
JFP 25, e22, 32 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S095679681500026X

1

Calculating a linear-time solution to the
densest-segment problem

SHARON CURTIS

Oxford University, UK

(e-mail: sharon.curtis@ndph.ox.ac.uk)

SHIN -CHENG MU

Academia Sinica, Taiwan

(e-mail: scm@iis.sinica.edu.tw)

Abstract

The problem of finding a densest segment of a list is similar to the well-known maximum

segment sum problem, but its solution is surprisingly challenging. We give a general

specification of such problems, and formally develop a linear-time online solution, using

a sliding-window style algorithm. The development highlights some elegant properties of

densities, involving partitions that are decreasing and all right-skew.

1 Introduction

Processing large datasets, such as those containing DNA sequences, requires efficient

algorithms. The data analysis problem we examine here involves finding a segment

(contiguous subsequence) of a list of elements with maximum density (to be defined

in the next section). While this problem resembles the well-known maximum segment

sum problem, a standard textbook example of programme derivation (Kaldewaij,

1990), the internal structure of the segment density problem is more intricate, and

finding a linear-time solution is much harder.

Our aim in this paper is the derivation of a linear-time functional programme to

solve a generalised segment density problem, in an elegant and clear way. We present

two instances of such density problems: MMS (maximum mean segment) and MDS

(maximum density segment), which has applications to analysis of DNA sequences.

The MMS problem we believe is new; MDS has been solved before (Chung & Lu,

2004; Goldwasser et al., 2005), but in an imperative setting, where it is difficult to

see the structure and correctness of the algorithms amongst the details.

Our algorithm derivation uses a traditional programme calculation approach, at

least initially. However, as several of the proofs are tricky or sizable, for additional

reassurance, the theorems and their proofs are also coded into the dependently-typed

language/theorem prover Agda (Norell, 2007) and the Algebra of Programming in

Agda (AOPA) library (Mu et al., 2009); the complete proof is around 3,500 lines of

Agda code.

In this paper, we outline the main proofs; the rest of the proofs can be found

in a supplement containing full details, available online (Curtis & Mu, 2014), along

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

2 S. A. Curtis and S.-C. Mu

with a Haskell implementation and Agda code. The paper is structured as follows:

in Section 2, we give a description and specification of the densest-segment problem,

along with the two instances MMS and MDS. The development of the algorithm

then proceeds in two stages: in Section 3, we develop the structure of the algorithm,

which processes the input list using a sliding-window technique. The second stage is

presented in Section 4, which explores properties of the window to develop functions

sufficient to allow the algorithm to run in linear time. The resulting datatypes for the

window, and the algorithm’s implementation, are presented in Section 5 along with

an analysis of its performance. We conclude and summarise related work in Section 6.

2 The densest segment problem

Segment problems have been well examined in the literature, especially in the late

1980s and early 1990s, when their study formed part of a wider body of work on

constructive algorithmics. Some of this calculational work resulted in imperative-

style implementations, e.g. (Rem, 1988; Kaldewaij, 1990; Van Den Eijnde, 1990),

while others used a functional style for their development, e.g. (Bird, 1987; Jeuring,

1993; Swierstra & de Moor, 1993).

The segment problems studied were optimisation problems on a list of input

elements, where it was desired to find a segment that was optimal with regards to

some function. Such a function might evaluate a segment on its length (i.e. wanting a

shortest or longest segment, such as in Jeuring & Meertens (1989)), or in other more

interesting ways, such as trying to find the largest rectangle under a histogram (Van

Den Eijnde, 1990). Often the segments of interest would also have to satisfy some

predicate, and depending on the properties of the predicate, it might be possible to

find a linear-time algorithm to solve the problem, often in a “sliding-window” style

(Zantema, 1992).

The general densest-segment problem we address in this paper describes a

particular specialised class of segment problems, using optimisation functions that

satisfy a density property (see Section 2.1) and a predicate broadly related to segment

length. In rest of this section, we give a description of this class of segment

problems, before presenting two specific instances: MDS, which features in the

existing literature, and MMS, the latter of which we believe is novel.

2.1 Description

The problem’s input data is a sequence of elements of type Elem . Each segment

(contiguous subsequence) of the input elements has a width,

width :: [Elem] → ��0,

with the property that an empty list has zero width, and adding more elements at

either end increases width. Formally,

width [] = 0, (1)

width x < width (x ++ y) > width y, (2)

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 3

where x and y are any non-empty lists of elements. For example, the function length

is such a width function, but there are other more interesting possibilities (see the

MDS problem in Section 2.2 below).

Not all segments are considered as candidate solutions to the problem, and there

is a constraint on segment width: a lower bound given by L : �>0. (Without such a

constraint, the solution is often trivial.) This predicate checks whether a segment is

wide enough:

wide :: [Elem] → Bool

wide x = width x � L.

Evaluation of segments occurs by means of a density function

d :: [Elem] → �.

Informally, the density of a segment can be thought of as comparing the “weight”

of a segment’s elements to its width, in some way. (For specific examples, please see

the functions d
MMS

and d
MDS

in Sections 2.3 and 2.2 below.) Comparison between

segments is carried out using the relation

(�d) :: [Elem] → [Elem] → Bool

x �d y ⇔ d x � d y.

As a shorthand, we will write x <d y for x �d y ∧ y �d x, and write �d and >d for

the converses of �d and <d.

However, the function d is not strictly needed in the calculation and implemen-

tation of a solution: what matters is that there exists a relation �d for comparing

segments that is reflexive, transitive, and total on non-empty lists (anti-symmetry is

not required, as two different segments may be equally dense). It is also required

that the relation �d satisfies the following density property: for any non-empty lists

x, y :: [Elem],

x �d x ++ y ⇔ x �d y ⇔ x ++ y �d y. (3)

The above must also hold if �d is replaced with <d, �d or >d.

In summary, the densest-segment problem is the finding of a maximally dense

segment with respect to a relation �d that satisfies the density property, subject to

a lower bound L on width.

2.2 Maximum density segment (MDS)

In the MDS problem, each element has a (strictly positive) size:

size :: Elem → �>0,

and the width of a segment is the sum of the sizes of its elements

width
MDS

:: [Elem] → ��0

width
MDS

= sum · map size.

Note that width
MDS

satisfies the width properties (1) and (2) stated above.

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

4 S. A. Curtis and S.-C. Mu

9

6� �

6

2

14

7� �

20

4��
−10

5� � 20

8� �−2
2

27

6� �

Fig. 1. A list of elements, with weights in bold and sizes as indicated. The density d
MDS

of the

whole list is (9 + 6 + 14 + 20 − 10 + 20 − 2 + 27)/(6 + 2 + 7 + 4 + 5 + 8 + 2 + 6) = 84/40 =

2.1, which is shown by the height of the dashed line.

Also, each element in the MDS problem has a weight:

weight
MDS

:: Elem → �,

and the density of a non-empty segment is calculated by dividing its total weight by

its width

d
MDS

:: [Elem] → �
d

MDS
seg = (sum (map weight

MDS
seg))/(width

MDS
seg).

A straightforward arithmetical calculation shows that �dMDS
does indeed satisfy the

density property (3).

For the MDS problem, densities can be visualised accurately: when each element

is depicted as a rectangle as wide as its size, with area corresponding to its weight,

the density of a segment is simply its average height, e.g. see Figure 1. Thus, the

MDS problem is to find a maximally dense segment with respect to d
MDS

, subject to

a lower bound L on width. For example, the densest segment of the list of elements

in Fig. 1, with width at least 9, is the segment [(14, 7), (20, 4)], which has density

34/11 ≈ 3.1.

The MDS problem has applications in bio-informatics, to the analysis of genetic

material to find fragments with high densities of certain characteristics. For example,

sections of DNA or RNA that are GC-rich – with a high density of bases that are

guanine (G) or cytosine (C) – are of interest because they are likely to indicate

portions containing genes (Han & Zhao, 2009). Another example is that sections of

DNA that have a high density of mutations are of interest because they can provide

clues pointing to the three-dimensional molecular structure.

