THE LINEARISATIONS OF CYCLIC PERMUTATIONS HAVE RATIONAL ZETA FUNCTIONS

Bau-Sen Du

Abstract

Let $n \geqslant 2$ be an integer. Let P be the set of all integers in $[1, n+1]$ and let σ be a cyclic permutation on P. Assume that f is the linearisation of σ on P. Then we show that f has rational Artin-Mazur zeta function which is closely related to the characteristic polynomial of some $n \times n$ matrix with entries either zero or one. Some examples of non-conjugate maps with the same Artin-Mazur zeta function are also given.

Let $[a, b]$ be a nondegenerate compact interval on the real line and let f be a continuous map from $[a, b]$ into itself. For every positive integer k, let f^{k}, the $k^{t h}$ iterate of f, be defined by: $f^{1}=f$ and $f^{k}=f \circ f^{k-1}$ if $k>1$. For $x_{0} \in[a, b]$, we call x_{0} a periodic point of f if $f^{m}\left(x_{0}\right)=x_{0}$ for some positive integer m and call the smallest such positive integer m the least period of x_{0} (under f). We call the set $\left\{f^{k}\left(x_{0}\right) \mid k\right.$ is any nonnegative integer $\}$ the periodic orbit of x_{0} (under f). It is easy to see that, if $f^{m}\left(x_{0}\right)=x_{0}$ for some positive integer m, then the least period of x_{0} must divide m. We shall need this fact later. A periodic point of least period 1 is also called a fixed point. In discrete dynamical systems theory, one problem related to the numbers of periodic points is: For every positive integer k, let $P_{k}=\left\{x \in[a, b] \mid f^{k}(x)=x\right\}$. Let $N\left(f^{k}\right)$ be the number of points in $\left\{x \in P_{k} \mid x\right.$ is isolated in P_{m} for some positive integer m dividing $\left.k\right\}$. Assume that, for every positive integer k, the number $N\left(f^{k}\right)$ is finite. (Note that this definition of $N\left(f^{k}\right)$ is a slight generalisation of that of Artin and Mazur [1].) Find the reduced Artin-Mazur zeta function [5] $\bar{\zeta}_{f}(z)=\sum_{k=1}^{\infty} N\left(f^{k}\right) z^{k}$ of f or find the Artin-Mazur zeta function $[1,5] \zeta_{f}(z)=\exp \left(\sum_{k=1}^{\infty}\left(N\left(f^{k}\right) / k\right) z^{k}\right)$ of f, where z is the complex variable. When we actually compute $[2,3]$ the reduced Artin-Mazur zeta functions of some special types of continuous piecewise linear maps f on $[a, b]$, we find some $n \times n$ matrices A_{f} (depending on f) such that $N\left(f^{k}\right)=\operatorname{tr}\left(A_{f}^{k}\right)$, the trace of A_{f}^{k}, for every positive integer k (see also [6]) and the reduced Artin-Mazur zeta functions of f are closely

[^0]related to the characteristic polynomials of the matrices A_{f}. In this note, we extend this result to a class called the linearisations of cyclic permutations. To this end, we shall need the following result from matrix theory.

Theorem 1. Let A be an $n \times n$ complex matrix and let $\operatorname{det}\left(x E_{n}-A\right)=x^{n}+$ $\sum_{j=0}^{n-1} \beta_{j} x^{j}$ be the characteristic polynomial of A, where E_{n} is the $n \times n$ identity matrix. Then

$$
\sum_{k=1}^{\infty} \operatorname{tr}\left(A^{k}\right) z^{k}=-z \frac{\frac{d}{d z}\left(1+\sum_{j=1}^{n} \beta_{n-j} z^{j}\right)}{1+\sum_{j=1}^{n} \beta_{n-j} z^{j}} \quad \text { or } \quad \exp \left(\sum_{k=1}^{\infty} \frac{\operatorname{tr}\left(A^{k}\right)}{k} z^{k}\right)=\frac{1}{1+\sum_{j=1}^{n} \beta_{n-j} z^{j}}
$$

