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Application of the Kusuoka approximation with a tree-based
branching algorithm to the pricing of interest-rate derivatives

under the HJM model

Mariko Ninomiya

Abstract

This paper demonstrates the application of a new higher-order weak approximation, called
the Kusuoka approximation, with discrete random variables to non-commutative multi-factor
models. Our experiments show that using the Heath–Jarrow–Morton model to price interest-
rate derivatives can be practically feasible if the Kusuoka approximation is used along with the
tree-based branching algorithm.

1. Introduction

In [4], Kusuoka proposed a new scheme for higher-order weak approximation of diffusion
processes, which we shall refer to as the Kusuoka approximation. Lyons and Victoir [6]
extensively developed the idea of this scheme by applying the notion of the free Lie algebra to
establish the cubature formula on Wiener space. There have been some studies on the Kusuoka
approximation with continuous random variables [9–11]; it was shown that low-discrepancy
sequences effectively solve the partial sampling problem. Implementation of the Kusuoka
approximation scheme with discrete random variables has been demonstrated in [7, 8]; these
studies dealt with stochastic differential equations (SDEs) that are driven by one-dimensional
Brownian motion.

In this paper, we focus on SDEs that are driven by multi-dimensional Brownian motions
and whose vector fields are non-commutative. One of the major problems we face here is
the selection of an appropriate sampling method. We show the effectiveness of the tree-based
branching algorithm (TBBA) introduced by Crisan and Lyons [2] in overcoming this problem.
We apply our scheme in an experiment that involves pricing interest-rate derivatives under the
Heath–Jarrow–Morton (HJM) model, and use the results to verify practicability of the HJM
model.

The HJM model has the form

dF (t, T ) =
{ d∑
j=1

sj(t, T, F (t, T ))
∫T
t

sj(t, u, F (t, T )) du
}
dt+

d∑
j=1

sj(t, T, F ) dBj(t),

where F (t, T ) is the forward rate seen at time t for a contract maturing at time T , s1, . . . , sd are
the standard deviations of F (t, T ), and (B1(t), . . . , Bd(t)) denotes a d-dimensional Brownian
motion [1, 3].

Theoretically, the HJM model has been regarded as one of the most general interest-rate
models. However, it has been claimed that a multi-factor implementation of the HJM framework
for practical use is impossible at the present stage of computer technology [12].
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APPLICATION OF KUSUOKA APPROXIMATION WITH TBBA 209

When we theoretically price interest-rate derivatives under the HJM model, we also need
F (0, s) where s ∈ R>0. The prices of the derivatives obtained at this stage are therefore
functions of F (0, s) and (s1, . . . , sn), say J(s1, . . . , sn, F (0, s)). We seek (s1, . . . , sn) that
decreases the difference between T (s1, . . . , sn, F (0, s)) and M , a vector of actual prices of the
derivatives observed in the market. More precisely, we try to obtain the point (s1, . . . , sn)
which solves the following minimization problem:

min
ŝ1,...,ŝn

‖M − T (ŝ1, . . . , ŝn, F (0, s))‖L2 . (1.1)

This minimization procedure is called model calibration. Since model calibration is a typical
optimization problem, T (s1, . . . , sn, F (0, s)) must be calculated a number of times (as seen
above). The efficacy of adopting the HJM model is therefore determined by the speed of
computing T (s1, . . . , sn, F (0, s)). In other words, if we can calculate T (s1, . . . , sn, F (0, s))
sufficiently fast, then the HJM model can be regarded as a practical model for pricing interest-
rate derivatives. Therefore, the attempt to achieve faster computation of T (s1, . . . , sn, F (0, s))
is an important area of focus in this problem.

The author would like to point out that Kusuoka [5] and Lyons and Victoir [6] explain how
one can develop a Lie/upstairs approximation that is parallel to the Taylor/downstairs scheme
used in this paper. One would expect the local error estimation to be similar in the two cases.

2. The Kusuoka approximation

Notation 2.1. Let B0(t) = t, and let (B1(t), . . . , Bd(t)) be a d-dimensional Brownian
motion. We denote by C∞b (RN ; RN ) the set of RN -valued infinitely differentiable functions
defined on RN whose derivatives are all bounded.

