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REMARKS ON GENERALISED POWER SUMS

ROBERT S. RUMELY AND A.J. VAN DER POORTEN

We give a description of factorisation in the ring of generalised

power sums Cthe sequence of Taylor coefficients of rational functions

regular at infinity) with a view to giving detailed bounds on the

order of generalised power sum factors and roots of such sums.

A generalised power sum a(h)3 h = 0,1,2,... is an expression of

the shape

m h
a(h) = t A.(h)a., h= 0,1,2,...

with roots a., 1 < i < m , distinct nonzero quantities, and coefficients

A.(h) polynomials respectively of degree n(i) - 1 , for positive integers
Lr

n(i)j 1 < i. < m . The generalised power sum a(h) is said to have order

m
n = Z n(i) .

il
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set

m
e(X) = n (1 - <x.X) = 1 - 8,2 - ... - si n

Then the sequence (a^) with a, = aCh)s h = 0,1,2... satisfies the

linear homogeneous recurrence relation:

ah+n = slah+n-l + ••• + %ah> h = O'1'2'---

To see this let E:f(h) -»• fCh+1) be the shift operator and A = E-l

the difference operator. Then

(E-a)A(h)uh = (bA(h))ah+1> h = 0,1,2,...

and since &A(h) has lower degree than does A , by linearity and

induction it is plain that

m y, <v i
n CE-ai)

nM

annihilates the sequence (a-,) , as asserted. Thus generalised power sums

n

are interesting in that they coincide with recurrence sequences. It

follows that there is a polynomial r(X) , of degree less than n , so

that the power series

Z a-X*1 = rCx)/s(x)
h=0

is a rational function; to see this multiply by sCX) and note the

recurrence relation.

Conversely given a rational function as above, with deg r < deg s ,

a partial fraction expansion yields

r(x)/s(xl =
m

i=0 0=1
r..(l-a.X)~3

= E
h=0

m
h+o-1

3-1

and the coefficient of A , h=0,l,23. . . is indeed a generalised power

sum as described.
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Accordingly, results on generalised power sums are equivalent to corres-

ponding results for Taylor expansions of rational functions. For example:

the trivial observation that a product of generalised power sums is again

a generalised power sum becomes the more interesting: the Hadamapd product

of rational functions ^-<^iX < E&«X -̂s a9ai-n rational.

Our remarks below concern factorisation in the ring of generalised power

sums, thus Hadamard factorisation of rational functions. Our observations

are closely related to those of Bezivin [I], who provides a useful unique

factorisation result.

1. The ring of generalised power sums

Let F be a field, and W a finitely generated subgroup of F* .

Denote by F-,(l)l) the ring of all generalised power sums with coefficients

in F and roots in W ; that is, the set of all functions / of the form

f : 7L ->• F : f(h) = Z F^h)^

where the coefficients F.(h) belong to FLhl , and the roots <j>. to W .

Since confluent Vandermonde determinants are nonsingular the roots

and coefficients^of such a function are determined by its values: thus

two elements of F,(W) are the same if and only if they are formally

identical. We describe the structure of the ring F^(W) . By the

fundamental theorem of finitely generated abelian groups

W = 7L /d * 7LS for some d and n •

Let C = Cj and u_, uq,..., oin be generators for its torsion and freea 2 H s
parts respectively. By our discussion above,

h

is isomorphic to the ring
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where hyWn3...,W are algebraically independent elements over F (in

more naive terms, independent variables) , and Z is a generator for a

cyclic group of order d .

First consider the subring

Since we are assuming that W c F , it follows that c, e F so ^T - 1

is a product of linear polynomials of the shape X - A for various

integers j . If charCFJ = 0 , then each factor appears with multiplicity

1. So by the Chinese Remainder Theorem

FlXV(Xd-l) = ©

is a direct sum of d copies of F : this is of course nothing more than

discrete Fourier analysis, and in the context of our generalised power

sums above, corresponds to the restriction to various arithmetic

progressions h = j mod d . Then

F.(W = © 1 h

with the isomorphism corresponding to restriction to arithmetic

progressions h = j mod d , with h replaced by dh , and (/. correspond-
If

dhing to (o.

