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1. Introduction. The fact that the perimeter S(a, b) of an ellipse is not an 
elementary function of its semiaxes a, b has led to many suggested approx
imations of S in finite form. Many of these have been given as geometric 
constructions, but all may be reduced to algebraic formulas. Among the oldest 
and most familiar1 are: 

APPROXIMATION ( X, /x) 

M = 7r(a +'b) ( 1, 0) 
R = V2ir(a?+ 62)1/2 ( 2, 0) 

(1) G = 2ir{abY^ ( 1, 1) 

#x = ±T(ab)/(a + b)= G2/M ( - 1 , 0) 
H2 = VSw(ab)(a2+ b*)~l/2= G*/R ( - 2 , 0) 

and certain linear combinations of these such as 

(M + R)/2, (SM - G)/2, 

It is clear that each of the simple approximations (1) seeks to replace the given 
ellipse by a circle of approximately the same circumference, whose radius r is 
an average of a and b of the type 

r(a, b) = { £ ( a V + a»bx)}« (<r* = X + „) 

for the values of X, \x indicated above. To compare approximations of this sort 
or their combinations one can expand each in powers of the eccentricity 

a = (1 - b2a~2y/* (a > b) 

and test them against Legendre's exact expansion 

«, ,(«,s,=2„[1-^-^_..._(2„_I)-.(^(l)-_...]. 
The same questions have been raised by a number of authors about th<* 

surface area 5(a, 6, c) of the ellipsoid with semiaxes a, b, c. Here familiar ap
proximations are 

Received March 21, TG49. 
1The approximation M has been attributed to Bernoulli, but appears to be older. It is to 

be found in Kepler's astronomical notes. We have not attempted a complete search of the 
literature on this problem. However, a short bibliography is given at the end of the paper. 
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268 D. H. LEHMER 

APPROXIMATION (X, M, ") 
M = 4x[(o + b + c)/3]2 (1, 0, 0) 
A = 4x(a2+ b2+ c2)/3 (2, 0, 0) 
R = 47r[{bh2+ a V + aW)/Z\lh (2, 2, 0) 
F = 4r(bc + ac + 06)/3 (1, 1, 0) 
G = 4ir(a6c)2/3 (1, 1, D 

together with such linear combinations as Peano's 

(4) (A + 4F)/5 

or Pôlya's 

(5) (64F - 2A - 27G)/35. 

Each approximation (3) is to be interpreted as replacing the ellipsoid by a 
nearly equivalent sphere whose radius r is an average of a, &, c, of the type 

r(a,b,c) = [£ (a x 6V+ ax&V + a ' 6 V + a"6Mcx + o"&V+ Û " ^ X ) ] 3 

with g - 1 = X + \k + v, where (X, JU, v) are as indicated above. As in the case 
of the ellipse we may expand an approximation in what is now a double power 
series in the eccentricities 

a = ( 1 - &2a~2)*, p = ( 1 - c2a-2)*, 

and compare the expansions with that of S: 

S(a, 6, c) = 47ra6{l - ( a 2 + /32)/6 - (3a4+ 2a2/32 + 3/34)/120 - . . .} 

(6) = ivab £ (1 - 4,2)-Ha/3)"Pv[(a2+ 02)/2a/3], 

where P„(x) is Legendre's polynomial. In adopting such a comparison as a 
criterion of goodness we are tacitly assuming that a and 0 are small. An 
approximation which agrees with (6) as far as v — ki is said to be better than 
another which agrees only as far as v = &2, where &2< ki. In other words we 
are dealing with "nearly spherical" ellipsoids. 

In general the {n — 1)-dimensional area of the w-dimensional ellipsoid may 
be approximated by any one of a class (defined below) of appropriately chosen 
functions of the n semiaxes. In this paper we consider the problem of finding 
the best approximation of a given class, best in the above sense. An example 
of such a result, and apparently the only one of its kind in the literature, is 
the following theorem of Sir Thomas Muir. 

