k(x) = x$ in J_{2j-1} for every integer $1 \leq j \leq m$; and (iii) if k is an even multiple of m, then, for every integer $1 \leq j \leq m$, every point of J_{2j-1} is a (non-isolated) solution of the equation $f^k(x) = x$, but, the midpoint of J_{2j-1} is an isolated solution of the equation $f^m(x) = x$. Therefore, we can associate, for every integer $1 \leq j \leq m$, the midpoint of J_{2j-1} to the interval J_{2j-1} when k is an (odd or even) multiple of m and nothing otherwise. This implies that, for every positive integer k, $N(f^k) = \sum_{j=1}^{n} \alpha_{jj}^{(k)} = \text{tr} \left(A_f^k\right) = \sum_{j=1}^{n} \lambda_j^k$, where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of the Markov matrix A_f of f. Consequently, by Theorem 1, we have proved the following two results:

Theorem 2. Let $n \geq 2$ be an integer. Let P be the set of all integers in $[1, n+1]$ and let σ be a map from P into itself. Assume that f is the linearisation of σ on P such that, for some positive integer t, the absolute value of the slope of every linear
piece of f^t is > 1. Then the following hold:

(a) For every positive integer k, $N(f^k) = \text{tr} \left(A_f^k \right) = \sum_{j=1}^{n} \lambda_j^k$, where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of the Markov matrix A_f of f.

(b) The Artin-Mazur zeta function $\zeta_f(z)$ of f is $\zeta_f(z) = 1/\left(1 + \sum_{k=1}^{n} \beta_{n-k}z^k\right)$, where $x^n + \sum_{k=0}^{n-1} \beta_k x^k$ is the characteristic polynomial of the Markov matrix of f.

Theorem 3. Let $n \geq 2$ be an integer. Let P be the set of all integers in $[1, n+1]$ and let σ be a map from P into itself. For every integer $1 \leq k \leq n$, let $J_k = [k, k+1]$. Assume that f is the linearisation of σ on P such that the absolute value of the slope of some linear piece of f^n is 1. Then there exist an integer $1 \leq m \leq n$ and m distinct integers i_1, i_2, \ldots, i_m in $[1, n]$ such that f is linear on J_{i_s} and $f(J_{i_s}) = J_{i_{s+1}}$ for every integer $1 \leq s \leq m$, where we define $i_{m+1} = i_1$. Furthermore, if σ is a cyclic permutation on P, then the following also hold:

(a) $n + 1 = 2m$.

(b) $f^m(x) = -x + 4k - 1$ and $f^{2m}(x) = x$ for all $x \in J_{2k-1}$ and all integers $1 \leq k \leq m$. In particular, f has periodic points of least period $(n + 1)/2$.

(c) There exists a cyclic permutation ρ on the set of all integers in $[1, m]$ such that $\sigma^j(1) \in \{2\rho^j(1) - 1, 2\rho^j(1)\}$ and $\{\sigma^j(1), \sigma^{m+j}(1)\} = \{2\rho^j(1) - 1, 2\rho^j(1)\}$ for all integers $1 \leq j \leq m$.

(d) For every positive integer k, $N(f^k) = \text{tr} \left(A_f^k \right) = \sum_{j=1}^{n} \lambda_j^k$, where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of the Markov matrix A_f of f.

(e) The Artin-Mazur zeta function $\zeta_f(z)$ of f is $\zeta_f(z) = 1/\left(1 + \sum_{k=1}^{n} \beta_{n-k}z^k\right)$, where $x^n + \sum_{k=0}^{n-1} \beta_k x^k$ is the characteristic polynomial of the Markov matrix of f.

Remark. We require σ to be a cyclic permutation on P in Theorem 3 while not in Theorem 2. This is because the requirement on the slope of f in Theorem 3 is weaker than that in Theorem 2. If we do not make the stronger requirement on σ in Theorem 3, there would be many trivial examples whose linearisations have well-defined Markov matrices while their Artin-Mazur zeta functions are not defined.

The following partial converse of Theorem 3 is easy to prove.