The solution of the MDS problem has a varied history: in Huang (1994), a

simpler version of the MDS problem was considered, where all elements have

unit size. Huang noticed that with a lower bound L on segment width, there is

a maximally dense segment no wider than 2L − 1, which leads to a simple O(nL)

algorithm, for n input elements. Later, the complexity of a MDS solution was

improved to O(n logL) (Lin et al., 2002). Goldwasser et al. (2002) studied a variation

of MDS that also used an upper bound U on segment width, and they presented

an O(n) algorithm for the simpler case of MDS when all elements have unit size

(also an instance of MMS), and an O(n log(U −L+ 1)) algorithm for elements with

variable sizes. Another published algorithm claimed to be linear, but wasn’t; details

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 5

�

�

Nov
8th

Nov
9th

Nov
10th

Nov
11th

Nov
12th

Nov
13th

10

20
mmol/L

× ×
× ×

×
×
×

××
××

× × ×

×

×

××
×

×

××
××

×

Fig. 2. A sequence of blood glucose readings, where the dotted area indicates the target

range. Usually, several months’ worth of data would be available.

are recorded in Chung & Lu (2004). Then, both Chung & Lu (2003; 2004) and

Goldwasser et al. (2005) produced similar algorithms to take linear time to solve

MDS with lower and upper bounds.

2.3 Maximum mean segment (MMS)

In the MMS problem, the function to measure the width of a segment is not specified

further than it having to obey the width properties (1) and (2).

width
MMS

:: [Elem] → ��0.

The density of a non-empty segment, for the MMS problem, is the mean weight of

its elements:

d
MMS

:: [Elem] → �
d

MMS
seg = (sum (map weight seg))/(length seg).

A straightforward arithmetical calculation shows that �dMMS
satisfies the density

property (3). Thus, the MMS problem is to find a maximally dense segment with

respect to d
MMS

, subject to a lower bound L on segment width.

One application of the MMS problem is the analysis of chronological data. For

example, consider a blood glucose measurement history from an individual with

diabetes (a disorder of blood sugar control): an answer to the question “When

were blood sugar levels worst over the past year?” might prove useful in identifying

factors impairing control. Typical data consists of a sequence of timestamped blood

glucose readings in chronological order, such as that illustrated in Figure 2.

This situation is an instance of the MMS problem: each element is a blood glucose

reading, and its weight is how far it deviates from the target blood sugar range.

Thus, the density of a segment is how far its readings are outside the target range,

on average, over the timespan of that segment. Here, it makes sense to put a lower

bound on that timespan (for example, a week) as spurious extreme readings can

happen occasionally, so it is not the single worst reading that is sought, but an

average over a suitably long period.

We expect that MMS problems can be identified in many other application areas,

including analysis of other kinds of medical history data.

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

6 S. A. Curtis and S.-C. Mu

3 Development

3.1 Specification & refinement

In this section, we continue on from the datatypes and definitions that have already

been given in Section 2.1, to arrive at a specification for the densest-segment problem.

One standard way to produce all the segments of a list is to take all prefixes of

suffixes:

prefixes , suffixes , segments :: [a] → [[a]],

prefixes = inits

where inits [] = [[]]

inits (x : xs) = [[]] ++ map (x :) (inits xs),

suffixes = tails

where tails [] = [[]]

tails (x : xs) = (x : xs) : tails xs,

segments = concat · map prefixes · suffixes .

Later, we will write x � y to denote that x is a prefix of or equal to y, and use �
for the strict version.

To select maximal segments, we will use a binary operator ��, which selects the

maximum of two arguments with respect to a total ordering �:

x �� y = x, if y � x ;

= y, otherwise.

In the case of a tie between the two arguments, �� selects the left-hand argument.

Later, we will also need an operator ��, which is defined similarly to break ties in

favour of the right-hand argument. We will abbreviate ��d
and ��d

by �d and �d
respectively, to avoid cumbersome subscripts.

Given a binary operator ⊕ (such as �� or ��) that selects the maximum of two

values, the following function selects the maximum of a list:

max⊕ [x] = x

max⊕ (x : xs) = x ⊕ (max⊕ xs).

We can now specify the problem of finding a densest segment as

max �d · filter wide · segments . (4)

At this stage, �d could just as easily have been used, and the choice of �d will be

justified later in Section 3.4 (just after the proof of Lemma 3.5).

The above specification (4) can be a starting point for a calculation to derive a

solution. However, during the subsequent development, a number of issues occur,

which we find easier to manage if the initial specification is refined first.

The first issue is that the above specification does not describe a total function,

because it may be that no segments of the input are wide enough. Unfortunately,

this lack of totality forms a major obstacle to deriving an algorithm to solve this

problem, as will be discussed later in Section 3.4.

Attempting a derivation using relational algebra rather than functional program-

ming calculus, for example in the style described in Bird & de Moor (1997), does

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 7

not help, as the requirement for totality remains. To ensure totality, there needs to

be unified treatment of wide segments and those that are not wide enough. Using a

Maybe type is one possibility, but this leads to a very fiddly derivation.

Instead, we use another way to model treating segments differently depending on

whether they are wide enough, by generalising �d to a relation 	 with the following

properties:

	 is reflexive, transitive, and total; (5)

¬wide x ∧ wide y ⇒ x ≺ y, (6)

wide x ∧ wide y ⇒ (x 	 y ⇔ x �d y), (7)

¬wide x ∧ ¬wide y ⇒ (x 	 y ⇔ width x � width y), (8)

where x ≺ y is a shorthand for x 	 y ∧ y 	/ x. Informally, the requirement (5)

ensures that taking a maximum from a non-empty list of segments is always possible,

Equation (6) says that wide segments are always strictly better than those not wide

enough, Equation (7) says that amongst wide lists, a denser segment is better, and

Equation (8) says that amongst not-wide-enough segments, wider is better (the

reason for which will appear as a consequence of the algorithmic development, at

the end of Section 3.4). Note also that the definition of 	 ensures that density

comparisons are only made when the segments are both wide enough and therefore

non-empty.

In this way, selecting a densest segment can be carried out by max �	 , which we

will abbreviate to max	. Our new version of the specification is then

mds = max	 · segments . (9)

This is a total specification, unlike Equation (4). It produces a slightly different

output, which can be used to solve the original problem: if the resulting segment is

not at least L wide, then there were no wide segments. Otherwise, the output is a

densest segment with respect to �d, which will be the leftmost such segment, as �	
is used.

3.2 Initial calculation steps

Starting from the mds specification, we take a standard formal development route

to calculate for the cases [] and (a : x). After obtaining mds [] = [], we then

proceed as follows:

mds (a : x)

= {definition of mds (9)}
(max	 · segments) (a : x)

= {definitions of segments and suffixes}
max	 (concat (map prefixes ((a : x) : suffixes x)))

= {definitions of map and concat}
max	 (prefixes (a : x) ++ concat (map prefixes (suffixes x)))

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

8 S. A. Curtis and S.-C. Mu

= {max distributes over ++, since �	 is associative}
max	 (prefixes (a : x)) �	 max	 (concat (map prefixes (suffixes x)))

= {definitions of segments and mds}
max	 (prefixes (a : x)) �	 mds x

= {definition, see below}
mdp (a : x) �	 mds x.

Above, we used this definition of a maximally dense prefix (mdp) with respect to 	:

mdp = max	 · prefixes . (10)

Maximally dense prefixes will feature heavily in the coming calculations, so we now

pause the development in order to collect some basic properties of mdp that we will

need later.

3.3 Properties of mdp

First, as can be deduced from its definition, mdp returns a prefix of its input for any

list of elements x:

mdp x � x. (11)

Second, this lemma describes the relationship between mdp and segment width:

Lemma 3.1

For any list of elements x,

width x � L ⇒ x = mdp x, (12)

wide x ⇔ wide (mdp x). (13)

The implication (12) expresses that taking the mdp of a narrow segment returns the

segment itself, and Equation (13) expresses that taking the mdp of a segment does

not affect whether it meets the width constraint or not.

Proof

The implication (12) is proved using a straightforward induction on x. A short

calculation yields wide x ⇒ wide (mdp x), which together with Equation (12) is

sufficient to show Equation (13). (For details, see the supplement.) �

The function mdp has two reasonably straightforward-to-prove properties, which

show that extending a segment can only increase the length and density of the

densest prefix.

Lemma 3.2 (Monotonicity of mdp)

For any lists of elements x, y such that x � y, we have that

mdp x � mdp y, (14)

mdp x 	 mdp y. (15)

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 9

The next lemma says that a prefix shorter than the mdp of a segment is not

maximally dense. This relies on mdp selecting the leftmost amongst maximally dense

prefixes.

Lemma 3.3

For any lists of elements x, y such that x � y, we have that

x � mdp y ⇒ x ≺ mdp y.

Finally, we have the following lemma that says if x is “sandwiched” in between

mdp y and y, then the maximally dense prefixes of x and y are the same.