THEOREM 1. Of all expressions of the type 

2 x $ ( a x + &X)]V\ 

that with X = 3/2 is the best approximation to the perimeter of the ellipse whose 
semiaxes are a, b. 
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We consider approximations of the type 

(7) P(Xlt X»,. . . , X») = n»[r(Xi, Xi, . . . , K)]n~\ 

where 

n„= 2»"/»/r(»/2) 

is the area of the «-dimensional unit sphere and 

r(Xi, X2 X.) = ( -. Ea!X%2
X2 . . . an

x" 

in which g - 1 = Xi+ X2+. . . + Xn and the sum extends over all n\ permutations 
of the X's. If exactly k of the X's are different from zero we say that P is of 
class k and dimension n. Muir's Theorem 1 is concerned with the case n = 2, 
k = 1. In §3 we show that in general the best approximation of dimension n 
and class k is attained by certain algebraic numbers Xi, X2, . . . , X .̂ These are 
given explicitly for k = 1 and k = 2. The case k = n gives the best approx
imation of dimension n. Sections 8 and 9 are devoted to this case for n = 2 
and n = 3. In considering ellipsoids of dimension n > 3 one discovers an 
exceptional class which we have called "well poised ellipsoids", whose areas are 
particularly amenable to approximations. These are given separate consider
ation in §§7, 10 and 14. In §§ 11-14 we consider the simpler approximations 
obtained from certain integral values of the X's and the best linear combinations 
of such approximations. 

The methods of this paper have been applied also to the question of approx
imating the electrostatic capacity of the ellipsoid. The same general results 
have been obtained. Another type of special ellipsoid presents itself in this 
case. A short account of these results may appear later. 

2. Generalities. We consider the w-dimensional ellipsoid En whose Car
tesian equation is 

n 
(8) L xt*ar* = 1 (a i> a 2 > . . . > an> 0). 

To express the n — 1 dimensional area 5 of En in terms of the n — 1 eccen
tricities ai defined by 

a*2= 1 — an
2ai"2 (i = 1, 2, . . . , n — 1) 

so that 1 > a i > a 2 > . . . > a n - i > 0, we may proceed as follows. The " top" 
half of S is given by 

(9) i 5 = | { l + L i
1( | | )2}^1 . . .^-1 , 

where the integration extends over the projection of En onto the coordinate 
hyperplane xn= 0. Substituting x*= a^y» and 

*• 
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n - 1 

into (9) we find 

(10) S « 2ai<z2. . . a«- i [ (1 - I a ^ / ) H l - E y ^ ^ i 

the integration extending over the interior of the unit n — 1 dimensional 
sphere. The first factor of the integrand may be replaced by its binomial series 
and the result integrated termwise. As a typical integral one obtains 

I - / (mi ,m m » . , ) - [ y i 2 w V m 2 . . • y2mn~liX -'LytY^dV^. 
J S n - 1 * - l 

This may be evaluated by introducing spherical coordinates (p, <£i, <£2, . . . , 
4>n_2), where 

0 < P < 1, 0 < <f>i< 7T, 0 < tf>n-2< 2TT (* = 1, 2 , . . . , n - 3) 

in terms of which 

y,- = p sin 0i sin <£2. . . sin 0 n - i - i cos </>n_i (*n-i= 0) 

The integral now becomes the product of n — 1 single integrals. Using repeat
edly the Beta function formula 

sin2'tf> cos2u<t>d<t> = B(/ + J, u + J) 

we find 
o 

n - 1 
7(wi, . . . , m n_i)= r (J ) [ I l T(rm+ J ) ] / r (wi+ w 2 + . . . + m B - i + 4 n) 

*=i 

r « / 2 

« —1 W —1 

n n (1 + 27) 
JL_^ t-i^j-i ( T = m i + W 2 + < . . + m n _ 1 ) . 

r(" /2 ) ' i l (n + 2fe) 
n**0 

We can now write down the expansion of 5 in powers of a». Clearly, this is a 
symmetric function of the a's. For brevity we write these symmetric functions 
as follows 

2ai2= Si, Sa t-
4a/= S2i, . . . . 