Theorem 4. Let m and n be positive integers such that $n+1 = 2m$. Let ρ be a cyclic permutation on the set of all integers in $[1, m]$ and let σ be a cyclic permutation on the set P of all integers in $[1, n+1]$. For every integer $1 \leq i \leq n$, let $J_i = [i, i+1]$.

https://doi.org/10.1017/S000497270001875X Published online by Cambridge University Press
Assume that \(f \) is the linearisation of \(\sigma \) on \(P \) and \(\sigma^j(1) \in \{2\rho^j(1) - 1, 2\rho^j(1)\} \) and \(\{\sigma^1(1), \sigma^{m+1}(1)\} = \{2\rho^1(1) - 1, 2\rho^1(1)\} \) for all integers \(1 \leq j \leq m \). Then, for every positive integer \(k \), the absolute value of the slope of \(f^k \) on \(J_{2j-1} \) is 1 for all integers \(1 \leq j \leq m \). Consequently, the Artin-Mazur zeta function \(\zeta_f(z) \) of \(f \) is
\[
\zeta_f(z) = \frac{1}{1 + \sum_{k=1}^{n-1} \beta_{n-k} z^k},
\]
where \(x^n + \sum_{k=0}^{n-1} \beta_k x^k \) is the characteristic polynomial of the Markov matrix of \(f \).

REMARK. If \(\sigma \) is a cyclic permutation on the set \(P \) of all integers in \([1,n+1]\) and \(f \) is the linearisation of \(\sigma \) on \(P \), then Theorems 2, 3, & 4 give a complete solution of the Artin-Mazur zeta function of \(f \). In particular, the Artin-Mazur zeta function of \(f \) is rational with poles at the values \(1/\lambda_j \) where \(\lambda_1, \lambda_2, \cdots, \lambda_n \) are the eigenvalues of the Markov matrix of \(f \).

Let \(f \) and \(g \) be two continuous maps from \([a,b]\) into itself. If they are (topologically) conjugate to each other, then it is clear that they have the same (if defined) Artin-Mazur zeta function. However, if they are not conjugate to each other, they may still have the same Artin-Mazur zeta function. For example, assume that both \(f \) and \(g \) satisfy the conditions in Theorem 2 above. If their respective Markov matrices are similar to each other, then, since similar matrices have the same characteristic polynomial \([4]\), they have, by Theorem 2, the same Artin-Mazur zeta function. In the following, we present some such examples. The following result is taken from \([2]\).

THEOREM 5. For every integer \(n \geq 3 \), let \(f_n(x) \) be the continuous map from \([1,n]\) onto itself defined by
\[
f_n(x) = \begin{cases}
x + 1, & \text{for } 1 \leq x \leq n - 1, \\
-(n-1)x + n^2 - n + 1, & \text{for } n - 1 \leq x \leq n.
\end{cases}
\]
We also define sequences \((b_{k,n}) \) as follows:
\[
b_{k,n} = \begin{cases}
2k - 1, & \text{for } 1 \leq k \leq n - 1, \\
\sum_{t=1}^{n-1} b_{k-t,n}, & \text{for } n \leq k.
\end{cases}
\]
Then, for any integers \(k \geq 1 \) and \(n \geq 3 \), \(b_{k,n} \) is the number of distinct fixed points of the map \(f_n^k(x) \) in \([1,n]\). Moreover, the Artin-Mazur zeta function \(\zeta_{f_n}(z) \) of \(f_n \), for every integer \(n \geq 3 \), is
\[
\zeta_{f_n}(z) = \frac{1}{1 - \sum_{k=1}^{n-1} z^k}.
\]

THEOREM 6. For every odd integer \(m \geq 3 \), let \(g_m(x) \) and \(h_m(x) \) be the contin-
uous maps from $[1, m]$ onto itself defined by

\[
g_m(x) = \begin{cases}
-x + m + 1, & \text{for } 1 \leq x \leq \frac{1}{2}(m - 1), \\
-\frac{1}{2}(m + 1)x + \frac{1}{4}(m + 1)^2 + 1, & \text{for } \frac{1}{2}(m - 1) \leq x \leq \frac{1}{2}(m + 1), \\
\frac{1}{2}(m - 1)x - \frac{1}{4}(m^2 - 1) + 1, & \text{for } \frac{1}{2}(m + 1) \leq x \leq \frac{1}{2}(m + 1) + 1, \\
-x + m + 2, & \text{for } \frac{1}{2}(m + 1) + 1 \leq x \leq m.
\end{cases}
\]