Lemma 3.4 (Sandwich Lemma)

For any lists of elements x and y,

mdp y � x � y ⇒ mdp x = mdp y. (16)

3.4 A sliding-window algorithm

Returning to the algorithmic development, in Section 3.2, we calculated the following

alternative definition for mds , which requires finding a densest prefix for all suffixes

of the input:

mds [] = []

mds (a : x) = mdp (a : x) �	 mds x.

Despite being tail-recursive, this function is inefficient, as computing mdp for every

suffix of the input would take too long. If, however, mdp itself can be expressed

as a foldr , then the problem can be solved by performing the paired computation

〈mds ,mdp〉1, which can be carried out as a foldr: this would compute an optimal

segment (mds x) and an optimal prefix (mdp x) for each suffix x of the input. Then,

the value mdp (a : x) would be readily available at each step, when calculating

mds (a : x) from mds x.

[A technical aside: afficionados of the morphism zoo may like to note that

the 〈mds ,mdp〉 computation illustrates the zygomorphism computational pattern

(Malcolm, 1990), where the value of one expression is computed from a fold that

pairs it with a second expression that is directly computable from a fold (“zygo”

means “yoked”). The zygomorphic nature of our algorithm is why we are using

total functions (as discussed in Section 3.1): zygomorphisms exist in the category of

sets and total functions (Fun), but are not guaranteed to exist in the categories of

partial functions (PFun) and relations (Rel).]

Unfortunately, mdp is not a foldr . If it were, then mdp (a : x) could be calculated

from a and mdp x alone, but consider the list [(1, 5), (9, 2), (8, 2)] of (weight , size)

elements for the MDS problem, with a segment width lower bound L = 1.8. Here,

mdp [(9, 2), (8, 2)] = [(9, 2)], but mdp [(1, 5), (9, 2), (8, 2)] = [(1, 5), (9, 2), (8, 2)], which

is not computable solely from (1, 5) and [(9, 2)].

1 The “split” operator is defined by 〈f, g〉 a = (f a, g a).

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

10 S. A. Curtis and S.-C. Mu

One of the surprising features of the mds problem, however, is that mdp not being

a foldr does not seem to matter. In the above example, mdp [(9, 2), (8, 2)] is denser

than mdp [(1, 5), (9, 2), (8, 2)], and thus the latter cannot be a solution to the whole

problem. This suggests that perhaps mdp (a : x) is not needed when x has a denser

shorter prefix. This is the case, and we will prove a slightly generalised version: if

mdp (u ++ x) is longer than u ++ mdp x, then mdp (u ++ x) is less dense than mdp x.

The following lemma formalises this property:

Lemma 3.5 (Overlap Lemma)

For all lists of elements u and x, we have

u ++ mdp x � mdp (u ++ x) ⇒ mdp (u ++ x) ≺ mdp x.

Proof

We do a case analysis on the width of x.

Case ¬wide x.

By Equation (12), we have x = mdp x. The assumption thus simplifies to u ++ x �
mdp (u ++ x) which is false, as mdp (u ++ x) is a prefix of u ++ x, from property (11).

Case wide x.

As from Equation (2), prepending only increases width, then by Equation (13), we

know that wide (mdp x) and wide (mdp (u ++ x)), and thus from the definition of ≺
and 	 Equation (7), the goal simplifies to proving that mdp (u ++ x) <d mdp x.

Note that since u++mdp x � mdp (u++x), we have mdp (u++x) = u++mdp x++z,

for some non-empty z. We first prove that u ++ mdp x ++ z <d z:

u ++ mdp x � mdp (u ++ x)

⇒ { lemma 3.3 }
u ++ mdp x ≺ mdp (u ++ x)

⇔ { decomposition of mdp (u ++ x), as above }
u ++ mdp x ≺ u ++ mdp x ++ z

⇒ { definition of 	 (7), as wide (mdp x) and width increases with ++ (2) }
u ++ mdp x <d u ++ mdp x ++ z

⇒ { density property (3) }
u ++ mdp x ++ z <d z.

Then, we prove that z �d mdp x:

u ++ mdp x ++ z = mdp (u ++ x)

⇒ { prefix property of mdp (11) }
u ++ mdp x ++ z � u ++ x

⇔ { property of prefixes }
mdp x ++ z � x

⇒ { mdp x maximum wrt) }

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 11

mdp x ++ z 	 mdp x

⇒ { definition of 	 (7), as wide (mdp x) and width increases with ++ (2) }
mdp x ++ z �d mdp x

⇒ { density property (3), with �d }
z �d mdp x.

Thus, by transitivity we conclude that u++ mdp x++ z <d mdp x, which is the same

as mdp (u ++ x) <d mdp x. �

The Overlap Lemma (3.5) suggests an alternative to computing mdp x for each

suffix x of the input list of elements: each new element a is added to the front of

the prefix produced from the previous stage of the computation, and then mdp of

this segment is computed.

[An aside: this strategy is what suggests the use of �	 in the definition (10) of

mdp: in the case that there is more than one densest prefix of a segment, max �	

chooses the shortest, thus leaving fewer elements to be processed later on than if the

�	 operator were to be used. In turn, this justifies the use of �	 in the definition (9)

of mds as well.]

Formally, this computation can be expressed as the following function wp:

wp [] = [] (17)

wp (a : x) = mdp (a : wp x).

(The name wp is intended to abbreviate “window processing”.) Note that unlike

mdp, the function wp is clearly a foldr . We now hope to use the value of wp instead

of mdp for each suffix, in order to compute mds . That is, given the following function

ms:

ms [] = [] (18)

ms (a : x) = wp (a : x) �	 ms x,

we need to show that mds = ms , which occurs in Section 3.6.

The benefit of using ms may not be obvious. Recall that in Section 3.4, we were

unable to use the paired computation 〈mds ,mdp〉 to compute mds efficiently because

mdp is not a foldr . Now, however, as wp is a foldr , we can use a paired computation

〈ms ,wp〉, expressible as a foldr that makes one call to mdp in each step. Letting

mswp = 〈ms ,wp〉, a standard tupling transformation gives us

mswp [] = ([], [])

mswp (a : x) = (w′ �	 m,w′)

where (m,w) = mswp x

w′ = mdp (a : w).

This follows the paradigm known as a sliding-window algorithm (Zantema, 1992):

such a computation maintains a segment of the input sequence (the window), that

“slides” along the sequence at each step of the algorithm, always in the same

direction. Above, w is the window storing the value wp x from the previous step of

the computation, and the application of mdp · (a :) produces an updated window w′

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

12 S. A. Curtis and S.-C. Mu

that is a prefix of a : w, thus sliding the window to the left. (The name wp stands

for “window processing”.)

[Another aside: this is the point where it is clear how 	 compares segments that

are not wide enough, as expressed earlier in Equation (8). When the algorithm has

barely started, and is still examining suffixes of the input that are not wide enough,

it is not clear what wp should return, but for the first suffix x that is wide enough,

mds x will be x itself, and therefore wp will need to retain all the elements of x. This

means that on segments that are not wide enough, 	 should favour wider segments.]

Given suitable list structures to enable constant time computation of �	, the

above algorithm can be implemented in linear time, provided that the computation

of mdp · (a :) can be done in amortised constant time. This is our goal in Section 4:

choosing suitably efficient data structures for the window.

3.5 Properties of wp and ms

As mdp returns a prefix of its input in Equation (11), a short inductive proof starting

from the definition of wp in Equation (17) shows that wp x also returns prefixes

wp x � x, (19)

for any sequence of elements x.

The following lemma shows that wp and ms have similar relationships to the

width of segments that mdp does (see Lemma 3.1).

Lemma 3.6

For any list of elements x,

width x � L ⇒ x = wp x = mds x, (20)

wide x ⇔ wide (wp x) ⇔ wide (mds x). (21)

3.6 Correctness of the sliding-window algorithm

Now, we carry out our task to prove that mds x = ms x.

Proof

We use an induction on x, and the [] case is immediate from the definitions of mds

and ms . For the a : x case, the proof obligation (after standard use of the definition

of wp and the induction hypothesis that mds x = ms x) is

mdp (a : x) �	 mds x = mdp (a : wp x) �	 mds x. (22)

Noting how 	 is defined, we start from a case analysis on the width of x.

Case ¬wide x. By Equation (20), x = wp x, and thus Equation (22) holds.

Otherwise, we split the case for wide x into two cases, based on whether the left-

hand side of Equation (22) equates to mdp (a : x) or mds x. As the operator �	 selects

its left-hand argument when comparing two segments that are equal with respect

to 	, the two cases are mdp (a : x) ≺ mds x and mdp (a : x) � mds x. As wide x

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 13

holds, these simplify, using the definition of 	, to the cases mdp (a : x) <d mds x and

mdp (a : x) �d mds x respectively.