Now the ring Flh^W^WZ , . . .j,W W~ ] is the localisation of the
1 2 S S

polynomial ring F^-h, W^} . .. j W 1 with respect to the multiplicative set
J. s

generated by W., .. . }W . Since a polynomial ring over a field is a
J. S

unique factorisation domain, and any localisation of a UFD is again a UFD,

it follows that Fih3W1lWZ ,. .. ,W itf~
11 is a UFD. Its irreducible

J. J. S S
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elements a r e a l l a s s o c i a t e t o i r r e d u c i b l e polynomials i n F[}ls W7J . . .., W ]

and every such i r r e d u c i b l e polynomial excep t the u n i t s WnJ...jW g i v e s
l s

an irreducible element of Fth,W„ WZ1} . .. 3W ,W~
2] .

The group W also carries orderings which will be useful below.

Set

W = Wtorsion - 7LS

and put

For any w c W » l e t w denote i t s image in Ifl , and regard i t as an

element of BL •

Given a basis of y , . . . ,v of 6/_ , we obtain a corresponding
IS $

lexicographic ordering of (fj . Exp l ic i t ly , i f

7M7 +...+ a u j u'=alu^ +...+ a'u with the a-,a', e ®
-LA. S S J. J. S S w Is

define

u>u' ° there is an index k such that

al =ai"-"ak-l = ak-U but ak * ak

The lexicographic ordering respects addi t ion: i f V > v', W > w' then

V + W > v' + w' , with equali ty i f and only i f v = l>', W = w' .

Further, we note tha t for u, w' z W , we have w = w' i f and only

i f w and w' d i f fer by a root of uni ty .

If V i s a subgroup of W , a l l of the above of course applies to

the ring FTJ-V) • I n pa r t i cu la r , i f V i s free then Fj.(V) i s a UFD.

We wi l l now apply these remarks to the study of the fac tor i sa t ion of

gensralised power sums.
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2. Factors of generalised power sums

Let

aCh) = Z A.(h)£ 3 b(hj = Z B.ChjJ
1. 3 6(h) = Z Cv(h)y\

7s Is 3 3 K. K

be elements of F-^(^) . In practice, we may as well assume that W is

generated by the a.j 6. and y-, . Let A be the subgroup of W
1' J K

generated by the a., B the subgroup generated by the 6. , and C the

subgroup generated by the YT.

It will frequently be useful to be able to speak as if one or more

of the groups W, A, B or C is free; this can always be achieved by

passing to subsequences h = r mod d . However, if it is appropriate to

regard only aCh) , or a(h) and bCh) as known and A , or <A,B> is

the subgroup generated by the roots in question, it has torsion 7L/d' for

some d' dividing d , and it suffices to pass to subsequences mod d' •

In any case, the effect is the collapsing together of terms with roots

differing just by cf-th (respectively <i'-th) roots of unity; for example

one obtains d generalised power sums

^dAiJ4<
= Z U A. .(.r+hd)t,far.)(ad.)h

We note that for each root a. , there is some r mod d for which the

coefficient of the corresponding root a. is nonzero. This is plain,

because a(h) can be recovered from its restrictions a Jh) :

r,d

aCh) = d~2 Z ap d((h-r)/d)c,3d
(h~r)

PROPOSITION 1. Suppose aCh) = b(h)aCh). Then C c <A,B> .

Proof. First suppose that B i s free, and, fixing a lexicographic
ordering on ft/., , l e t B be the unique root of bCh) so that J i s
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maximal. Suppose tha t C i s not contained in <A,B> , and l e t y be a

root of a(h) for: which y ^ <A,S> and so tha t y i s maximal subject to

th i s condition.

There are two p o s s i b i l i t i e s :

(a) There are no other roots g' of bCh), y' of a(h) so that

gy = g'Y ' • I n th i s case gy must appear as a root in a(h) , which

shows tha t y € <A,8> .

(b) There do ex i s t such roots g ' , y ' . Since g>g' but g+y=g'+y',

i t must be tha t y'>y . But th i s means tha t y ' e <A,B> . Hence

y=g~ 8 ' Y ' e <A,B> as well .

This concludes the proof in this case.

In the general case, suppose the group of roots of unity in 8 has

order D . By passing to subsequences mod D, which has the effect of

replacing the group B by the group of D-th powers B , we can conclude

that C is cont

y e C satisfies

t h a t C i s c o n t a i n e d i n <A 3o> . B u t t h i s means t h a t e a c h e l e m e n t

D D.D
y = a 6

for some a e A» 6 e B . Thus y = t,i.a& for some D-th root of unity £ .

