EDINBURGH MATHEMATICAL NOTES

LINKAGES FOR THE TRISECTION OF AN ANGLE AND DUPLICATION OF THE CUBE

by G. D. C. STOKES

In this note some linkage systems for trisecting an angle and for finding the cube root of a number are described. The models are easily made and are of considerable pedagogic value.

In the notation of the figure, let a T-square $P Q$, with centre at R and of length $2 r$, move so that P lies on $O X$ and Q on $O Y^{\prime}$, and let $R S$ meet the circle with centre at O and of radius r in T. Then, if $\angle X O R=\alpha, \angle X O T=3 \alpha$; the proof is as follows.

Since $R P=R Q=O T$ and $\angle R O X=\angle R X O=\alpha, \angle O R P=180^{\circ}-2 \alpha$ and $\angle O R T=90^{\circ}-2 \alpha=\angle O T R$. Hence $\angle R O T=180^{\circ}-2\left(90^{\circ}-2 \alpha\right)=4 \alpha$ and so $\angle X O T=3 \alpha$.

The gadget achieves trisection of an angle by the use of only one moving part; in an actual model P and Q may be constrained to move on the axes by guide pieces, sliding heads or slots. For small values of 3α the accuracy of trisection may be improved by setting T on $3 \alpha+90^{\circ}$ and subtracting 30° from the resulting $\alpha+30^{\circ}$.

A Linkage for Cube Duplication

In the linkage shown, O and C are pivots and D and F are sliding heads. With suitable units, $O B=1, O C=C D=C B=\frac{1}{2}, E C=E F=E D=\frac{1}{4}$ and so angles $O D B$ and $C F D$ are angles in semicircles. The linkage is mounted on a base plate having squared paper from which coordinates can be read.

If the $x=$ axis is taken along $O A$ and if $\angle A O B=\alpha$, then $x_{F}=O F \cos \alpha=$ $O D \cos ^{2} \alpha=O B \cos ^{3} \alpha=O D^{3}$.

If the linkage is deformed until the abscissa of F has a given value, then the cube root of this number is obtained by reading off the abscissa of D. The case when $x_{F}=\frac{1}{2}$ is that of cube duplication.

A Combined Trisector and Cube Duplicator

Overlapping twin kites $O A^{\prime} E C^{\prime}$ and $O B^{\prime} F D^{\prime}$ are made deformable by sliding heads $E, F . O A=O B=O C=O D=1$ and $O A^{\prime}=O B^{\prime}=O C^{\prime}=O D^{\prime}=\frac{1}{2}$, $H K=O G=\frac{3}{4} O B=\frac{3}{4}$, and $G K=O H=\frac{1}{4}$. The construction makes D, K, B collinear and $D K: K B=3: 1$.

The linkage functions as a trisector by setting $\angle A O D$ as the angle to be trisected.

Since $O A=1, x_{B}^{3}=\cos ^{3} \alpha=\frac{1}{4}(\cos 3 \alpha+3 \cos \alpha)=\left(x_{D}+3 x_{B}\right) /(1+3)=x_{\kappa}$ since $D K: K B=3: 1$. Hence $x_{B}=\sqrt[3]{x_{\kappa}}$. When $x_{\kappa}=\frac{1}{2}$ we get cube duplication. If the linkage is set so that κ falls on the ordinate $x=x_{\kappa}$, then x_{B} gives the cube root of x_{κ}.

The Clock Trisector and Cube Duplicator
In the linkage shown, $O C=O B=B A=1, C D=D O=B E=E F=\frac{1}{2}$, $\angle A B C=90^{\circ}$. Hence $\angle O C B=\angle O B C=\angle O B A-90^{\circ}=\left(180^{\circ}-2 \alpha\right)-90^{\circ}$ $=90^{\circ}-2 \alpha$ and $\angle B O C=180^{\circ}-2\left(90^{\circ}-2 \alpha\right)=4 \alpha . \quad A B$ and $B C$ form a rigid elbow piece and there are pivots at O, B, E, F, D and sliding heads at C, A. For trisection set $\angle A O C$ to the given angle and read off $\angle A O B$.

Further, $\cos ^{3} \alpha=\frac{1}{4}(\cos 3 \alpha+3 \cos \alpha)=\left(x_{C}+3 x_{B}\right) /(1+3)=x_{S}$, where S is such that $B S=S T=\frac{1}{2} T C, O T$ is perpendicular to $B C$, and $O T F B$ is a parallelogram. Hence $\cos \alpha=\sqrt[3]{x_{s}}=x_{B}$.

In an actual model there would be a suitable grid on the base plate to facilitate the reading of abscissae.

82 Greenock Road

Largs, Ayrshire