Case wide x and mdp (a : x) <d mds x.

As the left-hand side of Equation (22) reduces to mds x, we need to show that

the right-hand side also reduces to mds x. This necessitates proving that mdp (a :

wp x) ≺ mds x:

mdp (a : wp x) ≺ mds x

⇐ { since mdp (a : x) <d mds x }
mdp (a : wp x) 	 mdp (a : x)

⇐ { monotonicity of mdp as in (15) }
a : wp x � a : x

⇐ { wp produces prefixes (19) }
true.

Case wide x and mdp (a : x) �d mds x.

This is the difficult case, and clearly if we can establish that

mdp (a : x) �d mds x ⇒ mdp (a : x) = mdp (a : wp x), (23)

in the circumstance that wide x, then Equation (22) will hold.

To establish Equation (23), we need a separate result, Lemma 3.7 below, which

generalises the prepending (a :) operation in Equation (23) to the prepending of a

list (z++). To use the lemma, we let z := [a] and y := x in Equation (24) of the

lemma, and then the assumption required, on the left-hand side of Equation (24), is

mds x 	 mdp (a : x). This can be obtained by using the facts that mdp (a : x) �d mds x

and wide x, together with Equations (13) and (21). �

Lemma 3.7

For any finite lists of elements y and z,

mds y 	 mdp (z ++ y) ⇒ mdp (z ++ y) = mdp (z ++ wp y). (24)

Proof

The proof proceeds by induction on y. The case for y := [] is routine. For the case

a : y, the assumption is

mds (a : y) 	 mdp (z ++ (a : y)),

and for the induction hypothesis, we can assume that

mds y 	 mdp (v ++ y) ⇒ mdp (v ++ y) = mdp (v ++ wp y),

for any finite list of elements v.

We need to show that mdp (z ++ a : y) = mdp (z ++ wp (a : y)). One crucial idea

is to use the sandwich lemma to turn the proof obligation from an equality to a

prefix relation, which then allows us to use the overlap lemma, the key property that

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

14 S. A. Curtis and S.-C. Mu

guarantees that we need not consider prefixes that are too long. The proof goes as

follows:

mdp (z ++ a : y) = mdp (z ++ wp (a : y))

⇐ { sandwich lemma (16) }
mdp (z ++ a : y) � z ++ wp (a : y) � z ++ a : y

⇔ { by (19), wp (a : y) � a : y }
mdp (z ++ a : y) � z ++ wp (a : y)

⇐ { induction, with v = z ++ [a], writing P for mds y 	 mdp (z ++ a : y) }
mdp (z ++ a : wp y) � z ++ wp (a : y) ∧ P

⇔ { definition of wp }
mdp (z ++ a : wp y) � z ++ mdp (a : wp y) ∧ P

⇐ { overlap lemma 3.5, contra-positive form (see note below) }
mdp (a : wp y) 	 mdp (z ++ a : wp y) ∧ P

⇐ { induction }
mdp (a : wp y) 	 mdp (z ++ a : y) ∧ P

⇐ { by monotonicity (15), and a : wp y � a : y }
mdp (a : y) 	 mdp (z ++ a : y) ∧ P

⇔ { expanding P }
mdp (a : y) 	 mdp (z ++ a : y) ∧ mds y 	 mdp (z ++ a : y)

⇔ { maximum }
mdp (a : y) �	 mds y 	 mdp (z ++ a : y)

⇔ { definition of mds }
mds (a : y) 	 mdp (z ++ a : y)

⇐ { assumption }
true.

Note that the step above using the Overlap Lemma relies on the lists mdp (z ++ a :

wp y) and z++mdp (a : wp y) both being prefixes of z++a : wp y, in order to simplify

the �� in mdp (z ++ a : wp y) �� z ++ mdp (a : wp y) to �. �

4 Window

Recall the definition of wp in Equation (17), which describes the sliding of the

window in the main algorithm:

wp [] = []

wp (a : x) = mdp (a : wp x).

Our goal is to choose a suitable data structure for the window so that the

computation of mdp · (a :) takes amortised constant time, thus allowing the overall

algorithm to be linear.

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 15

In this section, we will examine the properties of mdp in order to see how best

to represent the window, so that suitable data structures for the window can be

chosen in Section 5. In what follows, let the window wp x at the previous step of

the computation be denoted by w, and let w′ = a : w.

4.1 Window header

Recall that the function mdp takes the best prefix of w′ with respect to �	. In the

case that ¬wide w′, then we just have mdp w′ = w′, from Lemma 3.1. In the

case when wide w′, another straightforward step can be taken, given part (6) of the

definition of 	 , which says that wide segments are always better than too-short

segments. Thus, when wide w′, it is also the case that wide (mdp w′), as formalised

in Lemma 3.1, in Equation (13). This means that when wide w′, the prefix mdp w′

must include sufficiently many elements that it is wide enough; these elements can

be thought of as a “header” prefix of w′.

Let the function hsplit be such that it splits a segment into its header prefix, and

the rest of its elements.

hsplit :: [Elem] → ([Elem], [Elem]).

A possible definition of hsplit is given later (see Figure 8 in Section 5.2), but for

now, we just need the following property: if hsplit w′ = (h, x), we have h ++ x = w′,

where h is the header prefix, so that either

• width h < L and x = [], or

• width (init h) < L � width h (i.e. h is the shortest wide prefix),

where init (y ++ [b]) = y.

Furthermore, recall that part (7) of the definition of 	 says that the better of two

wide segments is determined by �d. Thus, when wide w′, taking a maximum prefix

using the �	 operator in mdp w′ is the same as max�d (prefixes w′). This means that

for wide w′, we can restrict our attention to prefixes of w′ of the form h++ y, where

(h, x) = hsplit w′ and y � x, and compare densities with respect to �d.
We thus represent a window as a pair, where the first component is the header h,

type Window = ([Elem], . . .),

and the second component is some structure yet to be determined, to represent

the rest of the window. From this structure, we will need to find the segment that

produces the densest prefix of the whole window with respect to �d, when prepended

by the header h.

4.2 Densest prefixes

Let (h, x) = hsplit w′; our goal is to find a prefix of w′ of the form h ++ y, that is

densest with respect to �d. One possibility is that y = [] and h itself is the densest

such segment; otherwise, there must be a non-empty y such that h <d h ++ y, which

is equivalent to h <d y, by the density property (3). This leads us to investigate

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

16 S. A. Curtis and S.-C. Mu

h� � x� �

58

4

77

11

36

3

23

2
−3

1

61

3

12

2

69

4

43

4

88

6

97

10

82

5

77

5

60

5

60

7

45

3 −50

10 32
9 −18

9 69

9

66

8

Fig. 3. A running MDS example: the list of elements [(58,4), (77,11), (36,3), (23,2), (–3,1),

(61,3), (12,2), (69,4), (43,4), (88,6), (97,10), (82,5), (77,5), (60,5), (60,7), (45,3), (–50,10), (32,9),

(–18,9), (69,9), (66,8)], with weights indicated in bold. Lower bound L = 16; the compulsory

header is h.

non-empty prefixes of x that are denser than h; indeed perhaps choosing y to be a

maximally dense prefix of x might result in a densest prefix h ++ y?

Unfortunately, this is not the case: there may be a prefix of x that is slightly less

dense than y, but wider, and that produces a denser prefix overall when prepended by

the header h. A concrete example is illustrated in Figure 3, where a maximally dense

non-empty prefix of x is y = [(23, 2), (−3, 1), (61, 3), (12, 2), (69, 4)], with density

13.5, resulting in a density of 11.1 for h ++ y. However, extending y on the right by

the following elements z = [(43, 4), (88, 6), (97, 10), (82, 5), (77, 5), (60, 5)] yields an

improved density of 12 for h ++ y ++ z.

This is disappointing, but maybe a densest prefix can still be of use? Although the

example above illustrates that y (a maximally dense prefix of x) can be bettered by a

prefix wider (longer) than y, perhaps non-empty prefixes shorter than y can be ruled

out? It turns out that this is indeed the case, which will be shown in what follows.

4.3 Right-skew segments

First, we will need to examine some properties of densest prefixes. Note that if a

non-empty list of elements y = y′ ++ y′′ is a maximally dense prefix of x, then as

y′ is also a prefix of x, we have y′ �d y. Then, from the density property, this is

equivalent to y′ �d y
′′. This leads us to the following definition:

Definition 4.1 (Right-Skew)

A non-empty list z of elements is called right-skew if for all n such that 0 < n <

length z, we have take n z �d drop n z. Let us denote this by the predicate

rightskew (�d) :: Elem → Bool .