Proof: Write $z^{n}+\sum_{j=0}^{n-1} \beta_{j} z^{j}=\prod_{j=1}^{n}\left(z-\lambda_{j}\right)$. Then, by replacing z by $1 / z$ and simplifying, we obtain that $1+\sum_{j=1}^{n} \beta_{n-j} z^{j}=\prod_{j=1}^{n}\left(1-\lambda_{j} z\right)$. Since A is similar to an upper triangular matrix with main diagonal entries the eigenvalues of A, we easily obtain that $\operatorname{tr}\left(A^{k}\right)=\sum_{j=1}^{n} \lambda_{j}^{k}$ for all positive integers k. This fact will also be used later. So,

$$
\begin{aligned}
\sum_{k=1}^{\infty} \operatorname{tr}\left(A^{k}\right) z^{k} & =\sum_{k=1}^{\infty}\left(\sum_{j=1}^{n} \lambda_{j}^{k}\right) z^{k}=\sum_{j=1}^{n}\left(\sum_{k=1}^{\infty}\left(\lambda_{j} z\right)^{k}\right)=\sum_{j=1}^{n} \frac{\lambda_{j} z}{1-\lambda_{j} z} \\
& =-z \frac{\frac{d}{d z}\left(\prod_{j=1}^{n}\left(1-\lambda_{j} z\right)\right)}{\prod_{j=1}^{n}\left(1-\lambda_{j} z\right)}=-z \frac{\frac{d}{d z}\left(1+\sum_{j=1}^{n} \beta_{n-j} z^{j}\right)}{1+\sum_{j=1}^{n} \beta_{n-j} z^{j}}
\end{aligned}
$$

Or, by formal integration,

$$
\exp \left(\sum_{k=1}^{\infty} \frac{\operatorname{tr}\left(A^{k}\right)}{k} z^{k}\right)=\frac{1}{1+\sum_{j=1}^{n} \beta_{n-j} z^{j}}
$$

We now return to the discrete dynamical systems theory on the interval. Let $n \geqslant 2$ be an integer. Let P be the set of all integers in $[1, n+1]$ and let σ be a map from P into itself. For every integer $1 \leqslant k \leqslant n$, let $J_{k}=[k, k+1]$. Assume that f is the continuous map from $[1, n+1]$ into itself such that $f(i)=\sigma(i)$ for every integer $1 \leqslant i \leqslant n+1$ and f is linear on J_{k} (and so, the absolute value of the slope of f on J_{k} is $\geqslant 1$) for every integer $1 \leqslant k \leqslant n$. This continuous map f is called the linearisation
of σ on P. Let $A_{f}=\left(\alpha_{i j}\right)$ be the $n \times n$ matrix defined by $\alpha_{i j}=1$ if $f\left(J_{i}\right) \supset J_{j}$ and $\alpha_{i j}=0$ otherwise. This matrix A_{f} is called the Markov matrix of f. Note that, for every positive integer k, since f is piecewise linear, so is f^{k} and the slope of every linear piece of f^{k} is the product of the slopes of k linear pieces of f. Now, for every positive integer k, if $\alpha_{i_{1} i_{2}} \alpha_{i_{2} i_{3}} \cdots \alpha_{i_{k} i_{k+1}}$ is nonzero (in this case, this product is 1) for some integers $i_{1}, i_{2}, \cdots, i_{k+1}$ in $[1, n]$, then, by definition of $A_{f}, f\left(J_{i_{s}}\right) \supset J_{i_{s+1}}$ for every integer $1 \leqslant s \leqslant k$. If I and J are closed subintervals of $[1, n+1]$ such that $f(I) \supset J$, then it is well-known that there is a closed interval $L \subset I$ such that $f(L)=J$. So, since $f\left(J_{i_{k}}\right) \supset J_{i_{k+1}}$, there is a closed interval $L_{1} \subset J_{i_{k}}$ such that $f\left(L_{1}\right)=J_{i_{k+1}}$. Since $L_{1} \subset J_{i_{k}} \subset f\left(J_{i_{k-1}}\right)$, there is a closed interval $L_{2} \subset J_{i_{k-1}}$ such that $f\left(L_{2}\right)=L_{1}$. Inductively, there are closed intervals $L_{1}, L_{2}, \cdots, L_{k}$ such that $L_{s} \subset J_{i_{k+1-s}}$ and $f\left(L_{s}\right)=L_{s-1}$ for every integer $1 \leqslant s \leqslant k$, where we define $L_{0}=J_{i_{k+1}}$. Consequently, f^{k} is linear on $L_{k} \subset J_{i_{1}}$ and $f^{k}\left(L_{k}\right)=J_{i_{k+1}}$. Note that, since f^{k} is linear on L_{k} and $f^{k}\left(L_{k}\right)=J_{i_{k+1}}$, the slope of f^{k} on L_{k} is nonzero.