The expansion of (10) thus becomes 

S = n n ai . . . an_i {l - Si/2n - ( 3 S 2 + 25n)/8»(n + 2) 

- ( 1 5 5 i + 9S 2 i+ 6Sm)/16w(n + 2)(n + 4) 

(11) ~5(10554+6053i+5452 2+3652 i i+245ii i i ) /128«(n+2)(w+4)(n+6) 
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where the sum over \i extends to all partitions of w: 

w = Mi+ M2+. . . + Mn-i 

into n — 1 non-negative integral parts. This expansion can be given in a 
somewhat less explicit form similar to (6). Let Rm(zh *2,. . . 2n-i) be the poly
nomial which is the coefficient of um in the generating function 

{(1 - «i«)(l - z2u) . . . (1 --s»_i«)}~* 

Then (11) can be written 
00 / w ~ 1 2h — l \ 

5 = n nai . . . a n - i £ ( I l ) Pm(ai2, a2
2, . . . , an_i2). 

m =0 \h « 0 *" T- » / 

3. The function P (Xi, X2, . . . , Xn). We consider now our approximating 
function (7). For n = 3, P(Xi, X2, X3) is a slight generalization of the function 
used by Pôlya who took q = 1/2 and X»> 0. In general P shares with the 
area S three of the four properties noted by Pôlya, namely P is 

(i) Homogeneous of degree n — 1, 
(ii) Symmetric in the a's, 

(iii) Precisely equal to 5 when all the a's are equal. 
Since the X's are not restricted to be non-negative, P(Xi, X2, . . . , Xn) may not 
be continuous at an= 0. However, since in this paper we are not concerned 
with such degenerate ellipsoids this possible lack of continuity is not important. 
From a "practical" point of view it would be desirable to have the X's real. 
However, some or even all of the X's may be complex and yet, if they occur 
in conjugate pairs, the function P has a real interpretation closely approx
imating the area S of the "nearly spherical ellipsoids". In deference to the 
practical minded reader we call approximations by non-real X's "improper". 
Since the X's enter symmetrically, it is convenient to introduce their elementary 
symmetric functions 

pi— 2~1== 2Xi, p2= SXiXy, £ 3 = 2\i\j\k, . . . . 

To expand P in powers of the eccentricities a* we write 

(1 - a *)* - pit 

so that 

a , = anprl (i = 1, 2, . . . , n\ 0»« 1). 

On account of the homogeneity of P in the a» we have 

P(Xi, x 2 , . . . , xn) = nnan
n-i M L 0 r M 0 2 - X 2 . . . p n ^ 

= nn(aia2. . . an_1)(/?1/52. . . fin) I J j £ 0 f M. . . &TXn 

I (n-l)q 
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Now the factor 

n - l 
ft. . . j8n= I I (1 - a*)* = 1 + Qi(ax

2, a2
2, . . . an-x

2) 

where Q\ is an (n — 1) fold power series in ai2, a2
2, . . . an_i2, which, being 

symmetric in the a's and of course absolutely convergent inside the unit sphere, 
may be expanded in terms of the monomial symmetric functions of the a's, thus 

<2i= - Si/2 - 52 /8 + Sn /4 + . . . . 

Similarly the function 

^ E i 8 r M . • • ftTXn=B 1 + PiSi/n +(Pi2+ 2pi- 2p2)S2/8n + p2Sn/2n(n - 1) 

= 1 + (Mai*, a2
2, . . . , an-i2) 

may be expanded in terms of the symmetric function of the a's with coefficients 
which are polynomials in ph ph • • • with rational coefficients. The coefficients 
in the expansion of 

( I U m , . . . an)^P(\h X 2 , . . . , Xn) = (1 + 00 (1 + Q ^ * 

are rational functions of ph pi, . . . (whose denominators are polynomials in 
pi alone) with integer coefficients. Finally we see from (11) that the relative 
error 

P — 5 
(12) —~— = C1S1+ c2S2+ c i i 5n+ . . . 

has coefficients c of the same type. The problem of determining X's so that a 
specified number of these c's vanish is thus a purely algebraic one, and the best 
approximation P(Xi, X2, . . . , Xr, 0, 0 . . . , 0) of class r and dimension n is 
attained with X's which are algebraic numbers. The expansion (12) may be 
developed quite in general, that is for a general n and arbitrary X;, and begins 
as follows: 

(13) * - ^ = ^i(/4+/6)/8n2(n+2) + (3^^ 1 ~^ 2 +^ 3 )g6/96n 3 (w+2)+ 0(a8) 

where the ^'s are independent of the a's and are given by: 

fi = (n - l)(n + 2)pi- 2n(n + 2)p2/pl- 2(n + 1), 
H = (n - 1)(» + 2 ) £ i 2 - 6(11 + l)Pi- 8(* + 1)(» + 2 ) / (n+4) , 
fa = 6w2(w + 2)p,/[(n - 2)/>i)], 

and the functions /4,/e, g 6 depend only on the a's and are given by: 