The idea of right-skew segments originated with Lin et al. (2002); informally, a

segment is right-skew when chopping it into two always results in a right-hand side

that is at least as dense than the left. However, note that density does not increase in

a monotonic fashion: although shorter prefixes of right-skew segments are often less

dense than longer prefixes, this is merely a trend, and should not be relied upon. For

an example of a right-skew list that illustrates this lack of monotonicity, see Figure 4.

From this reasoning, we have that every densest prefix of a list of elements is

right-skew (the converse does not hold):

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 17

23

2
−3

1

61

3

12

2

69

4

Fig. 4. The segment [(23,2), (−3,1), (61,3), (12,2), (69,4)] is right-skew.

Lemma 4.2

Let y be a non-empty prefix of a list of elements x, such that y is maximally dense

with respect to �d. Then, y is right-skew.

One property of right-skew segments we will need is that the concatenation of two

right-skew segments in the correct order is itself right-skew.

Lemma 4.3

If z and z′ are both right-skew and z �d z
′, then z ++ z′ is right-skew.

Returning to the development, recall that given a non-empty list of elements y that

is a maximally dense prefix of x, we wish to rule out the use of prefixes shorter than

y. The following lemma allows us to do so:

Lemma 4.4

Let z1, z2, z3 be non-empty list of elements such that z2 �d z3. Then,

z1 �d (z1 ++ z2) �d (z1 ++ z2 ++ z3) = z1 �d (z1 ++ z2 ++ z3).

In words, this means that the densest among the three lists z1, z1++z2 and z1++z2++z3

with respect to �d is either z1 or z1 ++ z2 ++ z3. Thus, as a densest prefix y of x is

right-skew, and hence any proper division of y into y = y′ ++ y′′ results in y′ �d y
′′,

Lemma 4.4 allows us to deduce that of the three lists h, h++y′, and h++y, the densest

with respect to �d is not h ++ y′. Thus, non-empty prefixes of y can be eliminated

from consideration. This can be shown formally, as an application of the following

theorem:

Theorem 4.5

Let z and y be non-empty lists of elements with y right-skew. Then,

max �d (map (z++) (prefixes y)) = z �d (z ++ y). (25)

This helps suggest a strategy for structuring the rest of the window, as follows.

Having shown that the interior of any right-skew prefix y of x can be eliminated

from consideration, it seems reasonable that choosing the longest possible right-

skew prefix of x (let us denote this prefix by y0) may help reduce the remaining

computation within the rest of the window. Furthermore, having established h and

h ++ y0 as possible candidates for the mdp of the window, but with no need to

consider prefixes in between, it seems reasonable to try the same step with the rest

of the window. That is, let y1 be the longest right-skew prefix of x \\ y0 (here, the

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

18 S. A. Curtis and S.-C. Mu

list subtraction operator is denoted by \\, so that x \\ y0 contains the elements of x

apart from its initial prefix of y0). Then applying Theorem 4.5 with z = h ++ y0 and

y = y1 removes prefixes between h ++ y0 and h ++ y0 ++ y1 from consideration.

Similarly, let y2 be the longest right-skew prefix of x \\ (y0 ++ y1), and so on,

resulting in a partition of x into right-skew lists of elements [y0, y1, . . . yk]. Repeated

application of Theorem 4.5 leads us to the following theorem:

Theorem 4.6

Given h : [Elem] and xs :: [[Elem]] such that each list in xs is right-skew, we have

max �d (map (h++) (prefixes (concat xs))) = max �d (map ((h++) · concat) (prefixes xs)).

This theorem says that to compute max �d (h++ y0 ++ y1 ++ · · · ++ yk) we only need to

consider the ends of each partition: h, h ++ y0, h ++ y0 ++ y1, etc.

Later on, we will need an alternative version of the above theorem, as follows:

Corollary 4.7

Given h : [Elem] and xs :: [[Elem]] such that each list in xs is right-skew, we have

max �h (prefixes (concat xs)) = concat (max �h++ (prefixes xs)),

where �h and �h++ abbreviate ��h
d

and ��h++
d

respectively, where

x �h
d y ≡ h ++ x �d h ++ y,

xs�h++
d ys ≡ h ++ concat xs �d h ++ concat ys.

This partitioning of x into right-skew lists will be how the rest of the window is

structured, but first we need to formally examine the properties of the partition we

have just created, and prove some properties we will need.

4.4 Decreasing right-skew partitions

In this section, we present the concept of DRSP, which were proposed by Lin

et al. (2002). We also investigate the properties of these partitions, and show that

they are the same as the partitions proposed above for the window structure.

A decreasing right-skew partition (abbreviated DRSP) of a list of elements is a

partition of the list into segments, such that each segment is right-skew and the

densities of the segments are strictly decreasing from left to right. Formally:

Definition 4.8 (DRSP)

Let xs be a partition of a list of elements x, that is, where concat xs = x. The list

xs is a DRSP of x when

• all (rightskew (�d)) xs, and

• sdec (�d) xs,

where sdec (�) is the predicate that expresses that a list is strictly decreasing

with respect to a linear ordering �, i.e. sdec (�) [x1 . . . xn] holds precisely when

x1 � x2 � . . . � xn.

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 19

23

2
−3

1

61

3

12

2

69

4

43

4

88

6

97

10

82

5

77

5

60

5

60

7

45

3 −50

10 32

9 −18

9 69

9

66

8

� �� �� �
� �

� �

��

Fig. 5. The (unique) DRSP of the list x from Fig. 3 is [[(23, 2), (−3, 1), (61, 3), (12, 2), (69, 4)],

[(43, 4), (88, 6)], [(97, 10), (82, 5), (77, 5)], [(60, 5)], [(60, 7), (45, 3)], [(−50, 10), (32, 9), (−18, 9),

(69, 9), (66, 8)]]. The densities of its segments are 13.5, 13.1, 12.8, 12, 10.5, and 2.2 respectively,

indicated by the dashed lines representing the average heights of the segments.

Note that the right-skew property ensures that each segment of the partition is

non-empty. An example of a DRSP can be seen in Figure 5.

The first important property that we need is that DRSPs are unique:

Theorem 4.9 (DRSP uniqueness)

Let x be a list of elements. There exists precisely one DRSP of x.

This is a surprising property of such partitions, and indeed we did not find the

proof of uniqueness in Lin et al. (2002) convincing, so have provided our own in

the supplement to this paper.

A consequence of DRSP uniqueness that we will need is the necessary existence

of a function drsp�d
: [Elem] → [[Elem]] that produces the unique DRSP, given a

list of elements; a definition of such a function will be given later (see just after

Theorem 4.12).

The following property notes that a DRSP has a “rotational symmetry”: to

visualise this, turn Figure 5 upside-down, and it still depicts a DRSP:

Theorem 4.10 (DRSP rotation)

For any non-empty list of elements x,

drsp�d
x = reverse · map reverse · drsp�d

(reverse x).

The DRSP rotation property is not needed for this algorithmic development, but it

is included here for the record.

The final property of DRSPs concerns how they can be constructed. We will need

some preliminaries. First, the longest right-skew prefix of a list of elements is also

the longest densest prefix of the list:

Lemma 4.11

Let y be a non-empty list of elements. Then, the longest right-skew prefix of y is

also the longest of the maximally dense prefixes of y.

It is this lemma that illustrates how the partition of the right-hand side of the

window x = concat [y0, y1, . . . , yk], as suggested in the previous section, results

in a DRSP. Recall that the segment y0 is selected as the longest right-skew prefix

of x, and therefore, by Lemma 4.11, it must also be the longest densest prefix of

x. This ensures that the next segment y1 must be of strictly lower density than

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

20 S. A. Curtis and S.-C. Mu

y0 (otherwise y0 ++ y1 would be at least as dense as y0, contradicting y0 being

the longest of the maximally dense prefixes of x). Thus y0 >d y1, and repeatedly

selecting longest right-skew segments results in a partition of right-skew segments

of decreasing densities.

Lemma 4.11 describes the first of several possible methods of constructing DRSP:

Theorem 4.12 (DRSP construction)

The DRSP of a list of elements can be constructed by any of the following methods:

i. repeatedly taking longest maximum-density prefixes

ii. repeatedly taking longest right-skew prefixes2

iii. repeatedly taking longest minimum-density suffixes3

iv. repeatedly taking longest right-skew suffixes.

The following function illustrates one of the above ways (i) to build a DRSP:

drsp1 :: [Elem] → [[Elem]]

drsp1 [] = []

drsp1 x = y : drsp1 (drop (length y) x)

where y = max �d (prefixes x).