Conversely, let k be a fixed positive integer and let T_{k} be a maximum closed interval on which f^{k} is linear with nonzero slope. Since the y-coordinates of the turning points and the boundary points, $(1, f(1))$ and $(n+1, f(n+1))$, of f are contained in $P, f^{k}\left(T_{k}\right)$ is a compact interval whose endpoints are distinct and contained in P. So, for some integers $1 \leqslant u_{k} \leqslant v_{k} \leqslant n, f^{k}\left(T_{k}\right)=\bigcup_{i=u_{k}}^{v_{k}} J_{i}$. Let i_{k+1} be any integer such that $u_{k} \leqslant i_{k+1} \leqslant v_{k}$. Then $f^{k}\left(T_{k}\right) \supset J_{i_{k+1}}$ and there is a closed subinterval L_{k} of T_{k} such that $f^{k}\left(L_{k}\right)=J_{i_{k+1}}$. Since f^{k} is linear on L_{k}, f is linear on the interval $f^{s}\left(L_{k}\right)$ for every integer $0 \leqslant s \leqslant k-1$. In particular, f is linear on the interval $f^{k-1}\left(L_{k}\right)$ and since the interior of $f\left(f^{k-1}\left(L_{k}\right)\right)=J_{i_{k+1}}$ contains no point of P, neither does the interior of $f^{k-1}\left(L_{k}\right)$. This implies that $f^{k-1}\left(L_{k}\right) \subset J_{i_{k}}$ for some integer $1 \leqslant i_{k} \leqslant n$. Similarly, since f is linear on the interval $f^{k-2}\left(L_{k}\right)$ and the interior of $f\left(f^{k-2}\left(L_{k}\right)\right)=f^{k-1}\left(L_{k}\right) \subset J_{i_{k}}$ contains no point of P, neither does the interior of $f^{k-2}\left(L_{k}\right)$. Therefore, $f^{k-2}\left(L_{k}\right) \subset J_{i_{k-1}}$ for some integer $1 \leqslant i_{k-1} \leqslant n$. Similar arguments imply that there are integers $i_{k}, i_{k-1}, \cdots, i_{3}, i_{2}, i_{1}$ in $[1, n]$ such that $f^{t}\left(L_{k}\right) \subset J_{i_{t+1}}$ for every integer $0 \leqslant t \leqslant k-1$ and $f^{k}\left(L_{k}\right)=J_{i_{k+1}}$. Note that, when $t=0, L_{k} \subset J_{i_{1}}$. Thus, $f^{s}\left(L_{k}\right) \subset f\left(J_{i_{s}}\right)$ for every integer $1 \leqslant s \leqslant k$. Consequently, $f^{s}\left(L_{k}\right) \subset J_{i_{s+1}} \cap f\left(J_{i_{s}}\right)$ for every integer $1 \leqslant s \leqslant k-1$. So, $f\left(J_{i_{s}}\right)$ contains some interior points of $J_{i_{s+1}}$ for every integer $1 \leqslant s \leqslant k-1$. Since both endpoints of $f\left(J_{i_{s}}\right)\left(\supset f^{s}\left(L_{k}\right)\right)$ are distinct points in P, this implies that $f\left(J_{i_{s}}\right) \supset J_{i_{s+1}}$, and so, $\alpha_{i_{s} i_{s+1}}=1$ for every integer $1 \leqslant s \leqslant k-1$. Furthermore, since $J_{i_{k}} \supset f^{k-1}\left(L_{k}\right)$, we have $f\left(J_{i_{k}}\right) \supset f\left(f^{k-1}\left(L_{k}\right)\right)=J_{i_{k+1}}$. Thus, $\alpha_{i_{k} i_{k+1}}=1$. Hence $\alpha_{i_{1} i_{2}} \alpha_{i_{2} i_{3}} \cdots \alpha_{i_{k} i_{k+1}}=1$. Therefore, for every positive integer k, there is a one-to-one correspondence between the collection of nonzero products $\alpha_{i_{1} i_{2}} \alpha_{i_{2} i_{3}} \cdots \alpha_{i_{k} i_{k+1}}$ and the collection of closed
intervals $L_{k} \subset J_{i_{1}}$ such that f^{k} is linear on L_{k} and $f^{k}\left(L_{k}\right)=J_{i_{k+1}}$. Consequently, if $A_{f}^{k}=\left(\alpha_{i j}^{(k)}\right)$; then every entry $\alpha_{i j}^{(k)}$ represents the number of closed intervals $L_{k} \subset J_{i}$ with disjoint interiors such that f^{k} is linear on L_{k} and $f^{k}\left(L_{k}\right)=J_{j}$. In the following, we shall show how to relate this number $\sum_{j=1}^{n} \alpha_{j j}^{(k)}$ to the number $N\left(f^{k}\right)$. We have two cases to consider:

CASE 1. Assume that, for some positive integer t, the absolute value of the slope of every linear piece of f^{t} is >1. Then, it is easy to see that, for every integer $j>t$, the absolute value of the slope of every linear piece of f^{j} is >1. So, for any integers $1 \leqslant i \leqslant n, k \geqslant 1$ (we do not require $k \geqslant t$) and any closed interval $L \subset J_{i}$, if f^{k} is linear on L and $f^{k}(L)=J_{i} \supset L$, then the slope of f^{k} on L cannot be equal to 1 and hence the equation $f^{k}(x)=x$ has exactly one solution in L. So, we can associate this unique solution to the interval L. This implies that, for every positive integer k, $N\left(f^{k}\right)=\sum_{j=1}^{n} \alpha_{j j}^{(k)}=\operatorname{tr}\left(A_{f}^{k}\right)=\sum_{j=1}^{n} \lambda_{j}^{k}$, where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of the Markov matrix A_{f} of f.

CASE 2. Assume that the absolute value of the slope of some linear piece of f^{n} is 1 . Let T_{n} be a maximum closed interval on which f^{n} is linear and the absolute value of the slope of f^{n} on T_{n} is 1 . As was just shown above, there exist integers $i_{1}, i_{2}, \cdots, i_{n+1}$ in $[1, n]$ and a closed interval $L_{n} \subset T_{n}$ such that $J_{i_{n+1}} \subset f^{n}\left(T_{n}\right), f^{n}\left(L_{n}\right)=J_{i_{n+1}}$ and $f^{s}\left(L_{n}\right) \subset J_{i_{s+1}}$ for every integer $0 \leqslant s \leqslant n-1$. Since the absolute value of the slope of f^{n} on L_{n} (which is 1) equals the product of the absolute values of the slopes of f on $f^{s}\left(L_{n}\right)$ (which are $\geqslant 1$) for all integers $0 \leqslant s \leqslant n-1$, the absolute value of the slope of f on $f^{s}\left(L_{n}\right)$ must be 1 for every integer $0 \leqslant s \leqslant n-1$. So, the length of $f^{s}\left(L_{n}\right)$ is equal to that of $f^{s+1}\left(L_{n}\right)$ for every integer $0 \leqslant s \leqslant n-1$. Since the length of $f^{n}\left(L_{n}\right)\left(=J_{i_{n+1}}\right)$ is 1 , we obtain that the length of $f^{s}\left(L_{n}\right)\left(\subset J_{i_{s+1}}\right)$ is also 1 for every integer $0 \leqslant s \leqslant n-1$. This, together with the fact that $f^{n}\left(L_{n}\right)=J_{i_{n+1}}$, implies that $f^{s}\left(L_{n}\right)=J_{i_{s+1}}$ for every integer $0 \leqslant s \leqslant n$. Note that, when $s=0$, $L_{n}=J_{i_{1}}$. Thus, $f\left(J_{i_{s}}\right)=f\left(f^{s-1}\left(L_{n}\right)\right)=f^{s}\left(L_{n}\right)=J_{i_{s+1}}$ for every integer $1 \leqslant s \leqslant n$. Since there are $n+1$ closed intervals $J_{i_{s+1}}\left(=f^{s}\left(L_{n}\right)\right), 0 \leqslant s \leqslant n$, taken from the n distinct J_{i} 's, some interval J_{i}, appears at least twice. Without loss of generality, we may assume that $J_{i_{1}}=J_{i_{m+1}}$ for some integer $1 \leqslant m \leqslant n$ and the $J_{i_{s}}$'s are distinct for all integers $1 \leqslant s \leqslant m$. Since $f\left(J_{i_{s}}\right)=J_{i_{s+1}}$ and f is linear on $J_{i_{s}}$ for all integers $1 \leqslant s \leqslant m$, we obtain that, for every integer $1 \leqslant s \leqslant m, f^{m}\left(J_{i_{s}}\right)=J_{i_{s}}$ and f^{m} is linear on $J_{i_{s}}$, and hence, we have either $f^{m}(x)=x$ for all $x \in J_{i_{s}}$ and all integers $1 \leqslant s \leqslant m$ or $f^{m}(x)=-x+a_{s}+b_{s}$, where $J_{i s}=\left[a_{s}, b_{s}\right]$, for all $x \in J_{i_{s}}$ and all integers $1 \leqslant s \leqslant m$. In the following, we assume, for simplicity, that σ is a cyclic permutation on P. If, for some integer $1 \leqslant j \leqslant m, f^{m}(x)=x$ for all $x \in J_{i_{j}}$, then, in particular,