JK = (n - 1 ) 5 , - 25n, 
ft = (n - 1 ) 5 8 - 25«, 
g6 = (* - l)(n - 2 ) 5 s - 3(» - 2)5 2 i+ 125m. 
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If, in (13), a certain choice of X's results in the vanishing of all terms involving 
symmetric functions of the a; of weights < d while the terms of weight d do 
not vanish, the approximation P is said to be of order d. Inspection of (13) 
yields 

THEOREM 2. All approximations (7) are of order d ^ 4. 

4. Approximations of Class 1. As a generalization of Theorem 1 we have 

THEOREM 3. Of all approximations of the type 

(14) P(X) = n n {(a! x + a 2
x + . . . + an

x)/rc}<»-i>A 

that with 

(15) X = 2(* + l ) / [ ( n - l ) (* + 2)] 

gives the best approximation to the area of the n-dimensional ellipsoid. 

Proof. In this case we are considering approximations of class 1, so that 

/>i= X, p2= pz— . . . = 0. 
Hence in (13) 

^ 1 = (n - i ) ( n + 2) X - 2(n + 1). 

Since, as we shall see later, / 4 + / e > 0 , we must set ^i = 0 to obtain the best 
approximation of type (14). This gives the theorem. 

The approximation (14) is in general of order 6. In fact we have only to note 
that in this case ^ i = 0 and ^ 3 = 0 in (13). This gives 

1 ^ 1 = - [ ( „ - 1)(» + 2)X2- 6(n + 1)X 

(16) - 8(n + 1)(» + 2)/(» + 4)k./[96n»(n + 2)] + . . . 

= (n + l ) (n 2 + 4w + 5)g6/[12(w - l)n2(n + 2)2(n + 4)] 

in view of (15). In case n = 2, the function g8 vanishes identically. We shall 
see in § 8 that the approximation 

P(3/2) = 2ir[±(ai*/2+ a2
3/2)]2/3 

is of order 8. 
In case n = 3, X = 4/5 and the relative error of the best approximation 

(17) P(4/5) = 47r[|-(ai4/5+ a2
4 / 5+ a3

4/5)]5/2 

of class 1 for the common ellipsoid is, by (14), 

(18) - 13g6/4725 = - 13( a i
2+ a2

2)(ai2- 2a2
2)(2ai2- a2

2)/4725 + 

In case n = 4, the best approximation of class 1 is 

(19) P(5/9) = 27r2[i(a1
5/9+ a2

5 / 9+ a3
5 / 9+ a4

5/9)]27/5 

and its relative error is by (16) 

(20) - 185g6/27648 = 185(ai2 + a 2
2 - a 3

2 ) ( a i 2 ~ a 2
2 + a 3 2 ) ( - a i 2 + a 2

2 + a 3 2 ) / 4 6 0 8 . 
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S. Approximations of Class 2. The next problem is that of determining 
two parameters X and /x so that the approximation 

/ 1 \ (*-D/(X+M) 

is the best possible. With two parameters at our disposal we may arrange to 
make both ^i and ^2 of (13) vanish. Since />3 = '0, ypz vanishes also so that we 
have an approximation of order > 8. Setting ^2 = 0 we find 

(n - l)(n + 2)(n + 4) px= 3(n + 1)(» + 4 ) ± A* 
where 

A = (n + l)(n + 4)(8w3+ 33n2+ 45n+ 4). 

Setting ^i = 0, gives 

n(n + 2)(n + 4) p2 = 2pl(n + 1)(« + 4 ) + 4(w + l)(n + 2). 

Since A > 0, it follows that (X, /A) are either both real or conjugate complex. 
Their discriminant however is proportional to 

n(n - l)\n + 2)\n + 4 ) (£ 2
2 - 4£2) = - 2(w + 1)(4 db BA*), 

where 

il = 4rc4+ 7w 3 - 21w2- 64/z - 16, B = n - 4. 

Moreover 

4 2 - B2A = 16n(n - \)\n + 2)2(w3+ n 2 - In - 16) > 0 

for w > 4. Therefore we have 

THEOREM 4. The best approximation of type (21) is improper for n > 3. 