Let X(t, x) be a solution of the Stratonovich stochastic integral equation

X(t, x) = x+
d∑
i=0

∫ t
0

Vi(X(s, x)) ◦ dBi(s), (2.1)

where Vi ∈ C∞b (RN ; RN ) for i= 0, 1, . . . , d and ◦ dBj(s) denotes the Stratonovich integral.
We are interested in weak approximation, that is, approximation of (PXT f)(x) = E[f(X(T, x))]
where f ∈ C∞b (RN ; R).

Each Vi ∈ C∞b (RN ; RN ) is regarded as a vector field in the following way:

Vif(x) =
N∑
j=1

V ji (x)
∂f

∂xj
(x) (2.2)

for f ∈ C∞b (RN ; R).

Definition 2.1. Let A0 =
⋃∞
k=1{0, 1, . . . , d}k and A= {∅} ∪ A0. Then, for α ∈ A, |α| and

‖α‖ are defined as

|α|=

{
0 if α= ∅,
k if α= (a1, . . . , ak) where ai ∈ {0, 1, . . . , d} for i= 1, 2, . . . , k

and
‖α‖= |α|+ card({i : 1 6 i 6 |α|, ai = 0}).

Definition 2.2. For α, β ∈ A, let α ∗ β denote (a1, . . . , ak, b1, . . . , bk) for α=
(a1, . . . , ak) and β = (b1, . . . , bl). We define the multiple Stratonovich integral as follows:
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210 M. NINOMIYA

for i ∈ {0, 1, . . . , d},

B◦∅(t) = 1,
B◦(i)(t) =Bi(t),

B◦α∗i(t) =
∫ t
0

B◦α(s) ◦ dBi(s).

Definition 2.3. For two operators V and W , the Lie bracket is defined by

[V, W ] = VW −WV.

Also, we define V[α] for α ∈ A and i= 0, 1, . . . , d by

V[∅] = 0,
V[(i)] = Vi,

V[α∗(i)] = [V[α], Vi].

Definition 2.4. A set of random variables {Zα | α ∈ A0} is called an m-moment similar
family if it satisfies the following three conditions:

(i) Z(0) = 1;
(ii) E[|Znα |]<∞ for all α ∈ A0 and n > 1;
(iii) E[Zα1 . . . Zαk

] = E[B◦α1(1) . . . B◦αk(1)].

We introduce a new functional Q(s) which is a Markov operator.

Definition 2.5. Let m ∈ N and let {Zα | α ∈ A0} be an m-moment similar family. For
0 6 s 6 1, we define

(Q(s)f)(x) = E

[
f

( m∑
k=0

1
k!

∑
α1,...,αk∈A

‖α1‖+...+‖αk‖6m

s
1
2 (‖α1‖+...+‖αk‖)

× (P 0
α1
. . . P 0

αk
)(V[α1] . . . V[αk]H)(x)

)]
, (2.3)

where H : RN → RN is the identity map and

P 0
α =

1
|α|

|α|∑
k=1

(−1)k+1

k

∑
β1,...,βk∈A0
β1∗...∗βk=α

Zβ1 . . . Zβk
.

Theorem 2.1 (Kusuoka [4, 5]). Let

A+ =
{
α ∈ A : α ∈

∞⋃
k=1

{1, . . . , d}k if |α| > 2 and α 6= (0) if |α|= 1
}
.

Suppose that the following ondition is satisfied.
(UFG) There exists an integer l and {ϕα,β}β∈A+ ⊂ C∞b (RN ; R) such that

[Vα1 , [Vα2 , [. . . , [Vαj−1 , Vαj
] . . .]]]

=
∑

β=(β1,...,βi)∈A+

‖β‖6l

ϕα,β [Vβ1 , [Vβ2 , [. . . , [Vβi−1 , Vβi
] . . .]]] for α ∈ A+.

Then

‖PXs f −Q(s)f‖∞ 6 Cs(m+1)/2‖ grad(f)‖∞, (2.4)

where s ∈ (0, 1], f ∈ C∞b (RN ; R), and C is a positive constant.
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A d-dimensional 5-moment similar family {Zα | α ∈ A0} can be defined as follows:

Z(0) = 1,

Z(i) = ηi for i= 1, . . . , d,

Z(i,j) =
1
2

(ηiηj + σij), Z(j,i) =
1
2

(ηiηj − σij) for 1 6 i < j 6 d,

Z(i,i) =
η2
i

2
, Z(i,0) = Z(0,i) =

ηi
2
, Z(i,i,i) =

η3
i

6
for i= 1, . . . , d,

Z(i,i,j) = Z(j,i,i) =
ηj
4
, Z(j,j,i) = Z(i,j,j) =

ηi
4

for 1 6 i < j 6 d,

Z(0,0) =
1
2
,

Z(i,i,j,j) = Z(j,j,i,i) =
1
8

for 1 6 i < j 6 d,

Z(0,i,i) = Z(i,i,0) =
1
4

for i= 1, . . . , d,

Z(w) = 0 otherwise,

where the σij and ηi are independent random variables which satisfy P (σij =±1) = 1/2 for
1 6 i < j 6 d and P (ηi = 0) = 2/3, P (ηi =±

√
3) = 1/6 for i= 1, . . . , d.

3. Partial sampling problem and TBBA

3.1. Partial sampling problem

When we use {Zα}, as defined in the previous section, in the implementation of the Kusuoka
approximation with d= 2, each step requires 18 points, which means that there are 18n possible
points for n steps. In practice, it is impossible to calculate every point, and thus we rely on
partial calculation.

3.2. Tree-based branching algorithm

The TBBA enables us to choose a small number of sample points from a discrete set when
approximating the expectation of some function of random variables. Following [2, 8], we define
the TBBA as follows.

Let I be a countable set and let MP (I) be the set of probability measures on I, that is,

MP (I) =
{
x= (x(i))i∈I ∈ (R>0)I

∣∣∣∣∑
i∈I

x(i) = 1
}

with the product topology. We denote by B(MP (I)) the Borel σ-algebra onMP (I) generated
by the cylinder sets, as usual. Let (Ω, F , P ) be another probability space with no atoms.
Let a ∈MP (I) be a probability with finite entropy H(a) =

∑
i∈I a(i) log a(i)<∞, and let

Aan, n ∈ N, be a collection of MP (I)-valued random variables of (Ω, F , P ), defined as follows:

Aan =

ã : Ω→MP (I)

∣∣∣∣∣∣
EPΩ [ã] = a and ã= 1

n

∑n
k=1 δVk

for some
I-valued F-measurable random variables

V1, . . . , Vn of (Ω, F , P ).

, (3.1)

where δx denotes the Dirac distribution concentrated at x. We can regard Aan as a set of
unbiased estimators requiring n samples or as a set of measures realized by n samples.
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Our objective is to find a ‘good’ ã ∈ Aan, that is, an ã ∈ Aan whose discrepancy with a is small.
To measure the discrepancy between an element ã of Aan and a, we introduce H(ã|a), the mean
relative entropy of ã with respect to a:

H(ã|a) = EPΩ

[∑
i∈I

ã(i) log
(
ã(i)
a(i)

)]
=
∑
i∈I

EPΩ [ã(i) log(ã(i))]−
∑
i∈I

a(i) log(a(i)). (3.2)

For x ∈ R, let bxc denote the integer part of x, and write fp(x) = x− bxc.

Definition 3.1. If for any i ∈ I, ã ∈ Aan satisfies the condition that

ã(i) =

{
bna(i)c/n with probability 1− fp(na(i)),
(bna(i)c+ 1)/n with probability fp(na(i)),

(3.3)

then we say that ã has the property MV (n).

Theorem 3.1 [2]. Let ã ∈ Aan. Then H(ã|a) is minimal if and only if ã has the property
MV (n).

The TBBA consists of the following two steps. In the first step, we construct a binary tree T
which is consistent with I and a; this means that the binary tree T must satisfy the following
conditions.
(T1) Each edge e of T has positive weight w(e).
(T2) Each edge e has one upper node u(e) and one lower node l(e).
(T3) The set of lowest nodes of T is equal to I.
(T4) For any two edges e1 and e2, if e1 6= e2 and u(e1) = u(e2), then w(e1) + w(e2) = 1.
(T5) Let nr be the root node of T . If {e1, e2, . . . , ek} is a set of edges such that u(e1) = nr,
l(eh) = u(eh+1) for h= 1, . . . , k − 1 and l(ek) ∈ I, then

∏k
h=1 w(eh) = a(l(ek)).

In the second step, we construct a random variable ξm for each node m of T . For an arbitrary
node m of T , we define Im to be the set of lowest nodes which are the descendants of m and
set a(m) =

∑
i∈Im

a(i). We proceed with the construction of ξm by applying the following two
rules recursively.