But since the 0-th roots of unity are in B we again have C c <A,B> . D

Recall that the order of a generalised power sum is just the order

of the recurrence relation satisfied by its values, or is, equivalently,

the order of the difference operator which annihilates the sequence of

its values.

PROPOSITION 2. Suppose W is fixed, and a(h) e Fh((il) . Suppose

also that a(hl does not indentically vanish on any arithmetic progression.

Then there is a finite upper bound on the order of any divisor of a(h)

belonging to FyXSil), .
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The proof will show that the bound is stable under specialisation

preserving the rank of W and the property that a(h) does not vanish

on arithmetic progressions mod d . (See Section 5 as well.)

Proof. Let aCh) = b(h)aCh) with bCh) ,eCh) e F^OU) . Suppose

first that W is free. Then by our discussion above

and we will^identify a(h) , b(h) and oCh) with elements of this latter

ring. By multiplying aCh) by an appropriate element of W (a monomial

in the {/. ) , we can suppose that aCh) belongs to the polynomial ring
t/

F\.hy^/13 ...,W ] and is not divisible by any of the W • . By Gauss' Lemma,
J. s j

each, of b(h)_ and e(h) is associate to a polynomial divisor of aCh)

in F[7Zj W13...,(/ ] . Note that the operation of obtaining an associate

corresponds to multiplying a generalised power sum by nonzero constants

and monomials in the 10 . , which does not change its order. By our

hypothesis, aCh) is not the zero polynomial. Let N be its degree in

h , and N. its degree in W. , fox 3=1,2,... ,8 . These numbers are
<7 0

obvious bounds on the degrees of the corresponding variables in the

divisor bCh) . Thus the order of bCh) can be no greater than

N = ftf + 1) (N1 + 1) ... (No + 1) .

In the general case let d be the number of roots of unity in W ,

Then by passing to subsequences h=r mod d , we can arrange that

a(r + hd) = b(r + hd)e(r + hd)

is a factorisation taking place in F-,(w) t with \}p free. Then for

each -p we obtain a bound If for the order of

b Jh) = bCr + hd) .r,d

But on recalling the formula whereby we may recover bCh) from the

b -jOl) it follows that the order of b(h) is certainly no greater than

(1> +B<*>+ ...+*<*>) a
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We can summarise the content of these propositions in the following

informal manner: Suppose it is alleged that b(h) might divide a(h)

in the ring of generalised power sums. Then there is an a priori bound

on the order of the cofactor oChl, For by Proposition 1 we can take for

W the group <A,B> , and by Proposition 2, the order of o(h) is then

bounded.

3. Roots of generalised power sums

The following proposition yields a similar allegation concerning

the order of a putative k-th root of a generalised power sum.

PROPOSITION 3. Suppose aCh) = ib(h)}k for some generalised power

1/ksum bCh) and some positive integer k . Let A be the group

consisting of all possible k-th roots of elements of A . Denote by L

the field obtained by adjoining to F all the k-th roots of the

coefficients and the roots of a(h) . Then there exists a generalised

" 1/k
power sum bCh) belonging to L-,Ck )3 such that

aCh) = ii>Ch)}k .

(Mote that there is no loss of generality in assuming from the outset that

L = F).

The proof will show that the bound is stable under specialis-

ation preserving the rank of W and the property that a(h) does not

vanish on arithmetic progressions mod d •

Proof. Let W = 8 be the group generated by the roots of b(h) ;

obviously A is a subgroup of 01 .

First suppose that A is free. Fix a lexicographic ordering of

&L , and let a be the root of a(h) such that a is largest under this

ordering. Let d be the number of roots of unity in W . We claim that

the roots 6 of b(h) for which 0 is largest all are of the shape

A* for some d-th root of unity. Let 6 be a root for which

B is maximal. Then there is an arithmetic progression h=r+ld for
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which g occurs as a root of

br d(l

b J(%) belong to

unique maximal root, and i t follows that

The roots of b ClT , which is free. Hence g is the
d k d d k

B ) = a , since ($ ) is
This shows thatthe unique maximal product of any k roots of b •,

3 1/k
3 = C^a ' , (after possibly replacing d by kd and enlarging W ) .