However, for the representation of the window in our algorithm, we are not

usually going to be constructing a complete DRSP from a list of elements; the

window will already consist of a header and the DRSP of the remaining elements,

and we will want to incrementally update the partition as new elements are added.

The following lemma allows a DRSP to be updated from the left-hand side:

Lemma 4.13

Let z be a right-skew list of elements, and ys a DRSP. Then, prepend z ys is a

DRSP, where

prepend :: [Elem] → [[Elem]] → [[Elem]]

prepend z [] = [z]

prepend z (y : ys) = if z �d y then prepend (z ++ y) ys

else z : y : ys .

Above, the prepend function repeatedly joins the list of elements z with the leftmost

segment of ys (justified by Lemma 4.3), until the densities are once more decreasing.

This leads to the following alternative way to build a DRSP, using a function

addl that appends one element to the left of an existing DRSP:

drsp :: [Elem] → [[Elem]]

drsp = foldr addl [],

addl :: Elem → [[Elem]] → [[Elem]]

addl a xs = prepend [a] xs .

2 A longest right-skew prefixes approach is used in Goldwasser et al. (2005) and Lin et al. (2002).
3 The algorithm in Chung & Lu (2004) slides the window from left to right, using a mirror-image DRSP

structure, the construction of which is based on taking longest minimum-density prefixes.

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 21

Note that the right-skew property that prepend requires of its first argument applies,

as any singleton list [a] is right-skew. The function addl will be useful in our final

code.

4.5 Use of the DRSP

To summarise where we have reached in the development: given a list of elements

w′ = a : w for which we want to calculate mdp w′, we split the window w′ using

hsplit w′ = (h, x), and represent the list x by its DRSP. The data structure for the

window is therefore:

type Window = ([Elem], [[Elem]]),

where the first component is the compulsory header h, and the second is the rest of

the window, partitioned into drsp x. Furthermore, Theorem 4.6 established that we

don’t need to consider prefixes that end in the interior of right-skew segments in the

partition of x.

Note that the lists in the Window datatype should be considered as abstract

representations at this stage, as we have not yet finalised whether to use cons-lists,

snoc-lists, or some other queue representation, as befits a sliding-window algorithm.

We will make these decisions in Section 5.2, to allow the final algorithm to run in

linear time.

Having chosen a data structure for the window, we will need some representation-

changing functions to convert between a list of elements and its partition into a

DRSP:

wbuild :: [Elem] → Window

wbuild = (id × drsp) · hsplit ,

wflatten :: Window → [Elem]

wflatten (h, xs) = h ++ concat xs .

Above, the function wbuild constructs a window from a list of elements4, while

wflatten does the opposite, flattening a window back to a list. Thus, we have

wflatten · wbuild = id .

To work on a more abstract level, we define a function wcons , so that wcons a

adds an element a to the left side of the window. It can be seen as (a :) lifted to

the Window datatype, although it performs much more work – repartitioning the

header, and updating the DRSP:

wcons :: Elem → Window → Window

wcons a (h, xs) = (h′, foldr addl xs x)

where (h′, x) = hsplit (a : h).

We have made progress: the data structure for the window has been chosen, we can

construct and update a DRSP by adding elements incrementally to the front of it.

Now, we just need the mdp of the window.

4 The “product functor” (×) is defined by (f × g) (a, b) = (f a, g b).

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

22 S. A. Curtis and S.-C. Mu

h

58

4

77

11

36

3

23

2
−3

1

61

3

12

2

69

4

43

4

88

6

97

10

82

5

77

5

60

5

60

7

45

3 −50

10 32
9 −18

9 69

9

66

8

Fig. 6. In our running example, the options for prepending the header h onto prefixes given

by the DRSP results in prefix densities (from left to right) 9.5 11.1, 11.6, 12, 12, 11.8, and 8.2.

This bitonic hill shape can be seen outlined in the arrowheads.

4.6 Extracting the densest prefix

To find the densest prefix with respect to �d, we need to make use of Theorem 4.6,

which guarantees that for a partition of the elements beyond the compulsory header

into right-skew segments (such as the DRSP we are using), only the positions of the

input corresponding to the ends of these segments need to be considered.

Furthermore, the decreasing densities of the DRSP will enable us to pinpoint

exactly where the mdp of the window elements is to be found, as follows. Empirical

examination suggests that the densities of the prefixes h, then h ++ y0 and so on up

to h ++ y0 . . . ++ yk form a simple hill shape, illustrated by our running example in

Figure 6. To be precise: the hill for the window prefix densities of a header & DRSP

is bitonic, consisting of a strictly increasing ascent on the left, followed by a (non-

strictly) decreasing descent. Either side of the hill can be empty, for example it might

just be a gentle decreasing slope. For the moment, please assume that our assertion

about this hill shape is true, and this will soon be addressed formally in Lemma 4.14.

From this hill shape, it is now easy to identify the mdp: the densest window

prefix(es) can be found at the top of the hill, and in particular, the densest prefix

wrt �d (which is what mdp uses) will be at the top of the hill, at the left-hand end

if it turns out that the top of the hill is a plateau (i.e. more than one prefix having

maximal density).

Finding the top of the hill can be achieved by a simple traverse from either the

left or right side of the hill; however it will be seen later that starting from the right

will have a crucial effect on the overall efficiency of the algorithm, enabling each

element to be processed once only (more details are given in Section 5.2). Here is

the definition of a function that, given a header h and a DRSP, chops off segments

of the DRSP from the right-hand side, stopping at the left of the top of the hill:

maxchop :: [Elem] → [[Elem]] → [[Elem]]

maxchop h [] = []

maxchop h (xs ++ [x]) = if h ++ concat xs <d x then xs ++ [x]

else maxchop h xs .

The maxchop function repeatedly removes a segment x when h++ concat xs �d x,

which from the density property is equivalent to h++ concat xs �d h++ concat (xs ++

[x]). In other words, maxchop chops from the right whilst going up the right-hand

side of the hill, only stopping if it runs out of hill (the [] case) or if it finds a strict

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 23

decrease in density, as the given condition h ++ concat xs <d x is equivalent to h ++

concat xs <d h++concat (xs ++[x]), from the density property. To illustrate, maxchop

applied to our running MDS example in Figure 6 returns the list of segments

[[(23, 2), (−3, 1), (61, 3), (12, 2), (69, 4)],[(43, 4), (88, 6)], [(97, 10), (82, 5), (77, 5)]].

The following lemma shows that the list of segments that maxchop returns is

strictly ascending in density when prepended by the header h, and thus shows

formally that we really do have a simple bitonic hill shape as described at the

beginning of this section.

Lemma 4.14

Let h be a non-empty list of elements, and xs ++[x] be a list of non-empty segments

with strictly decreasing densities. If h ++ concat xs <d x, then the following list of

segments has strictly increasing densities:

map ((h++) · concat) (prefixes (xs ++ [x])).

We can then use this lemma to show that maxchop does indeed compute the mdp

for us, which is what we require.

Theorem 4.15

Let h a non-empty list of elements, and let xs be a (possibly empty) list of non-empty

segments having strictly decreasing densities. Then,

h ++ concat (maxchop h xs) = max �d (map ((h++) · concat) (prefixes xs)).

Later, in our proofs, we will actually use the following corollary, which is the same

property stated differently:

Corollary 4.16

Let h a non-empty list of elements, and let xs be a (possibly empty) list of non-empty

segments having strictly decreasing densities. Then,

maxchop h xs = max �h++ (prefixes xs).

(�h++ is defined in Corollary 4.7.)

For convenience, we also define a wrapper function for maxchop that operates on

the whole window:

wmaxchop :: Window → Window

wmaxchop (h, xs) = (h,maxchop h xs).

5 Putting everything together

Let us remind ourselves of the development so far, the outline of which is summarised

in Figure 7.

In Section 2, the original specification was refined to produce the function

mds , then in Section 3, a sliding-window algorithm ms was shown to satisfy that

specification, where the value of ms is obtained from the paired computation

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

24 S. A. Curtis and S.-C. Mu

The refined specification (9):
mds = max · segments

We proved that
mds = ms

Computing ms is obtained from
ms,wp ,

which can be expressed as a foldr.

Recap of definitions:

ms [] = []
ms (a : x) = wp (a : x) ms x

wp [] = []
wp (a : x) = mdp (a : wp x)

mdp = max ·prefixes

Fig. 7. Summary of the algorithmic development so far.