Rule 1. ξnr
≡ 1.

Rule 2. If a node m of T has two lower nodes m1 and m2, then ξm1 and ξm2 are obtained from
ξm by using the following algorithm. We remark that a(m) = a(m1) + a(m2), and then either
bna(m)c= bna(m1)c+ bna(m2)c or bna(m)c= bna(m1)c+ bna(m2)c+ 1 holds.

Case 1: bna(m)c= bna(m1)c+ bna(m2)c. In this case, we define

ξm1 = bna(m1)c/n+ (ξm − bna(m)c/n)ηm,
ξm2 = bna(m2)c/n+ (ξm − bna(m)c/n)(1− ηm),

where

ηm =

{
0 with probability fp(na(m2))/fp(na(m)),
1 with probability fp(na(m1))/fp(na(m)).

Case 2: bna(m)c= bna(m1)c+ bna(m2)c+ 1. In this case, we define

ξm1 = (bna(m1)c+ 1)/n+ (ξm − (bna(m)c+ 1)/n)ηm,
ξm2 = (bna(m2)c+ 1)/n+ (ξm − (bna(m)c+ 1)/n)(1− ηm),
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where

ηm =

{
0 with probability (1− fp(na(m2)))/(1− fp(na(m))),
1 with probability (1− fp(na(m1)))/(1− fp(na(m))).

Theorem 3.2. For an arbitrary node m of T , the random variable ξm defined by the above
algorithm satisfies

ξm =

{
bna(m)c/n with probability 1− fp(na(m)),
(bna(m)c+ 1)/n with probability fp(na(m)).

From Theorem 3.1 and this theorem, it is clear that by using the TBBA, we can obtain the
random measure ã which attains the minimal mean relative entropy with respect to a.

We remark that the TBBA is a well-known stratified sampling technique.

4. The HJM model

We now introduce the HJM model; our treatment is based on [1, 3].

Notation 4.1. Let P (t, T ) be the price at time t of a zero-coupon bond paying 1 at time T .
Let f(t, T1, T2) be a forward rate as seen at time t for the period between time T1 and
time T2. Also, let F (t, T ) be an instantaneous forward rate as seen at time t for a contract that
matures at time T , and let r(t) be a short-term risk-free interest rate at time t. In addition,
vj(t, T, P (t, T )) will denote the jth factor of the volatility of P (t, T ).

The risk-neutral process for P (t, T ) has the form

dP (t, T ) = r(t)P (t, T ) dt+
d∑
j=1

vj(t, T, P (t, T ))P (t, T ) dBj(t). (4.1)

Here, we should note that the drift of P (t, T ) equals r(t)P (t, T ), which is equivalent to the
arbitrage-free condition [1].

Let

dF (t, T ) =m(t, T, P (t, T )) dt+
d∑
j=1

sj(t, T, P (t, T )) dBj(t). (4.2)

From equations (4.1) and (4.2) and the definition of an instantaneous forward rate, we obtain
the following HJM drift conditions:

m(t, T, P (t, T )) =
d∑
j=1

sj(t, T, P (t, T ))
∫T
t

sj(t, u, P (t, u)) du

and

sj(t, T, P (t, T )) = vj2(t, T, P (t, T )),

where v1
2 , . . . , v

d
2 indicate, respectively, the partial derivatives of v1, . . . , vd with respect to the

second variable [1].

5. Application

In this section, we apply the Kusuoka approximation with discrete random variables to the
pricing of a caplet according to the HJM model.
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5.1. Preliminaries

In this experiment, we use the Nelson–Siegel family for the initial yield curve F (0, s), which
then has the form

F (0, s) = z1 + z2e
−z4s + z3se

−z4s (5.1)

for s ∈ R>0, where zi ∈ R for i= 1, 2, 3, 4.
Also, we consider a two-factor model in which

s1(t, T, P (t, T )) = C1

and
s2(t, T, P (t, T )) = C2 − λ(T − t),

where s1 and s2 denote the standard deviations of F (t, T ), as in Section 1, and C1, C2 and λ
are constants.

5.1.1. Caplets. We give a brief introduction to caplets, which constitute a very basic block
of interest-rate derivatives [1, 3].

Notation 5.1. Let L be the LIBOR rate set at time T1 and paid at time T2, and let K
be a fixed rate. Let θT1T2 denote an accrual factor between T1 and T2.