Let Ath) be the coefficient of a in aCh) and denote by B .(h)
3

the coefficient of (Ax ' ) in bCh) . The only terms of b(h) which

can possibly contribute to A(h) are the terms b .(h) (.&&
1/k3=0yl; . . . ,d-l . Hence, having fixed a ?C-th root a

all, we have

of a once and for

d
z

3=1

l/k.h = A(h)a

Restricting to a subsequence h=r+ld as before, i t follows that, for each r

Z B .(v +
3=1 °

= Air + Id)

But it is well-known, [4], that this implies the same equation viewed

as an identity in polynomials in 1 . Thus we can see that A(r+ld) is

the fc-th power of a polynomial in I , whence A(h) is the k-th power

of a polynomial in h . We will wet

A(h) = {P(h)}k

Comparing equations, we see that for each v there is a k-th root of

unity t.i/*') such that for all integers I ,

Z B.(r + ld)Ar = Kv(r)P(r + Id) .
=7 33=1
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Hence substituting 1 = (h-r)/d as we may, and solving inversely, we

obtain

d
B.(h) = id'1 I i.(r)c~?r} P(h) = a.P(h)
3 v=l K a d

for an appropriate constant c. .
3

But the function p -*- c.,(r) is periodic with period d • Hence
K

there is a generalised" power sum fCh) of the form

- \;Fo(i)h =f(h) ' ^ e « C c # < * ]

such that f(h)=£-,(h)~ for all integers h . We set

S(h) = fCh)b(h) .

onstruction, for ea

b(r+ld)
By our construction, for each v mod d , the coefficient of (a ) in

P(r + Id)(a1/k)r

But the collection of leading terms of $(h) i with respect to our

lexicographic ordering, can also be written as

3=0 °

for certain polynomials Q .(h) . Substituting h=r+ld # and comparing the
3

two expressions, we see that one solution, and hence the unique solution,

for the Q.Ch) is given by
3

QQCh) = PCh) ; Q .CM = 0 , g = 1,2,...,d - 1 .

Thus under the lexicographic ordering, hCh) has a unique maximal root,

1/knamely a •

We will now see that all the roots of bCh) belong to the group
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1/kFor brevity set g = a . Suppose our assertion to be false, and l e t y

be a root of b(h) not in <g,A> for which y i s maximal. Consider the

k-1product g Y • I f there i s no other products of roots y y-. . .y- o f

k-1 k-1

b(h) equal to 8 y , then necessarily g ~ y appears as a root of a(h),

and so y e <g,A> . On the other hand, if there is such a product, then

in W_ we have a sum of y and k-1 copies of g equalling the sum of
t h e k y.'s :

3

g + g +...+ g + Y = Yj + Y, +•••+ Yfc •

Recalling that g is maximal we see that, because addition in
H

respects the lexicographic ordering, this equation entails that y ,>y
3

for all j . In fact, even equality, say for j=k , implies

g=y.=. . .=YT, -I • B u t 6 is the unique root of h(h) of maximal size;

hence g=y =. . .=y and so Y^ T , » ̂ n contradiction to our having a new

k-1 — —
set of roots with product g . Hence we must have y ,>y for all j .

3
But then, by our definition of y , we must have y . e <g,A> for all j ,

3
Ck 1)

and i t follows that y=P ITy • is in <ĝ A> after a l l . This verifies
3

1/kour allegation. We note that of course, <8jA> <= A

We now show that the coefficients of b(h) belong to the field L

described in the Theorem. As usual, it suffices to give the proof assuming

that A is free. Write

m n(i)-l „ • ,
b(h) = E I b. h°y.

where the b. . are constants. Mapping each monomial h y. to the

ordered pair (j}y-) in W x &L, , and giving the latter its natural

lexicographic ordering, we obtain an ordering on the monomials in b(h) .

7 "W
Let J and J be such that h Yj- is maximal amongst all terms appearing

in b(h) . Clearly then, h y- is the unique maximal term in a(h) ,
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~k
and its coefficient is £> r . Thus bTT belongs to L . Now suggest that

1J 1<J
A.

not all the coefficients b• • belong to L ; and choose i and j so
that h y• is maximal for those terms. Arguing as in the proof above

Is

that the roots of h(Tt) belong to A ' , it follows that the coefficient

of

in aCh) has the form

"k-1 ~
k bTT b. . + terms belonging to L ,

implying that b. . belongs to L as well, in contradiction to our claim.