〈ms ,wp〉. Section 4 was devoted to finding a faster way to compute mdp · (a :)

in the inductive step for wp, the window-processing function, and as a result we

obtained a datatype Window to use for representing wp x.

In this section, we will put the results of Sections 3 and 4 together to calculate our

algorithm to solve the density problem. We will then refine the data structure in Sec-

tion 5.2 to allow efficient implementation of certain operations. For now, using a stan-

dard list data structure allows us to see what is going on in the algorithm more easily.

5.1 Structuring the window

Our algorithm for obtaining a maximally dense segment is ms = fst · 〈ms ,wp〉,
from which we can introduce the window structure as follows:

fst · 〈ms ,wp〉
= { window identity, see page 21 }

fst · 〈ms ,wflatten · wbuild · wp〉
= { identity, composition }

fst · (id × wflatten) · 〈ms ,wbuild · wp〉
= { projections }

fst · 〈ms ,wbuild · wp〉.

Our task is now to push wbuild into the calculation of wp so that all the window

processing is done with the Window datatype. Thus, we define

mwp :: [Elem] → ([Elem],Window)

mwp = 〈ms ,wbuild · wp〉,

and we will aim to calculate an inductive definition of mwp.

The base case is straightforward: mwp [] = ([], ([], [])). For the inductive case,

we calculate

mwp (a : x)

= { definitions of ms and wp }

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 25

(mdp (a : wp x) �	 ms x, wbuild (mdp (a : wp x)))

= { since wflatten · wbuild = id }
(wflatten u �	 ms x, u)

where u = wbuild (mdp (a : wp x)).

Consider the above binding u = wbuild (mdp (a : wp x)). If we can somehow

manage to push wbuild to the right and show that u = f (wbuild (wp x)) for

some f, we will then have an inductive definition for mwp. To do this, since

wbuild = (id × drsp) · hsplit , it will be helpful to know how hsplit interacts with (a :)

and mdp. First, the following lemma shows how hsplit and (a :) exchange:

Lemma 5.1

For any element a and list of elements z,

hsplit (a : z) = (h, z1 ++ z2)

where (h′, z2) = hsplit z

(h, z1) = hsplit (a : h′).

Second, this is how hsplit interacts with mdp:

Lemma 5.2

For any list of elements x,

hsplit (mdp x) = (h,max �h (prefixes y))

where (h, y) = hsplit x.

(�h is defined in Corollary 4.7.)

This lemma merely restates the left-hand side involving the input list of elements

x, into a form relating to the window data structure, with its compulsory header

h. Recall that mdp chooses an optimal prefix with respect to 	. If x is not wide

enough, then both y and mdp x evaluate to [], and h = x. Otherwise, the right-hand

side says that comparison with respect to 	 is carried out by comparing densities

using �h
d (also defined in Corollary 4.7) on prefixes within the window structure.

We are now ready to transform wbuild (mdp (a : wp x)). Writing z for wp x, we

calculate

wbuild (mdp (a : z))

= { definition of wbuild }
(id × drsp) (hsplit (mdp (a : z)))

= { property of hsplit in Lemma 5.2, letting (h, z′) = hsplit (a : z) }
(id × drsp) (h,max �h (prefixes z′))

= { letting (h′, z2) = hsplit z and (h, z1) = hsplit (a : h′), as in Lemma 5.1 }
(id × drsp) (h,max �h (prefixes (z1 ++ z2)))

= { since concat · drsp = id }
(h, drsp (max �h (prefixes (concat (drsp (z1 ++ z2))))))

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

26 S. A. Curtis and S.-C. Mu

= { Corollary 4.7 }
(h, drsp (concat (max �h++ (prefixes (drsp (z1 ++ z2))))))

= { drsp (z1 ++ z2) = foldr addl (drsp z2) z1, from the definition of drsp in Section 4.4 }
(h, drsp (concat (max �h++ (prefixes (foldr addl (drsp z2) z1)))))

= { definition of wbuild (seeSection 4.5), letting (h′, zs2) = wbuild z }
(h, drsp (concat (max �h++ (prefixes (foldr addl zs2 z1)))))

= { definition of wcons , letting (h, zs) = wcons a (wbuild z) }
(h, drsp (concat (max �h++ (prefixes zs))))

= { Theorem 4.16 }
(h, drsp (concat (maxchop h zs)))

= { cancellation, as zs is a DRSP (see below) }
(h,maxchop h zs)

= { definition of wmaxchop (see end of Section 4.5) }
(wmaxchop · wcons a · wbuild) z.

The cancellation in the penultimate step is valid because of the following: wbuild

builds a DRSP, and wcons and maxchop return DRSPs when given a DRSP as

input. Then, as DRSPs are unique, applying drsp · concat to a DRSP has no effect.

In summary, we have shown that

wbuild · mdp · (a :) = wmaxchop · wcons a · wbuild. (26)

We resume the calculation of the inductive case for mwp:

mwp (a : x)

= { by previous calculation and (26) }
(wflatten u �	 ms x, u)

where u = wmaxchop (wcons a (wbuild (wp x)))

= { adding variables m and w }
(wflatten u �	 m, u)

where m = ms x

w = wbuild (wp x)

u = wmaxchop (wcons a w)

= { definition of mwp }
(wflatten u �	 m, u)

where (m,w) = mwp x

u = wmaxchop (wcons a w).

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 27

We have thus constructed an inductive alternative definition for mwp:

mwp :: [Elem] → ([Elem],Window)

mwp [] = ([], ([], []))

mwp (a : x) = (wflatten u �	 m, u)

where (m,w) = mwp x

u = wmaxchop (wcons a w).

As a maximally dense segment is obtained from fst · mwp, we have arrived at our

algorithm, which is summarised in the following section.

5.2 Data refinement and performance analysis

In this section, we perform some final data structure refinement, to ensure that

the final algorithm runs in linear time (and space). For the reader’s convenience,

Figure 8 summarises the derived programme, which includes an implemention of

the function hsplit . In this code, the type Window is give more abstractly as

type Window = (Header Elem ,Parts (Seg Elem)).

The types Header , Parts , and Seg are respectively the datatypes with which we

implement the header, the partition, and each segment in the partition. These

datatypes can be thought of as instances of a List class, with polymorphic operators

such as [], (:), and (++), and we use these operators in the code for clarity.

Lists of elements of type Header , Parts , or Seg , all need to have their density and

width computable in constant time. This can easily be done by pairing the lists with

their current values for weight, length, width, etc., and is considered a separate issue

from the implementation details that follow.

The data structure used for the Header datatype depends on the implementation

of the hsplit function, as within the algorithm, the header is only altered using

hsplit . One possible implementation makes use of an auxiliary function split , which

repeatedly removes the rightmost element of the header until it does not exceed the

width limit, while retaining as much width as possible. Since each element is initially

added to the header on the left and later removed from the right, at most once,

hsplit runs in linear time if addition on the left and removal from the right are both

amortised constant time operations. This can be done by implementing Header as

a simple queue using two lists, e.g. see Okasaki (1999).

For the Parts and Seg datatypes, we need to examine the operations on the DRSP

structure of the window. Elements are added one-by-one on the left by addl , which

just launches prepend . The function prepend makes an indefinite number of recursive

calls, and in each call two segments are joined. However, notice that segments in the

DRSP are all non-empty, and are never split once joined. Therefore, given an input

of length n, there can be at most O(n) joins in total. The function prepend thus runs

in linear time, provided that Parts allows addition to and removal from the left in

amortised constant time, and that Seg supports list concatenation in (amortised)

constant time. The requirement on Seg is easy to fulfill: one may simply use a join

list: data Seg a = Single a | Join (Seg a) (Seg a).

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

28 S. A. Curtis and S.-C. Mu

Fig. 8. The derived algorithm.

The removal of elements from the window is carried out by the maxchop function,

which removes segments in Parts from the right. Therefore, we need Parts to support

amortised constant-time removal from both ends. A number of data structures

support such operations, for example, Banker’s dequeues (Okasaki, 1999), or 2–3

finger trees (Hinze & Paterson, 2006).

We tested our Haskell implementation, compiled using the Glasgow Haskell

Compiler version 7.10.1 and run on a Intel Xeon Quad-Core E5620 PC running OS

X, at 2.40 GHz. Sample timing measurements are presented in Figure 9.

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 29

20 40 60 80 100

20

40

60

80

100

Length of input (in 1000s of elements)

Execution time
(in seconds)

Fig. 9. Measurements of mean (over 20 lists) running time for the MDS implementation.

Sizes were randomly chosen from the range [1..20], weights from the range [−100, 100], and

L = 400.