The payoff of the caplet at time T2 is given by

θT1T2 [L−K]+.

Then, the price is known to be as follows (see [1]):

P (0, T2)E
[[

1
P (T1, T2)

− 1− (T2 − T1)K
]+]

.

From (5.1), it is clear that

P (0, T2) = exp
(∫T2

0

F (0, u) du
)

= exp
{
−z2T2 +

z2

z4
(e−z4T2 − 1) +

z3

z4
T2e
−z4T2 +

z3

z4
(e−z4T2 − 1)

}
.

Therefore, in order to price the caplet, we need to investigate the process of P (t, s), where
t < s. In addition, the process of r(t) has to be considered, since the drift of P (t, T ) includes
r(t), as shown by equation (4.1).

5.1.2. Kusuoka approximation. Since r(t) = F (t, t) and F (t, t) = F (0, t) +
∫t

0
dF (u, t), we

have

r(t) = F (0, t) +
∫ t
0

dF (u, t). (5.2)

Upon substituting (4.2) into (5.2) and carrying out some calculations, we obtain

r(t) = F (0, 0) +
∫ t
0

(
A(u) +

d∑
j=1

Y j(u)
)
du+

d∑
j=1

∫ t
0

vj2(u, u, P (u, u)) dBj(u) (5.3)

with

A(u) = F2(0, u) +
d∑
j=1

∫u
0

{vj(s, u, P (s, u))vj22(s, u, P (s, u)) + (vj2(s, u, P (s, u)))2} ds, (5.4)

Y j(u) =
∫u
0

vj22(s, u) dBj(s),
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where F2(0, u) is the partial derivative of F (0, u) with respect to the second variable and
v1

22, . . . , v
d
22 are, respectively, the second-order derivatives of v1, . . . , vd with respect to the

second variable.
From the definitions of s1 and s2, we have the following:

v1(t, T, P (t, T )) = C1(T − t),

v2(t, T, P (t, T )) = (T − t)
(
C2 −

λ

2
(T − t)

)
,

v1
2(t, T, P (t, T )) = C1,

v2
2(t, T, P (t, T )) = C2 − λ(T − t),

v1
22(t, T, P (t, T )) = 0 and v2

22(t, T, P (t, T )) =−λ.

(5.5)

On substituting (5.5) into the equation for A(u), we get

A(u) = F2(0, u) + (C2
1 + C2

2 )u− 3
2C2λu

2 + 1
2λ

2u3

and Y 1(u) = 0, from the definition of Y 1(u).
All things considered, the diffusion process X discussed here has to have four dimensions

with the following elements:

x1(u) = P (u, T ), x2(u) = r(u), x3(u) = Y 2(u) and x4(u) = u.

Therefore, X has the form

X(t, x̂) = x̂+
2∑
j=0

∫ t
0

V̂j(x1(u), x2(u), x3(u), x4(u)) dBj(u),

where

x̂=


P (0, T )
r(0)

0
0

,
V̂0(x1(u), x2(u), x3(u), x4(u))

=


x1(u)x2(u)

F2(0, x4(u)) + (C2
1 + C2

2 )x4(u)− 3
2C2λ((x4(u)))2 + 1

2λ
2(x4(u))3 + x3(u)

0
1

,

V̂1(x1(u), x2(u), x3(u), x4(u)) =


C1(T − x4(u))x1(u)

C1

0
0


and

V̂2(x1(u), x2(u), x3(u), x4(u)) =


(T − x4(u))

(
C2 −

λ

2
(T − x4(u))

)
x1(u)

C2

−λ
0

.

When we apply the Kusuoka approximation, it is convenient to transform the process into
an expression involving the Stratonovich integral instead of the Ito integral.
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The process X in Stratonovich form becomes

X(t, x) = x+
2∑
j=0

∫ t
0

Vj(x1(u), x2(u), x3(u), x4(u)) ◦ dBj(u),

where
x= x̂,

V0(x1(u), x2(u), x3(u), x4(u))

=


x1(u)x2(u)− 1

2
x1(u)

{
C2

1 +
(
C2 −

λ

2
(T − x4(u))

)2}
(T − x4(u))2

F2(0, x4(u)) + (C2
1 + C2

2 )x4(u)− 3
2
C2λ(x4(u))2 +

1
2
λ2(x4(u))3 + x3(u)

0
1


,

V1(x1(u), x2(u), x3(u), x4(u)) = V̂1(x1(u), x2(u), x3(u), x4(u))

and

V2(x1(u), x2(u), x3(u), x4(u)) = V̂2(x1(u), x2(u), x3(u), x4(u)).