This completes this part of our argument.

We have proved all the above on the assumption that A is free. If

this is not the case and D is the number of roots of unity in A , then

by passing to subsequences mod D , and assembling the results as above,

we obtain the general result:

bCh) = I D'1 b D(Ch-r)/D)Z
J
D
(h-r) .

Here the roots of each b ^ belong to fA J , and so the roots of b

1/k
belong to A , as alleged; similarly, of course, since the coefficients

of each b „ belong to L so do the coefficients of b . D

Combining Propositions 3 and 2, we obtain the assertion that if the

generalised power sum a(h) has a k-th root in the ring of generalised

power sums, then it has such a k-th root of order bounded in terms of

a(h) alone.

4. Factorisation Theorems

For completeness, we should mention results of Ritt [5] and of

Bezivin [J]. We do so without proof. The following proposition is in

effect dealt with en passant above (compare Ritt's proof with that of

https://doi.org/10.1017/S0004972700026587 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026587


324 Robert S. Rumely and A.J. van der Poorten

7/oo

our Proposition 1 above); by A ' we denote the group of all possible

roots of elements of A .

PROPOSITION 4. As before, a(h) e FrfA) . Suppose also that a(h)

does not identically vanish on any arithmetic progression. Then every

factor of a(h) in the ring of generalised power sums is the associate

of an element with roots in A '°° . Q

Ritt deals with exponential polynomials; expressions

m
a(z) = E A .(sjexpfsû •)

i=l ^ *

defined over E . Our generalised power sums are restrictions of these

functions to z=0,1,2, . .. . As remarked earlier, a given generalised power

sum a(h) may be viewed as an element of a polynomial ring

F£h,W^,W~ ,... ,W ,W~ ] with variables W. arising from roots of a(h) ,

.J/cc

namely those corresponding to the generators of a subgroup of A . Not

dissimilarly, Ritt notes that an exponential polynomial may be viewed as a

polynomial in several variables. He calls an exponential polynomial

corresponding to a polynomial in a single variable a simple exponential
1/k

polynomial. The example exp(zu)-A , and its factors exp(zw/k)-A ,

for all positive integers k , shows that such exponential polynomials,

other than for polynomials proper (those just in z ) , are arbitrarily

factorisable in the ring of exponential polynomials.

PROPOSITION 5 (Ritt). Up to associates and the order of the factors,

an exponential polynomial is uniquely factorisable as the product of

simple exponential polynomials, each corresponding to a polynomial in a

different variable, and of finitely many exponential polynomials

irreducible in the ring of exponential polynomials. Q

A quite intricate argument is required to yield the existence of

irreducible exponential polynomials and the finiteness of the factorisation.

Because of the presence of infinitely many roots of unity in £ and the

consequential opportunity to restrict potential irreducibles to arithmetic

progressions and then decompose them further, it is no straightforward
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matter to translate Proposition 5 to a corresponding statement for

generalised power sums. However, Bezivin, in effect by restricting his

discussion to a ring F-LXF ) o f generalised power sums, with F finitely

generated over 1Q as in our discussion, provides a unique factorisation

result for generalised power sums not identically zero on an arithmetic

progression. His factorisation theorem intev alia yields a useful

result (equivalent to Proposition 3 of [6]) which the present authors

prove by somewhat different p-adic methods in [6].

5. Specialisation

In the present section we develop tools sufficient to show that the

bounds on the order of a quotient, respectively k-th root generalised

power sum found in Propositions 2 and 3 remain stable under specialisations

preserving the rank of W (and preserving the fact that aCh) does not

vanish identically on progressions mod d )•

Denote by x^Cx-jXp,...3x.) a transcendence basis for the field F

over .§ . Then F=$Mx)\.y~\ with y algebraic over IQCx) , say with

defining polynomial

H(Yjx) = H^ jJ d

where the H.(x) are elements of 7L Lxl. Each element J in F has a

representation

as a quotient of polynomials U (y:x), VA.x) respectively in Z3[w;x],

7L [a;]; we may suppose that the polynomials U,(y;x), V^x) a r e relatively

prime in Z iyjxl in which case we may refer to V (x) as the denominator

O f ij) .

In the sequel T denotes a finite set of elements of F with the

property that whenever y is in r and y^O then also y , is in \ .