and

\[
h_m(x) = \begin{cases}
x + \frac{1}{2}(m - 1), & \text{for } 1 \leq x \leq \frac{1}{2}(m + 1), \\
-(m - 1)x + \frac{1}{2}(m^2 + 2m - 1), & \text{for } \frac{1}{2}(m + 1) \leq x \leq \frac{1}{2}(m + 1) + 1, \\
x - \frac{1}{2}(m + 1), & \text{for } \frac{1}{2}(m + 1) + 1 \leq x \leq m.
\end{cases}
\]

Then, for any odd integer $m \geq 3$, both $g_m(x)$ and $h_m(x)$ have the same Artin-Mazur zeta function as $f_m(x)$, where $f_m(x)$ is defined as in Theorem 5 above.

Proof: Let $m \geq 3$ be an odd integer. It suffices to show that the Markov matrices of $f_m, g_m,$ and h_m are similar to one another. Indeed, let P be the set of all integers in $[1, m]$ and let σ be a cyclic permutation on P. Let φ be the linearisation of σ on P and let V_{m-1} be the vector space over the field of real numbers with the set $Q_1 = \{J_1, J_2, \ldots, J_{m-1}\}$ as a basis, where, for every integer $1 \leq k \leq m - 1$, $J_k = [k, k + 1]$. Then, φ determines a linear transformation (which we call $\overline{\varphi}$) on V_{m-1} defined by $\overline{\varphi}\left(\sum_{k=1}^{m-1} r_k J_k\right) = \sum_{k=1}^{m-1} r_k \varphi(J_k)$, where r_k's are real numbers and $\overline{\varphi}(J_k) = \sum_{s=i_k}^{j_k} J_s$ if $\varphi(J_k) = \bigcup_{s=i_k}^{j_k} J_s$ for some integers $1 \leq i_k \leq j_k \leq m - 1$. Furthermore, with respect to the basis Q_1, the linear transformation $\overline{\varphi}$ is also determined [4] by the $(m - 1) \times (m - 1)$ matrix $B_\varphi = (\beta_{ij})$ in such a way that, for every integer $1 \leq k \leq m - 1$, $\overline{\varphi}(J_k) = \sum_{j=1}^{m-1} \beta_{kj} J_j = \left(\sum_{s=i_k}^{j_k} J_s\right)$ which happens to be the same as the Markov matrix of the map φ on $[1, m]$. Now, if we take $Q_2 = \{J_1, J_{m-1}, J_2, J_{m-2}, \ldots, J_t, J_{m-t}, \ldots, J_{(m-3)/2}, J_{(m+3)/2}, J_{(m-1)/2}, J_{(m+1)/2}, \sum_{k=1}^{(m+1)/2} J_k\}$ as a new basis for V_{m-1}, then it is easy to see that \overline{g}_m acts on Q_2 like \overline{f}_m on Q_1. Similarly, if we take $Q_3 = \{J_{(m-1)/2}, J_{m-1}, J_{(m-3)/2}, J_{m-2}, J_{(m-5)/2}, J_{m-3}, \ldots, J_3, J_{(m-1)/2+3}, J_2, J_{(m-1)/2+2}, J_1, J_{(m-1)/2+1}\}$ as a new basis for V_{m-1}, then \overline{h}_m acts
on Q_3 like f_m on Q_1. Therefore, the matrices of the linear transformations $\bar{f}_m, \bar{g}_m,$ and \bar{h}_m on the respective bases $Q_1, Q_2,$ and Q_3 are the same. So, the matrices of $\bar{f}_m, \bar{g}_m,$ and \bar{h}_m on the basis Q_1 are similar to one another [4]. Consequently, the Markov matrices of the maps $f_m, g_m,$ and h_m on the interval $[1, m]$ are similar to one another and hence, by Theorem 2, $f_m, g_m,$ and h_m have the same Artin-Mazur zeta function.

REFERENCES

Institute of Mathematics
Academia Sinica
Taipei
Taiwan 11529
Republic of China
e-mail: mabsdu@sinica.edu.tw