5.2. Implementation

In this experiment, we consider a 5-moment similar family, as defined in Section 2, with d= 2.
Here, we focus on the model which has the following V0, V1 and V2:

V0(x) =
[
x1x2 −

1
2
x1

{
C2

1 +
(
C2 −

λ

2
(T − x4)

)2}
(T − x2

4)
]
∂

∂x1

+
[
F2(0, x4) + (C2

1 + C2
2 )x4 −

3
2
C2λx

2
4 +

1
2
λ2x3

4 + x3

]
∂

∂x2
,

V1(x) = C1(T − x4)x1
∂

∂x1
+ C1

∂

∂x2
,

V2(x) = (T − x4)
(
C2 −

λ

2
(T − x4)

)
x1

∂

∂x1
+ C2

∂

∂x2
− λ ∂

∂x3
.

The approximation operator Q(s) introduced in Definition 2.5 can be expressed in four
dimensions as follows:

(Q(s)f)(x) = E[f(G(s, x, σ, η1, η2))],

where

G(s, x, σ, η1, η2) =


G1(s, x, σ, η1, η2)
G2(s, x, σ, η1, η2)
G3(s, x, σ, η1, η2)
G4(s, x, σ, η1, η2)

.
We have not provided the details of the four elements of G, since this would require 24 pages, as
can be seen in [13]. We use a particle method for the implementation of the TBBA; see [2, 8].

5.3. Results

In this experiment, we set the fixed rate for the caplet to be K = 0.04; we take the maturity
time of the option as T1 = 5.0 and the maturity time of the reference rate as T2 = 6.0; the
parameters of the volatility functions are C1 = 0.01, C2 = 0.01 and λ= 0.003; the parameters
of the initial yield curve are z1 = 0.03, z2 =−0.01, z3 = 0.009 and z4 = 0.15.
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Figure 5.1. Discretisation error of the Euler–Maruyama and Kusuoka–TBBA methods.

5.3.1. Two types of errors. Two types of errors, discretisation error and integration error,
arise in the calculation of E[f(X(T1, x))].

We define Y as a discrete random variable obtained by applying (2.3) repeatedly; specifically,

(Q(sn)Q(sn−1) . . . Q(s1)f)(x) = E[f(Y )],

where sn + . . .+ s1 = T1.
The discretisation error is defined by

|PXT1
f − E[f(Y )]|. (5.6)

The integration error is the error that arises in numerical calculations of E[f(Y )].

5.3.2. Discretisation error. Figure 5.1 shows the relation between the number of partitions
and the discretisation error (with both quantities plotted on a logarithmic scale). It should
be noted that we took 6.324997544× 10−2, which was obtained from the Kusuoka–TBBA
method with 1.0× 108 samples and n= 64, to be the true value. For the Euler–Maruyama
approximation, discretisation errors were plotted with n= 32, 64, 128 and 256. The number of
partitions required for comparable discretisation errors in the Kusuoka–TBBA case were just
n= 8, 12, 16 and 32.

From Figure 5.1, we can see that the slope obtained in the case of the Euler–Maruyama
scheme is −1 as expected, whereas the slope obtained from the Kusuoka–TBBA approximation
is steeper than −((5 + 1)/2− 1) =−2, which is consistent with Theorem 2.1. Moreover, it is
almost certain that to achieve 3-digit accuracy, it is sufficient to take n= 12 in the Kusuoka
approximation, while n must be at least 64 in the Euler–Maruyama approximation.
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5.3.3. Naive MC error. The integration error for the naive Monte Carlo method is called
the naive MC error and is defined by∣∣∣∣∑M

k=1 f(Yk)
M

− E[f(Y )]
∣∣∣∣, (5.7)

where the Yk are independent random variables whose distributions are identical to that of Y .
Let h and g be functions such that h(x) = x2 and g = h ◦ f . Then we can easily obtain

Var[f(Y )] = Var[f(X(T1, x))] +O(n−2‖grad(g)‖∞).

Therefore, the fact stated in the next remark follows.