Given generalised power sums
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a(h) = Z A.(h)ah. , bCh) = I B.(h)$h.
T- T- 0 0

defined over F , we suppose that T contains,-as always, the coefficients

and discrimant of H(y;x) , as well as the roots a-,6_- and the

coefficients of the A AW and the B.(h) from these power sums. Next

se t

and suppose that the total degree of ]/„ does not exceed A .

Let Q_ - (o^o^f.o^) be any i-tuple of rational integers so that

VT(a) J 0 .

It is easy to see, by induction on t , that there are infinitely many

such t-tuples; indeed, were we to restrict q_ so that each of its

entries satisfied \a .\ < H , we would have «H t-tuples of integers of
tr

which only <<A# would be excluded. Here, and below, the symbol <<

implies a dependence on unspecified constants independent of H (and in

the present instance of A ) and not relevant to the conclusions drawn. We

will use this remark in applying a helpful observation of Masser C3], and

of Schlickeweli, below.

The set r generates a subdomain R of F , and the map induced by

£ = (xjiXgj. ..,xt) ** c_= (o^Gga- • -et)

maps the domain jf into an algebraic number field K of degree at most

d over 1Q ; in particular y is mapped to a zero y(o) of the

polynomial H(Y;a) . We refer to the induced map together with a

specified choice of zero y(o) of H(Yjo) as a r-specialisation of F .

To see the claim implied above, note that for each p in R its

denominator V (x) divides some positive power of V (x) . Hence

V (c) A 0 and the image of p is defined by the specialisation. A

fortiori- each element y of r has a defined image, and since also y
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is in T (whenever y^O ) it too has a well-defined image. Thus a

F-specialisation has the property of mapping non-zero elements of r to

non-zero elements of K .

We now give a sketch of the proof [3] that:

PROPOSITION 6. There ax-& X-specialisations f so that if

9i>9o> • • -9 are multiplicatively independent elements of the domain R,

then their specialisations f(9-,),f(9o^3---sf(gm^
 are miltiplicatively

independent elements of a number field.

Proof. Given H sufficiently large (relative to the data), we will

find such a specialisation induced by x_ •*• o_ with each rational integer

a.; satisfying |e.| < H . Consider a specialisation f induced by such
1s "Z*

a £ . The logarithm of the absolute value of the height of the y}

is << Logff (with the implied constant depending only on the data and

not on the specialisation) . By a result of Loxton and van der Poorten

[Z], whenever the f(9fJ a^e multiplicatively dependent then there

already is a non-trivial multiplicative relation

in integers a, , not all zero, with ja, j << (hoqH) . Suppose we were

to restrict the admissible specialisations by augmenting r by the

elements

al am m-1
g~ ... q - 1, with la, I << (LogH)

and their reciprocals, thus preventing these elements from specialising to

zero (for with the g. multiplicatively independent, these expressions

do not already vanish). Then no r-specialisation x "- q_ with each

rational integer c. satisfying |e.| < H can cause the given

multiplicatively independent elements to specialise to multiplicatively

dependent elements. One can verify that the degree A of V (with r

augmented as described) satisfies h«(laqH) ~ , so, as remarked above,
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at most H ~ (loqH) elements c_ of the original «E can fail to

yield an acceptable specialisation. But H ~ (LogH) ~ << H once H

is sufficiently large relative to the data, proving the existence of the

required specialisations. 0

We may apply Proposition 6 to obtain the following corollaries of the

remarks following Propositions 2 and 3: Suppose it is alleged that b(h)

might divide aCh) in the ring of generalised power sums. Then there are

infinitely many specialisations of the given generalised power sums for

which there is an a priori bound (depending only on the data and not on

the specialisation) on the order of the specialised putative cofactor c(h).

Similarly, if it is alleged that the generalised power sum a(h) might

have a k-th root in the ring of generalised power sums, then there are

infinitely many specialisations of the given generalised power sum which,

if they have such a k-th root, have such a k-th root of order bounded

in terms of a(h) alone. Such claims do not hold for specialisations not

necessarily preserving the multiplicative independence of the generators

of the group containing the roots of the given generalised power sums.

These remarks enable us to generalise results [6], [7] proved for

generalised power sums defined over algebraic number fields to the

corresponding results for generalised power sums defined over arbitrary

fields of characteristic zero.
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