Timing measurements were also carried out with different values for the lower

bound L, and different ranges and probability distributions for the numerical input.

In all cases, the resulting timings were very close to those in Figure 9 (too similar

to distinguish, if plotted on the same diagram). Typically, the maximally dense

segments produced are only a little wider than the width constraint, and in order to

give the window data structure a more thorough test, we also created special cases

designed to produce much wider solutions. Again, the timings were very similar to

those illustrated above.

Thus, the empirical evidence is consistent thoroughout with our analysis of a

linear-time efficiency for the algorithm.

6 Conclusions

We have derived a linear-time algorithm for solving the generalised segment density

problem with a lower bound on segment width. The algorithm scans through the

input list using a sliding window, which is split into a header and a partition of

right-skew segments with decreasing densities (DRSP), whose properties we exploit

to make the linear-time processing possible. While the programme itself barely

occupies one page, its proof is anything but simple, involving the discovery of

intricate properties, and our complete proof of the algorithm uses approximately

3,500 lines of Agda code.

Two instances of the density segment problem were presented. While the MDS

problem has a long history, we believe that the MMS problem is new. These are

similar but neither is a generalisation of the other: in MDS, the density function

is fundamentally linked to the segment width, but this is not the case for the

MMS problem. This shows that, for the densest segment problem, width can be

separate from density, allowing the algorithm to analyse data such as blood glucose

measurements.

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

30 S. A. Curtis and S.-C. Mu

The development of our solution has not been straightforward, and we faced

a number of design decisions from the beginning. Should we model the problem

functionally, relationally, or use total relations? As there were technical complications

involving relations and zygomorphisms (see the technical aside in Section 3.4),

a functional approach was strongly indicated. Another decision concerned the

maximum operators � or �, when deciding which segment to return in case of

a tie: which to use, and did it matter? It turns out that the choice does matter –

choosing � would have meant that the algorithm would fail to meet that specification.

Furthermore, the algorithm might not yield a result when there is no segment within

the width bound, but using a Maybe type made the reasoning rather cumbersome.

Using an extended ordering 	 allows a much cleaner formulation.

While we had an informal understanding of why this algorithm is correct, formally

writing down the properties that make it so turned out to be surprisingly tricky. The

correctness of the “outer” algorithm (Section 3.6), treated casually in all previous

works, took us a considerable amount of time to formalise. We attempted to come

up with a more declarative specification of the prefix returned by wp (for example,

we guessed that it is the shortest prefix satisfying certain properties), but none of

those specifications were correct. Various possibilities were tried before we reached

Lemma 3.7 and its supporting definitions. Afterwards, the proof quickly followed.

It is often the case that finding the right thing to prove is harder than producing

the proof. It was surprising that in Lemma 3.7, we could prove an equality, rather

than merely that the two sides yield segments having the same density. In fact, we

needed an equality for the inductive proof to work.

All this hard work was not spent in vain. We re-proved the uniqueness of the

DRSP, and presented various properties about it, including how it can be constructed.

This fills in more properties about the DRSP than given in previous papers.

We initially set out to solve a more general version of the MDS problem, with

an additional upper bound on segment width, making the problem even more

intricate. As mentioned in Section 1, an algorithm with a wrong time analysis has

been published before. Even the algorithms of Chung & Lu (2004) and Goldwasser

et al. (2005) are not entirely correct: they both fail for a boundary case, specifically

when there is no segment in the window whose width is within the bounds. The

former algorithm could potentially return an invalid result, for which there is an

easy fix (Chung, 2010), while the latter loops and it is harder to see whether it is

fixable.

We have developed data structures that are used in the sliding window to produce

densest segments with an upper bound on their width, and we have some preliminary

results on correctness proofs, which will have to be deferred to another paper.

We believe that the difficulty in developing correct linear-time algorithms is partly

due to the complicated nature of the MDS problem, and partly due to the absence

of a rigorous approach to programme construction. The imperative algorithms of

Chung & Lu and Goldwasser both maintain invariants that are neither explicitly

stated nor easy to reconstruct. The invariants rely on states stored in static variables

surviving between subroutine calls, which makes reasoning about them extremely

hard. In addition, their liberal use of array indices obscures some beautiful structural

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

Calculating a linear-time solution to the densest-segment problem 31

properties of segment densities. The MDS problem provides a useful case study of

how formal development techniques can help with constructing correct programmes.

Acknowledgments

We would like to thank Richard Bird for stimulating discussions of the MDS

problem. Many thanks are also due to the anonymous referees, whose detailed

comments helped to improve our presentation.

References

Bird, R. S. (1987) An introduction to the theory of lists. In Logic of Programming and Calculi

of Discrete Design, Broy, M. (ed), NATO ASI Series F, vol. 36. Springer-Verlag, pp. 342.

Bird, R. S. & de Moor, O. (1997) The Algebra of Programming. Prentice Hall.

Chung, K.-M. (2010) Personal communication.

Chung, K.-M. & Lu, H.-I. (2003) An optimal algorithm for the maximum-density segment

problem. In Annual European Symposium on Algorithms, Lecture Notes in Computer Science,

vol. 2832, pp. 136–147, Springer-Verlag.

Chung, K.-M. & Lu, H.-I. (2004) An optimal algorithm for the maximum-density segment

problem. SIAM J. Comput. 34(2), 373–387.

Curtis, S. & Mu, S.-C. (2014) Calculating a linear-time solution to the densest segment problem

(paper and supplement materials). Available at: http://www.iis.sinica.edu.tw/∼
scm/2014/mds/. Last accessed: November 23rd, 2015.

Goldwasser, M. H., Kao, M.-Y. & Lu, H.-I. (2002) Fast algorithms for finding maximum-

density segments of a sequence with applications to bioinformatics. In Proceedings

of the 2nd Workshop on Algorithms in Bioinformatics (WABI 2002), Springer, Berlin,

pp. 157–171.

Goldwasser, M. H., Kao, M.-Y. & Lu, H.-I. (2005) Linear-time algorithms for computing

maximum-density sequence segments with bioinformatics applications. J. Comput. Syst. Sci.

70(2), 128–144.

Han, L. & Zhao, Z. (2009) CpG islands or CpG clusters: How to identify functional gc-rich

regions in a genome? BMC Bioinformatics 10(65), doi: 10.1186/1471-2105-10-65.

Hinze, R. & Paterson, R. (2006) Finger trees: A simple general-purpose data structure. J.

Funct. Program. 16(2), 197–217.

Huang, X. (1994) An algorithm for identifying regions of a DNA sequence that satisfy a

content requirement. Comput. Appl. Biosci. 10(3), 219–225.

Jeuring, J. T. (1993) Theories for Algorithm Calculation. Ph.D. thesis, Utrecht University.

Jeuring, J. T. & Meertens, L. (1989) The least-effort cabinet formation. Squiggolist 1(2), 12–16.

Kaldewaij, A. (1990) Programming: The Derivation of Algorithms. Prentice Hall.

Lin, Y.-L., Jiang, T. & Chao, K.-M. (2002) Efficient algorithms for locating the length-

constrained heaviest segments, with applications to biomolecular sequence analysis. In

Proceedings of the 27th International Symposium on Mathematical Foundations of

Computer Science, Lecture Notes in Computer Science, Springer-Verlag, Berlin, vol. 2420,

pp. 459–470.

Malcolm, G. R. (1990) Algebraic Data Types and Program Transformation. Ph.D. thesis,

Groningen University, the Netherlands.

Mu, S.-C., Ko, H.-S. & Jansson, P. (2009) Algebra of programming in Agda: Dependent types

for relational program derivation. J. Funct. Program. 19(5), 545–579.

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

32 S. A. Curtis and S.-C. Mu

Norell, U. (2007) Towards a Practical Programming Language Based on Dependent Type

Theory. Ph.D. thesis, Chalmers University of Technology.

Okasaki, C. (1999) Purely Functional Data Structures. Cambridge University Press.

Rem, M. (1988) Small programming exercises 20. Sci. Comput. Program. 10(1), 99–105.

Swierstra, S. D. & de Moor, O. (1993) Virtual data structures. In IFIP TC2/WG2.1 State-of-

the-Art Report on Formal Program Development, Bernhard M., Helmut P. & Steve S. (eds),

Lecture Notes in Computer Science, pp. 355–371, Springer.

Van Den Eijnde, J. P. H. W. (1990) Left-bottom and right-top segments. Sci. Comput. Program.

15(1), 79–94.

Zantema, H. (1992) Longest segment problems. Sci. Comput. Program. 18(1), 39–66.

https://doi.org/10.1017/S095679681500026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500026X