For w = 3 one of the two possible pairs (X, /i) is real and the other complex. 
All four satisfy 

3675 x 4 - 8820 x 3 + 1904 x 2 + 2240 x +3328 = 0. 

The real pair is approximately 

(22) X = 1.70002966918802203200, 
M = 1.43018127413249642468. 

The other pair gives not as good an approximation, and besides is improper. 
For n = 2, the function \p\ vanishes for 

(23) 8/>2= 2p1
2-Spl. 

This condition alone assures an approximation of order 8 since g6 vanishes 
identically. To get the best approximation of class 2 a further study of the 
case n = 2 is required (see § 8). 
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6. Approximations of Class 3. If, for n > 2, we seek the best choice of 
the three parameters X, /x, v, then (13) tells us that we can obtain approximations 
of order > 8 by choosing p\j£ 0 arbitrarily and then determining p2 and p% by 

(24) 2n(n + 2)£2= (» - 1)(» + 2)/>i2- 2(» + l)/>i 

and 

(25) Qn2(n + 2)(» + 4)£3 = (n - 2)[(» - l ) ( n + 2)(n + 4)/>x
3 

- 6(» + l)(n + 4)£x2- 8(» - l)(n + 2)p1] 

A further expansion of the error (P — 5 ) / 5 would be necessary to obtain, in 
the general case, the best choice of pi. This is done for n = 3 in § 9. 

7. Special Ellipsoids. Before proceeding to consider further details for 
n = 2 and n = 3 we call attention to a special class of ellipsoids whose approx
imations by functions of the type we have been considering, or indeed by any 
combination of them, are particularly close. 

In the preceding discussion of the error expansion (13) we have tacitly 
assumed that the functions ft fe, and g6 (which depend only on the shape of 
the ellipsoid) are different from zero. This assumption, which is of course true 
of ellipsoids in general, is strictly true for the functions/4 and/6- In fact these 
functions may be written : 

/ 4 = 2 ( a ; 2 - a / ) 2 , 

/ 6 = 2(a;2+a/)(a4-2 - a / ) 2 , 

where the sums extend over all integers i < j < n, and we have taken a» to 
be zero. Hence for real, non-spherical ellipsoids these functions are strictly 
positive. Therefore the condition \pi= 0 is necessary and sufficient for the 
approximation P to be of order > 6. 

In the case of g6, however, there are real non-spherical ellipsoids for which 
g 6 = 0 and for these ellipsoids the vanishing of the coefficient of g6 in (13) is 
sufficient but not necessary for the approximation to be of order > 8. A con
spicuous class of such special ellipsoids consists of those whose Cartesian 
equations 

^4ixi2+ A2x2
2+ . . . + Anxn

2 = 1 

are such that 

(26) At+ An= A2+ An-X= . . . = An+ Ax. 

As far as the author is aware such ellipsoids have not received attention. In 
what follows such an ellipsoid will be called "well poised". In terms of the 
semiaxes at- an ellipsoid is well poised in case the harmonic mean of at-

2 and 
an + i_i2 is the same for all i. In terms of its eccentricities a* an ellipsoid is well 
poised in case the arithmetic mean of af and an+i-i2 is the same for all i. For 
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n = 2, we have no condition, and all ellipses are well poised. For n = 3 there 
is a one parameter family of ellipsoids which are well poised. These are char
acterized by 

a i 2 = 2a2
2. 

For n = 4, the well poised ellipsoids are characterized by 

d i 2 = < l 2 2 + Cl32. 

By (18) and (20) we have 

THEOREM 5. If an ellipsoid is well poised, its function g« vanishes. 

Proof. The function 4g6 may be written 

(27) 4g6= 4w2S3- 12nS&+ 8Si3. 

Now we can write 

at-
2+ an4-i_;2= K 

and raising both sides to the first, second and third powers and, summing over 
i from / to w, we obtain: 

25 i= nK 
(28) 2S2 = nK2-2a, 

25 3= nK*-SK<r, 

where 
n 

L I 2 
ai dn+1-ï • 

Substituting from (28) into (27) we find that g& vanishes identically in K and <r. 
This proves the theorem. 

In the case of well poised ellipsoids a separate discussion of best possible 
approximations and their errors is required. We proceed to consider further 
details for n = 2 and n = 3. 