Remark 5.1. As long as we use the naive Monte Carlo method (that is, the Monte
Carlo method without any variance reduction techniques) for the numerical approximation of
E[f(X(T1, x))], the number of sample points required to attain a given accuracy is independent
of both the number of partitions and the order of the approximation scheme.

In order to compare integration errors from using the Euler–Maruyama approximation
(Euler–Maruyama–MC) with those from using the Kusuoka approximation with naive Monte
Carlo (Kusuoka–MC) or the Kusuoka approximation with TBBA (Kusuoka–TBBA), we
selected from Figure 5.1 three combinations of the number of partitions, shown in the following
table.

Kusuoka 8 12 16

Euler–Maruyama 32 64 128

Remark 5.2.
– For the Euler–Maruyama–MC scheme, we generated ten batches of Monte Carlo

simulations with 1.0× 107 samples each and calculated the standard deviation of these
batches around the convergence limit, which we took to be the average of a large number
of Monte Carlo evaluations.

– For the Kusuoka–MC scheme, we followed the same procedure as in the Euler–Maruyama–
MC case; here, the result of a Kusuoka–TBBA approximation using a large number of
samples was taken as the convergence limit.

– For the Kusuoka–TBBA scheme, we performed the approximation ten times and calculated
the standard deviation for each around the convergence limit; this limit was the result
obtained from using a large number of samples.

The results obtained from using each combination are shown in Figures 5.2–5.4. These figures
show the following noteworthy points.

(1) Kusuoka–TBBA gives much better results than the other two approximations for all
three combinations of the number of partitions. To achieve 3-digit accuracy in the Kusuoka–
TBBA approximation, we need only 1.0× 104 samples when n= 8 and 2.0× 104 samples when
n= 12 or 16; in contrast, with the other two approximations we need four to ten times the
number of samples required for Kusuoka–TBBA.

(2) When the ratio of the number of samples to the number of possible paths of random
variables is not sufficiently high, the effect of the TBBA tends to be small.

5.3.4. Evaluation of the effect of Kusuoka approximation with TBBA. As observed in
the figures, the speedup ratio depends on the required accuracy. For instance, to achieve a
discretisation error of 2.0× 10−4, n has to be approximately 64 in Euler–Maruyama–MC and
12 in Kusuoka–TBBA. From Figure 5.3, we observe that for an integration error of 2.0× 10−4,
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Figure 5.2. Convergence speed of the n = 32 Euler–Maruyama and n = 8 Kusuoka approximations.
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Figure 5.3. Convergence speed of the n = 64 Euler–Maruyama and n = 12 Kusuoka approximations.
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Figure 5.4. Convergence speed of the n = 128 Euler–Maruyama and n = 16 Kusuoka
approximations.

we require 1.0× 107 samples in Euler–Maruyama–MC and 3.0× 105 samples in Kusuoka–
TBBA. In this case, the computation time on our computer (with a Pentium 4, 1.7 GHz
processor) was 725 seconds using Euler–Maruyama–MC and 24 seconds using Kusuoka–TBBA.
Since the slope of the discretisation error in Kusuoka–TBBA is much steeper than that in
Euler–Maruyama–MC, the speedup ratio would increase if we tried to increase the accuracy.

6. Discussion

We have shown that using the Kusuoka approximation with discrete random variables,
particularly the Kusuoka–TBBA scheme, makes a significant contribution to computational
performance. The improvements observed experimentally indicate the feasibility of using the
HJM model as a practical model for pricing interest-rate derivatives.

However, we have not been able to overcome the following problems.
(1) In general, it is extremely difficult to construct G(s, x, σ, η1, η2). In our case, although

the Lie algebra generated by the vector fields V0, V1 and V2 was not very complicated, as it
was possible to select the forms of s1 and s2, generating G(s, x, σ, η1, η2) was still a laborious
task. Allowing any sj to be non-polynomial would lead to a formidable problem.
It ought to be noted again that there are some other implementation methods (see, for
example, [9–11]) in which continuous random variables are used instead of discrete random
variables as in this study. In such methods, symbolic calculation is successfully avoided,
and the use of low-discrepancy sequences results in the same effect as that of TBBA in
our study.

(2) The TBBA is a stratified sampling technique. We have not, however, arrived at a
convincing theoretical explanation for the ratio that suppresses the effect of the TBBA, as
observed in the comparison of convergence speeds of the different approximation methods.
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