$f^{m}\left(a_{j}\right)=a_{j}$. Since a_{j} is a periodic point of f with least period $n+1$, we must have $n+1 \leqslant m$ which contradicts the assumption that $1 \leqslant m \leqslant n$. This contradiction implies that $f^{m}(x)=-x+a_{s}+b_{s}$ and hence $f^{2 m}(x)=x$ for all $x \in J_{i_{s}}$ and all integers $1 \leqslant s \leqslant m$. In particular, $f^{2 m}\left(a_{s}\right)=a_{s}$ for all integers $1 \leqslant s \leqslant m$. Since the least period of a_{s} is $n+1, n+1$ divides $2 m$. Thus, $2 m=r(n+1)$ for some positive integer r. But, since $1 \leqslant m \leqslant n$, we must have $r=1$, and so, $n+1=2 m$. Furthermore, since f^{m} maps every endpoint of $J_{i_{s}}$ to the other for every integer $1 \leqslant s \leqslant m$, the m closed intervals $J_{i_{s}}$'s are pairwise disjoint. Since there are exactly $n=2 m-1=m+(m-1)$ distinct closed intervals J_{i} 's, we obtain that $\left\{J_{i_{s}} \mid 1 \leqslant s \leqslant m\right\}=\left\{J_{2 j-1} \mid 1 \leqslant j \leqslant m\right\}$. Consequently, $f^{m}(x)=-x+4 s-1$ and $f^{2 m}(x)=x$ for all $x \in J_{2 s-1}$ and all integers $1 \leqslant s \leqslant m$. This also implies that $T_{n}=J_{2 j-1}$ for some integer $1 \leqslant j \leqslant m$ and the absolute value of the slope of every linear piece of f^{n} (and hence of f^{k} for every integer $k \geqslant n$) on any closed interval contained in $J_{2 i}$ for any integer $1 \leqslant i \leqslant m-1$ is >1. Thus, for any positive integer k (we do not require $k \geqslant n$), any integer $1 \leqslant i \leqslant m-1$ and any closed interval $L \subset J_{2 i}$, if f^{k} is linear on L and $f^{k}(L)=L_{2 i} \supset L$, then the slope of f^{k} on L cannot be equal to 1 and hence the equation $f^{k}(x)=x$ has a unique solution in L. So, we can associate this unique solution to the interval L. Furthermore, since f permutes cyclically the intervals $J_{2 j-1}, 1 \leqslant j \leqslant m$, and since f^{m} maps every endpoint of any $J_{2 j-1}, 1 \leqslant j \leqslant m$, to the other, we obtain that there exists a cyclic permutation ρ on the set of all integers in $[1, m]$ such that $\sigma^{j}(1) \in\left\{2 \rho^{j}(1)-1\right.$, $\left.2 \rho^{j}(1)\right\}$ and $\left\{\sigma^{j}(1), \sigma^{m+j}(1)\right\}=\left\{2 \rho^{j}(1)-1,2 \rho^{j}(1)\right\}$ for all integers $1 \leqslant j \leqslant m$. On the other hand, since f permutes cyclically the intervals $J_{2 j-1}, 1 \leqslant j \leqslant m$, and since $f^{m}(x)=-x+4 j-1$ and $f^{2 m}(x)=x$ for all $x \in J_{2 j-1}$ and all integers $1 \leqslant j \leqslant m$, we see that, for any positive integer k, (i) if k is not a multiple of m, then the equation $f^{k}(x)=x$ has no solution in $J_{2 j-1}$ for any integer $1 \leqslant j \leqslant m$; (ii) if k is an odd multiple of m, then each midpoint of $J_{2 j-1}$ is the unique (and isolated) solution of the equation $f^{k}(x)=x$ in $J_{2 j-1}$ for every integer $1 \leqslant j \leqslant m$; and (iii) if k is an even multiple of m, then, for every integer $1 \leqslant j \leqslant m$, every point of $J_{2 j-1}$ is a (nonisolated) solution of the equation $f^{k}(x)=x$, but, the midpoint of $J_{2 j-1}$ is an isolated solution of the equation $f^{m}(x)=x$. Therefore, we can associate, for every integer $1 \leqslant j \leqslant m$, the midpoint of $J_{2 j-1}$ to the interval $J_{2 j-1}$ when k is an (odd or even) multiple of m and nothing otherwise. This implies that, for every positive integer k, $N\left(f^{k}\right)=\sum_{j=1}^{n} \alpha_{j j}^{(k)}=\operatorname{tr}\left(A_{f}^{k}\right)=\sum_{j=1}^{n} \lambda_{j}^{k}$, where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of the Markov matrix A_{f} of f. Consequently, by Theorem 1, we have proved the following two results:

Theorem 2. Let $n \geqslant 2$ be an integer. Let P be the set of all integers in $[1, n+1]$ and let σ be a map from P into itself. Assume that f is the linearisation of σ on P such that, for some positive integer t, the absolute value of the slope of every linear
piece of f^{t} is >1. Then the following hold:
(a) For every positive integer $k, N\left(f^{k}\right)=\operatorname{tr}\left(A_{f}^{k}\right)=\sum_{j=1}^{n} \lambda_{j}^{k}$, where $\lambda_{1}, \lambda_{2}, \cdots$, λ_{n} are the eigenvalues of the Markov matrix A_{f} of f.
(b) The Artin-Mazur zeta function $\zeta_{f}(z)$ of f is $\zeta_{f}(z)=1 /\left(1+\sum_{k=1}^{n} \beta_{n-k} z^{k}\right)$, where $x^{n}+\sum_{k=0}^{n-1} \beta_{k} x^{k}$ is the characteristic polynomial of the Markov matrix of f.

Theorem 3. Let $n \geqslant 2$ be an integer. Let P be the set of all integers in $[1, n+1]$ and let σ be a map from P into itself. For every integer $1 \leqslant k \leqslant n$, let $J_{k}=[k, k+1]$. Assume that f is the linearisation of σ on P such that the absolute value of the slope of some linear piece of f^{n} is 1 . Then there exist an integer $1 \leqslant m \leqslant n$ and m distinct integers $i_{1}, i_{2}, \cdots, i_{m}$ in $[1, n]$ such that f is linear on $J_{i_{s}}$ and $f\left(J_{i_{s}}\right)=J_{i_{s+1}}$ for every integer $1 \leqslant s \leqslant m$, where we define $i_{m+1}=i_{1}$. Furthermore, if σ is a cyclic permutation on P, then the following also hold:
(a) $n+1=2 m$.
(b) $f^{m}(x)=-x+4 k-1$ and $f^{2 m}(x)=x$ for all $x \in J_{2 k-1}$ and all integers $1 \leqslant k \leqslant m$. In particular, f has periodic points of least period $(n+1) / 2$.
(c) There exists a cyclic permutation ρ on the set of all integers in $[1, m]$ such that $\sigma^{j}(1) \in\left\{2 \rho^{j}(1)-1,2 \rho^{j}(1)\right\}$ and $\left\{\sigma^{j}(1), \sigma^{m+j}(1)\right\}=\left\{2 \rho^{j}(1)-\right.$ $\left.1,2 \rho^{j}(1)\right\}$ for all integers $1 \leqslant j \leqslant m$.
(d) For every positive integer $k, N\left(f^{k}\right)=\operatorname{tr}\left(A_{f}^{k}\right)=\sum_{j=1}^{n} \lambda_{j}^{k}$, where $\lambda_{1}, \lambda_{2}, \cdots$, λ_{n} are the eigenvalues of the Markov matrix A_{f} of f.
(e) The Artin-Mazur zeta function $\zeta_{f}(z)$ of f is $\zeta_{f}(z)=1 /\left(1+\sum_{k=1}^{n} \beta_{n-k} z^{k}\right)$, where $x^{n}+\sum_{k=0}^{n-1} \beta_{k} x^{k}$ is the characteristic polynomial of the Markov matrix of f.

Remark. We require σ to be a cyclic permutation on P in Theorem 3 while not in Theorem 2. This is because the requirement on the slope of f in Theorem 3 is weaker than that in Theorem 2. If we do not make the stronger requirement on σ in Theorem 3, there would be many trivial examples whose linearisations have well-defined Markov matrices while their Artin-Mazur zeta functions are not defined.

The following partial converse of Theorem 3 is easy to prove.
Theorem 4. Let m and n be positive integers such that $n+1=2 m$. Let ρ be a cyclic permutation on the set of all integers in $[1, m]$ and let σ be a cyclic permutation on the set P of all integers in $[1, n+1]$. For every integer $1 \leqslant i \leqslant n$, let $J_{i}=[i, i+1]$.

