## EDINBURGH MATHEMATICAL NOTES

## LINKAGES FOR THE TRISECTION OF AN ANGLE AND DUPLICATION OF THE CUBE

## by G. D. C. STOKES

In this note some linkage systems for trisecting an angle and for finding the cube root of a number are described. The models are easily made and are of considerable pedagogic value.



In the notation of the figure, let a *T*-square *PQ*, with centre at *R* and of length 2*r*, move so that *P* lies on *OX* and *Q* on *OY'*, and let *RS* meet the circle with centre at *O* and of radius *r* in *T*. Then, if  $\angle XOR = \alpha$ ,  $\angle XOT = 3\alpha$ ; the proof is as follows.

Since RP = RQ = OT and  $\angle ROX = \angle RXO = \alpha$ ,  $\angle ORP = 180^{\circ} - 2\alpha$ and  $\angle ORT = 90^{\circ} - 2\alpha = \angle OTR$ . Hence  $\angle ROT = 180^{\circ} - 2$  ( $90^{\circ} - 2\alpha$ ) =  $4\alpha$ and so  $\angle XOT = 3\alpha$ . The gadget achieves trisection of an angle by the use of only one moving part; in an actual model P and Q may be constrained to move on the axes by guide pieces, sliding heads or slots. For small values of  $3\alpha$  the accuracy of trisection may be improved by setting T on  $3\alpha + 90^{\circ}$  and subtracting  $30^{\circ}$  from the resulting  $\alpha + 30^{\circ}$ .



A LINKAGE FOR CUBE DUPLICATION

In the linkage shown, O and C are pivots and D and F are sliding heads. With suitable units, OB = 1,  $OC = CD = CB = \frac{1}{2}$ ,  $EC = EF = ED = \frac{1}{4}$  and so angles ODB and CFD are angles in semicircles. The linkage is mounted on a base plate having squared paper from which coordinates can be read.

If the x = axis is taken along OA and if  $\angle AOB = \alpha$ , then  $x_F = OF \cos \alpha = OD \cos^2 \alpha = OB \cos^3 \alpha = OD^3$ .

If the linkage is deformed until the abscissa of F has a given value, then the cube root of this number is obtained by reading off the abscissa of D. The case when  $x_F = \frac{1}{2}$  is that of cube duplication.



A COMBINED TRISECTOR AND CUBE DUPLICATOR

Overlapping twin kites OA'EC' and OB'FD' are made deformable by sliding heads E, F. OA = OB = OC = OD = 1 and  $OA' = OB' = OC' = OD' = \frac{1}{2}$ ,  $HK = OG = \frac{3}{4}OB = \frac{3}{4}$ , and  $GK = OH = \frac{1}{4}$ . The construction makes D, K, B collinear and DK : KB = 3 : 1.

The linkage functions as a trisector by setting  $\angle AOD$  as the angle to be trisected.

Since OA = 1,  $x_B^3 = \cos^3 \alpha = \frac{1}{4}(\cos 3\alpha + 3\cos \alpha) = (x_D + 3x_B)/(1+3) = x_{\kappa}$ since DK : KB = 3 : 1. Hence  $x_B = \sqrt[3]{x_{\kappa}}$ . When  $x_{\kappa} = \frac{1}{2}$  we get cube duplication. If the linkage is set so that  $\kappa$  falls on the ordinate  $x = x_{\kappa}$ , then  $x_B$  gives the cube root of  $x_{\kappa}$ .



THE CLOCK TRISECTOR AND CUBE DUPLICATOR

In the linkage shown, OC = OB = BA = 1,  $CD = DO = BE = EF = \frac{1}{2}$ ,  $\angle ABC = 90^{\circ}$ . Hence  $\angle OCB = \angle OBC = \angle OBA - 90^{\circ} = (180^{\circ} - 2\alpha) - 90^{\circ}$   $= 90^{\circ} - 2\alpha$  and  $\angle BOC = 180^{\circ} - 2(90^{\circ} - 2\alpha) = 4\alpha$ . AB and BC form a rigid elbow piece and there are pivots at O, B, E, F, D and sliding heads at C, A. For trisection set  $\angle AOC$  to the given angle and read off  $\angle AOB$ .

Further,  $\cos^3 \alpha = \frac{1}{4}(\cos 3\alpha + 3\cos \alpha) = (x_C + 3x_B)/(1+3) = x_S$ , where S is such that  $BS = ST = \frac{1}{2}TC$ , OT is perpendicular to BC, and OTFB is a parallelogram. Hence  $\cos \alpha = \sqrt[3]{x_s} = x_B$ .

In an actual model there would be a suitable grid on the base plate to facilitate the reading of abscissae.

82 GREENOCK ROAD LARGS, AYRSHIRE