8. The case n = 2. In the case of the ellipse there remain two questions 
(a) What is the order and error of Muir's approximation? and (b) what is 
the best of all approximations of type (7) when n = 2? As a matter of fact 
Muir showed that his approximation 

(29) P(3/2) = 27r[i(a3/2+ b*/*)]V* 

is of order 8. The expansion of P(3/2) in powers of a2 = 1 — b2a~2 yields 

P (3 /2 )= 27ra[l - a2/4 - 3 a 4 / 2 6 - 5 a 6 / 2 8 - l l a 8 / 2 1 0 - 7a1 0 /21 0- . . .]. 

Comparing this with (2) we find the relative error 

(30) (P - S)/S = - a 8 / 2 1 4 - a 1 0 /2 1 3 -
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It is difficult to appreciate the smallness of this error. Applied to the earth's 
orbit for example the very simple formula (29) differs from the true perimeter 
of the ellipse by less than a wave length of visible light. 

The best approximation to the perimeter is of class 2 

(31) P(X, /*) = 27r[i(ax^+ a&)Y'*i. 

Making use of (23) all symmetric functions of X and xx may be expressed as 
polynomials in pi = X + /x- Actually carrying out the expansion of P(X, xx) in 
powers of a2 we find 

P(X, M)= 2wa{i[(l - a2)x /2+(l - a*)*/f]}1/pi 

_ 0 (, a2 3a* 5a6 (6/>i+ 79)a8 (42£i+ 161)a10 \ 
- ^ a ^ - f ~ -gr - -gr 2 s 2" * * 7' 

Comparing this with the actual expansion (2) we find 

216[P(X, / * ) - 5] = - 2*a(12/>i- 17)(4a8+ 7a10)+ 0(a12). 

To obtain the best choice of X, /x we must choose />i= 17/12. By (23) this 
implies />2= — 17/576. Hence X, /x are the roots of 

576x2- 816* - 17 = 0. 

That is 

X - [17 + 3(34)*]/24 = 1.437202320188995892, 
M = [17 - 3(34)*]/24 = -0.020535653522329225. 

With this best choice the approximation (31) is actually of order 12. In fact 
one finds the relative error is only 

[P(X, / 0 - S]/S « 2-»a"+ 0(a") . 

This error is smaller than (30) by a factor of approximately — a4/32. 

9. Best approximations for n = 3. We consider here the general three 
dimensional ellipsoid and approximations of class 3. According to (24) and 
(25) for n = 3 we would choose p2 and p% in terms of £i = X + xx + ? so that 

(32) 15/>2= 5pi f-4/>i, 

(33) 945£3= 35p i 8 - 8 4 ^ - 80/>i. 

Expanding P(X, xx, v) in terms of a2 and (P under the assumptions (32) and (33) 
and comparing the results with the exact expansion (6) we find that 

[P(X, AX, F ) - 5 ] /5 = - ( 7 p i - 23)(a 4 - a V ^ - 04)2/2835O. 

Hence we should choose pi= 23/7 and in view of (32) and (33) 

p2= 667/245 and £ 3 = 391/5145. 
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Therefore X, /x, v are roots of the cubic equation 

5145* 3 - 16905x2+ 14007x - 391 = 0, 

so that approximately 

X = 1.781391299142280387, 
M = 1.475408208985073373, 
v = 0.289147775869319545. 

A recomputation of the relative error, using the above values of pi, pi and 
p% shows that this best approximation is of order 10 and that 

(P - S)/S = (a6+ 06)(a2- 202)(2a2- /32)/72765 + 0(a12). 

When applied to the earth's surface this gives an error of about 30 square 
inches. 

10. Well poised ellipsoids for n = 3. In the previous section we have 
discussed 3-dimensional ellipsoids in general. In the special case of well poised 
ellipsoids the condition (33) is not necessary since g6 = 0. For these ellipsoids 

a2= 2/32. 

Under these assumptions P(X, /x, v) becomes a function of a alone. In this case 
the expansion of the error proceeds as follows (assuming that \pi= 0): 

(34) [P(X, /i, v) - 5]/5=[4725^3/^1-(175^!2-~ 3 6 4 ^ - 584)]a8/403200+. . . . 