Assume that f is the linearisation of σ on P and $\sigma^{j}(1) \in\left\{2 \rho^{j}(1)-1,2 \rho^{j}(1)\right\}$ and $\left\{\sigma^{j}(1), \sigma^{m+j}(1)\right\}=\left\{2 \rho^{j}(1)-1,2 \rho^{j}(1)\right\}$ for all integers $1 \leqslant j \leqslant m$. Then, for every positive integer k, the absolute value of the slope of f^{k} on $J_{2 j-1}$ is 1 for all integers $1 \leqslant j \leqslant m$. Consequently, the Artin-Mazur zeta function $\zeta_{f}(z)$ of f is $\zeta_{f}(z)=1 /\left(1+\sum_{k=1}^{n} \beta_{n-k} z^{k}\right)$, where $x^{n}+\sum_{k=0}^{n-1} \beta_{k} x^{k}$ is the characteristic polynomial of the Markov matrix of f.

Remark. If σ is a cyclic permutation on the set P of all integers in $[1, n+1]$ and f is the linearisation of σ on P, then Theorems $2,3, \& 4$ give a complete solution of the Artin-Mazur zeta function of f. In particular, the Artin-Mazur zeta function of f is rational with poles at the values $1 / \lambda_{j}$ where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of the Markov matrix of f.

Let f and g be two continuous maps from $[a, b]$ into itself. If they are (topologically) conjugate to each other, then it is clear that they have the same (if defined) Artin-Mazur zeta function. However, if they are not conjugate to each other, they may still have the same Artin-Mazur zeta function. For example, assume that both f and g satisfy the conditions in Theorem 2 above. If their respective Markov matrices are similar to each other, then, since similar matrices have the same characteristic polynomial [4], they have, by Theorem 2, the same Artin-Mazur zeta function. In the following, we present some such examples. The following result is taken from [2].

THEOREM 5. For every integer $n \geqslant 3$, let $f_{n}(x)$ be the continuous map from $[1, n]$ onto itself defined by

$$
f_{n}(x)= \begin{cases}x+1, & \text { for } 1 \leqslant x \leqslant n-1 \\ -(n-1) x+n^{2}-n+1, & \text { for } n-1 \leqslant x \leqslant n\end{cases}
$$

We also define sequences $\left\langle b_{k, n}\right\rangle$ as follows:

$$
b_{k, n}= \begin{cases}2^{k}-1, & \text { for } 1 \leqslant k \leqslant n-1, \\ \sum_{i=1}^{n-1} b_{k-i, n}, & \text { for } n \leqslant k\end{cases}
$$

Then, for any integers $k \geqslant 1$ and $n \geqslant 3, b_{k, n}$ is the number of distinct fixed points of the $\operatorname{map} f_{n}^{k}(x)$ in $[1, n]$. Moreover, the Artin-Mazur zeta function $\zeta_{f_{n}}(z)$ of f_{n}, for every integer $n \geqslant 3$, is $\zeta_{f_{n}}(z)=1 /\left(1-\sum_{k=1}^{n-1} z^{k}\right)$.

ThEOREM 6. For every odd integer $m \geqslant 3$, let $g_{m}(x)$ and $h_{m}(x)$ be the contin-
uous maps from $[1, m]$ onto itself defined by

$$
g_{m}(x)= \begin{cases}-x+m+1, & \text { for } 1 \leqslant x \leqslant \frac{1}{2}(m-1) \\ -\frac{1}{2}(m+1) x+\frac{1}{4}(m+1)^{2}+1, & \text { for } \frac{1}{2}(m-1) \leqslant x \leqslant \frac{1}{2}(m+1) \\ \frac{1}{2}(m-1) x-\frac{1}{4}\left(m^{2}-1\right)+1, & \text { for } \frac{1}{2}(m+1) \leqslant x \leqslant \frac{1}{2}(m+1)+1 \\ -x+m+2, & \text { for } \frac{1}{2}(m+1)+1 \leqslant x \leqslant m\end{cases}
$$

and

$$
h_{m}(x)= \begin{cases}x+\frac{1}{2}(m-1), & \text { for } 1 \leqslant x \leqslant \frac{1}{2}(m+1) \\ -(m-1) x+\frac{1}{2}\left(m^{2}+2 m-1\right), & \text { for } \frac{1}{2}(m+1) \leqslant x \leqslant \frac{1}{2}(m+1)+1 \\ x-\frac{1}{2}(m+1), & \text { for } \frac{1}{2}(m+1)+1 \leqslant x \leqslant m\end{cases}
$$

Then, for any odd integer $m \geqslant 3$, both $g_{m}(x)$ and $h_{m}(x)$ have the same Artin-Mazur zeta function as $f_{m}(x)$, where $f_{m}(x)$ is defined as in Theorem 5 above.