Thus for approximations of class 1, (17) is still best but the error in this case 
is only 

[ P ( 4 / 5 ) - S\/S = 53a8/2800 + 

For approximations of class 2, the values (22) no longer are best. Instead (34) 
shows that we should choose pi so that 

175£i2- 3 6 4 £ i - 584 = 0. 

The condition yf/\ = 0 then gives 

525^?2= 224^1+584. 

This in turn implies that X, /x should be the two real roots of the quartic 
equation 

153125x4- 318500x3- 34440x2+ 81760* + 247616 = 0. 

Approximately, these roots are: 

(35) X = 1.69418906502397563155, 
M = 1.44789153692753268049, 
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and they differ slightly from the pair (22). The error involved in this approx
imation is of order 12 and is in fact 

(P - S)/S = [15573634069 + 613132377\/3759]a12 29 34 511 7313. 

For approximations of class 3 according to (34) we should choose pz such that 

(36) 4725^3= 175£i3- 364£x2- 584^. 

In this case the error takes the form 

(P - S)/S = - [7007£i3+ 1710709£i2- 14403103pi+ 
12494475]a12/29355572lM3. 

Hence for the best approximation possible we should choose for pi a root of 

7007x3+ 1710709*2- 14403103* + 12494475 = 0. 

These roots are approximately: 

ri = 0.98262974495222543686, 
r 2 = 7.1919832448731717019, 
r 3 = - 252.3174701326825399959. 

Each root leads to a choice of ph pi, pz and hence to a set of (X, /x» v). These 
latter are all real only when pi= r2. Then we get the approximate values: 

X = 3.70372956924493413068, 
(37) M = 2.54278064910480668412, 

v = 0.94547302652343088710, 

which represent algebraic numbers of degree 9. With these X, /u, v the function 
P(X, /x, v) is an approximation of order > 14 for all well poised ellipsoids. 
There are reasons to believe that the order is actually 16. 

11. Simple approximations and their combinations. Thus far our insis
tance upon the most accurate approximation has led us in most cases to 
irrational X's and to approximations P whose applications are somewhat 
laborious. It is clear that if the X*s are simply integers the resulting loss of 
accuracy is to a certain degree made up by a gain in practical simplicity of 
application. By taking linear combinations of two or more such simple approx
imations one may regain lost accuracy. One may determine the best linear 
combination of a given set of P's by using the general formula (13). It is clear 
that the same criterion of goodness, the same functions ft, f% and ge» and the 
same special cases of well poised ellipsoids will occur as before in dealing with 
such questions. To illustrate these remarks we consider the four simple ap
proximations : 
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( 1 )(n-l) /2 

A = P(2, 0, 0, . . . . 0) = n J - ^a? J 

(38) B = P(2, 2, . . . . 2, 0) = nnOia2... an I ^ 2ar2 > 

F = P(l, 1 1,0) = n„Oifl2. . . an» - 12ar\ 
G - P(l, 1 1, 1) = nn{oxo2... a„ }(«-D/». 

The first and last of these are the areas of the hyperspheres whose radii are 
respectively the root mean square and the geometric mean of the semiaxes of 
the ellipsoid, the approximations B and F are the areas of the hyperspheres 
whose equatorial sections are the arithmetic mean and the root mean square 
respectively of the « principal sections of the ellipsoid. 

According to (13) we have as relative errors of A, B, F and G: 

(A - S)/S - («2-3)(/4+/.)/[4»2(«+2)] + (nJ+4n-3)g,/[12n«(n+4)], 

(B - S)/S = (A+ /e)/[4n2(« + 2)] - g6/[4n»(« + 4)], 

(G - S)/S - - (» + l)(A+/.)/[4»s(« + 2)] +(» + l)g«/[12»'(» + 4)], 

(F-S)/S = - (f«+/,)/[8»(« + 2)] + g«/[16«2(« + 4)]. 

For n > 2 it is seen that B is better than F, F better than G, and G better than 
A. The best combinations of A, B, F, G, two at a time arranged (for « > 4) in 
order of increasing accuracy2 follows. 