Proof: Let $m \geqslant 3$ be an odd integer. It suffices to show that the Markov matrices of f_{m}, g_{m}, and h_{m} are similar to one another. Indeed, let P be the set of all integers in $[1, m]$ and let σ be a cyclic permutation on P. Let φ be the linearisation of σ on P and let V_{m-1} be the vector space over the field of real numbers with the set $Q_{1}=\left\{J_{1}, J_{2}, \cdots, J_{m-1}\right\}$ as a basis, where, for every integer $1 \leqslant k \leqslant m-1$, $J_{k}=[k, k+1]$. Then, φ determines a linear transformation (which we call $\bar{\varphi}$) on V_{m-1} defined by $\bar{\varphi}\left(\sum_{k=1}^{m-1} r_{k} J_{k}\right)=\sum_{k=1}^{m-1} r_{k} \bar{\varphi}\left(J_{k}\right)$, where r_{k} 's are real numbers and $\bar{\varphi}\left(J_{k}\right)=\sum_{s=i_{k}}^{j_{k}} J_{s}$ if $\varphi\left(J_{k}\right)=\bigcup_{s=i_{k}}^{j_{k}} J_{s}$ for some integers $1 \leqslant i_{k} \leqslant j_{k} \leqslant m-1$. Furthermore, with respect to the basis Q_{1}, the linear transformation $\bar{\varphi}$ is also determined [4] by the $(m-1) \times(m-1)$ matrix $B_{\varphi}=\left(\beta_{i j}\right)$ in such a way that, for every integer $1 \leqslant k \leqslant m-1, \bar{\varphi}\left(J_{k}\right)=\sum_{j=1}^{m-1} \beta_{k j} J_{j}\left(=\sum_{s=i_{k}}^{j_{k}} J_{s}\right)$ which happens to be the same as the Markov matrix of the map φ on $[1, m]$. Now, if we take $Q_{2}=\left\{J_{1}, J_{m-1}, J_{2}, J_{m-2}, \cdots, J_{i}, J_{m-i}, \cdots, J_{(m-3) / 2}, J_{(m+3) / 2}, J_{(m-1) / 2}, \sum_{k=1}^{(m+1) / 2} J_{k}\right\}$ as a new basis for V_{m-1}, then it is easy to see that \bar{g}_{m} acts on Q_{2} like \bar{f}_{m} on Q_{1}. Similarly, if we take $Q_{3}=\left\{J_{(m-1) / 2}, J_{m-1}, J_{(m-3) / 2}, J_{m-2}, J_{(m-5) / 2}, J_{m-3}, \ldots\right.$, $\left.J_{3}, J_{(m-1) / 2+3}, J_{2}, J_{(m-1) / 2+2}, J_{1}, J_{(m-1) / 2+1}\right\}$ as a new basis for V_{m-1}, then \bar{h}_{m} acts
on Q_{3} like \bar{f}_{m} on Q_{1}. Therefore, the matrices of the linear transformations \bar{f}_{m}, \bar{g}_{m}, and \bar{h}_{m} on the respective bases Q_{1}, Q_{2}, and Q_{3} are the same. So, the matrices of \bar{f}_{m}, \bar{g}_{m}, and \bar{h}_{m} on the basis Q_{1} are similar to one another [4]. Consequently, the Markov matrices of the maps f_{m}, g_{m}, and h_{m} on the interval $[1, m]$ are similar to one another and hence, by Theorem 2, f_{m}, g_{m}, and h_{m} have the same Artin-Mazur zeta function.

References

[1] M. Artin and B. Mazur, 'On periodic points', Ann. Math. 81 (1965), 82-99.
[2] B.-S. Du, 'A simple method which generates infinitely many congruence identities', Fibonacci Quart. 27 (1989), 116-124.
[3] B.-S. Du, 'Congruence identities arising from dynamical systems', Appl. Math. Lett. 12 (1999), 115-119.
[4] I.N. Herstein, Topics in algebra, first edition (Blaisdell Publ. Co., New York, 1964).
[5] J. Milnor and W. Thurston, On iterated maps of the interval, Lecture Notes in Mathematics 1342 (Springer-Verlag, Berlin, Heidelberg, New York, 1988), pp. 465-563.
[6] H.E. Nusse, 'Chaotic maps with rational zeta function', Trans. Amer. Math. Soc. 304 (1987), 705-719.

Institute of Mathematics
Academia Sinica
Taipei
Taiwan 11529
Republic of China
e-mail: mabsdu@sinica.edu.tw

[^0]: Received 12th January, 2000
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