APPROXIMATION RELATIVE ERROR 

(a) [2(»+l)F-«G]/(n+2) (n+l)g,/[24n2(n+4)] 

(b) [(n+l)A+(n*-3)G]/[(n-l)(n+2)] (n+l)(n+3)g,/[6n'(«+2)(n+4)] 

(c) M+2(n*-3)F]/[(2w-3)(«+2)] 
(w+l)(5M-6)g,/[24«2(«+2)(«+4)(2n-3)] 

(d) Kn*-3)B-4]/[(n-2)(n+2)] («H«-3)g,/[3««(«-2)(n+2)(n+4)] 

(e) K«+l)B+G]/(«+2) -(»+lW[6n»(»+2)(n+4)] 
(f) (»B+2F)/(«+2) _g , /[8 M*(n +2)(„+4)] 

The best combinations three at a time are: 
[n(M+l)£+8(»+l)F-3wG]/(w+2)(M+4)], 

[8(«-l)(n+l)(n+3)P-w(5»2+8n-15)G-n(w+lM]/[3(n-l)(n+2)(«+4)], 

(39) 

[ (M-l)(«+l)(n+3)B-(n+l)^-2(n 2+n-3)G]/[n-l ) (n+2)(n+4)] , 
[3«i4+w(5n2+8w-15)B+16(«2+»-3)P]/[5«-6)(n+2)(«+4)]. 

'For » " 3, the order of increasing accuracy is (b), (d), (a), (c), (e), (f). For n = 4, the 
order is (b), (a), (d), (c), (e), (0. 
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These approximations are all of order > 8. Their errors are not obtainable 
from (13). We proceed to discuss the cases n = 2 and n = 3 more fully. 

11. Combinations for the ellipse. When n = 2 we have somewhat different 
results. In the first place 5 and A coincide and become what we have called 
J? in (1). Also F becomes M in (1). The relative errors for each of the functions 
R, M, and G are: 

( R - S)/S = (a4 + a6)/26+ 211 a8/214+. . . , 

(M - S)/S « - (a4 + a 6 ) /2 6 - 221 a8/214+. . . , 

( G - S)/S = - 3{(a4 + a6)/2«+ 223a8/214+. . . } . 

Hence R is slightly better than M and both are very nearly three times as good 
as G. The best combinations two at a time are: 

Ç&M - G)/2, (R + M)/2, (3R + G)/4, 

whose relative errors are respectively (neglecting terms of higher order) 

3a8/214, - 5a8/214, 9a8/214. 

The best of these is only one third as good as Muir's approximation (29). 

The best approximation obtainable from all three is 

(3R + 18M - 5G)/16, 

whose relative error is only — 77a1 °/216. 

13. Combinations for n = 3. For the ordinary ellipsoid the combinations 
three at a time (39) become the following: 

APPROXIMATION RELATIVE ERROR 

(A + 185 + 16G)/35 /io/23760 

( - 2A + 64F - 27G)/35 /io/41580 

(2ii + 245 + 9G)/35 /io/45360 

(125 + 32F - 9G)/35 /io/49896 

where the function of /io is defined by 

/ io= (a 2+ 02)(a4- a202+ /34)(2a2- ^ 2 ) (a 2 - 2j8») = Aft. 

The second of these is Pôlya's (5). The best combination of all four is 

-(1(L4 - 725 - 512F+ 189G)/385, 

with a relative error of 
- /12/2432430 + . . . , 

where 
/ i2= 7(a12+ /S12) - 21a2/32(a8+ 08)+ 15a4/34(a4+ /34)+ 5a6^. 
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14. The case of well poised ellipsoids (n = 3). The results of § 13 are 
based on the assumption that g 6 ^ 0. For well poised ellipsoids the following 
results may be tabulated. It will be recalled that a2= 2/32. The principal parts 
of the relative errors are given. The table is arranged in order of increasing 
accuracy. 

(68405 

APPROXIMATION RELATIVE ERROR 

A a4/20 
G - a4/30 
F - a4/80 
B a4/120 

(2A + 3G)/5 a8/336 
(6G - A)/5 a8/448 

(A + 470/5 3a8/1792 
(473 + G)/5 - a8/672 

(87? - 3G)/5 a8/2688 
(27? + 373)/5 - a8/3584 

(2A + 2473 + 9G)/35 179a12/5765760 
(A + 1873 + 16F)/35 207a12/10250240 

(647? + 2A - 27G)/35 - 19a12/1537536 
(1273 + 327? - 9G)/35 - 431a12/46126080 

8624 +458247? - 16767G)/35035 - 4649a16/9758228480 
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