
J. Fluid Mech. (2022), vol. 944, A8, doi:10.1017/jfm.2022.441

Asymptotic interpretation of the Miles
mechanism of wind-wave instability

A.F. Bonfils1,†, Dhrubaditya Mitra1, W. Moon1,2 and J.S. Wettlaufer1,3

1Nordita, Royal Institute of Technology and Stockholm University, Stockholm 106 91, Sweden
2Department of Mathematics, Stockholm University, 106 61, Sweden
3Yale University, New Haven, CT 06520, USA

(Received 12 July 2021; revised 16 April 2022; accepted 9 May 2022)

When wind blows over water, ripples are generated on the water surface. These ripples can
be regarded as perturbations of the wind field, which is modelled as a parallel inviscid flow.
For a given wavenumber k, the perturbed streamfunction of the wind field and the complex
phase speed are the eigenfunction and the eigenvalue of the so-called Rayleigh equation
in a semi-infinite domain. Because of the small air–water density ratio, ρa/ρw ≡ ε � 1,
the wind and the ripples are weakly coupled, and the eigenvalue problem can be solved
perturbatively. At the leading order, the eigenvalue is equal to the phase speed c0 of surface
waves. At order ε, the eigenvalue has a finite imaginary part, which implies growth. Miles
(J. Fluid Mech., vol. 3, 1957, pp. 185–204) showed that the growth rate is proportional to
the square modulus of the leading-order eigenfunction evaluated at the so-called critical
level z = zc, where the wind speed is equal to c0 and the waves extract energy from
the wind. Here, we construct uniform asymptotic approximations of the leading-order
eigenfunction for long waves, which we use to calculate the growth rate as a function of k.
In the strong wind limit, we find that the fastest growing wave is such that the aerodynamic
pressure is in phase with the wave slope. The results are confirmed numerically.

Key words: air/sea interactions, critical layers, wind-wave interactions

1. Introduction

The generation and the growth of water waves by wind is an old problem in geophysical
fluid dynamics, with a wide range of applications, and challenges that have occupied the
community for at least 150 years (von Helmholtz 1868; Rayleigh 1871). Jeffreys (1925)
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U = U(z) x̂
Asymptotic suction boundary layer profile:
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Figure 1. Schematic of the mean wind field and a normal mode of the air–water interface. In the exponential
profile, U∞ is the far field wind velocity and d is the boundary layer thickness on the air side of the interface.
In the logarithmic profile, κ = 0.4 is the von Kármán constant, u� is the friction velocity of the wind field and
z0 is a roughness length, accounting for the presence of ripples on the water surface.

suggested that wind waves grow because the pressure on the windward face of a crest
is greater than the pressure on the leeward face of that crest, an ansatz he called the
‘sheltering hypothesis’. The modern foundations of a theory were laid down by Phillips
(1957) and Miles (1957), summaries of which can be found in the books of Phillips (1977)
and Janssen (2004).

We consider a layer of water of infinite depth over which a turbulent wind blows
(figure 1). The air pressure fluctuations generate ripples on the water surface (Phillips
1957). However, because the generation time scale is much smaller than the ripple
period, we average the turbulent fluctuations over the longest period and model the
mean wind field as a parallel inviscid steady flow, U = U(z)x̂, where U is a continuous
and monotonic function of the vertical coordinate, z, and x̂ is a horizontal unit vector.
Following Miles (1957), we study the linear stability of the wind field under perturbations
induced by the tiny waves – which we call ripples – generated by turbulent fluctuations
on the water surface, including gravity, g, and surface tension, σ . The shear is efficiently
dissipated in the water, so that U(z ≤ 0) = 0. We restrict our analysis to two-dimensional
incompressible perturbations, assuming that Squire’s theorem holds (we check it a
posteriori in Appendix D). The amplitude of a wave-induced perturbation as a function
of the vertical variable, z, is determined by the Rayleigh equation, which expresses the
conservation of vorticity along the streamlines (Drazin & Reid 1981).

Key quantities to determine are the Fourier components of the aerodynamic pressure,
which Miles (1957) wrote as

p̂0(0+) ≡ ρaV2(α + iβ)kη̂0, with α, β = O(1), (1.1)

where ρa is the density of air, V is a characteristic wind speed and η̂0 is the amplitude of
a Fourier mode – characterized by the wavenumber k – of the displacement of the water
surface; the subscript 0 indicates that these are leading-order quantities in the expansion
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Asymptotic interpretation of the Miles wind-wave instability

in powers of the air/water density ratio,

ρa

ρw
≡ ε � 1. (1.2)

We emphasize that (1.1) is a generalization of the Jeffreys sheltering hypothesis, which
states that the aerodynamic pressure is in phase with the wave slope, and thus α = 0.
The calculation of α and β involves the solution of the Rayleigh equation, which exhibits
singular behaviour at the critical level z = zc, where the wind velocity, U(z), equals the
phase speed of water waves. The problem has been studied extensively over the last
60 years with a focus on β, because it is proportional to the growth rate of the wave. Conte
& Miles (1959), Hughes & Reid (1965) and Beji & Nadaoka (2004) solved the Rayleigh
equation numerically for various wind profiles, but an exact analytical solution exists only
for an exponential profile – a crude approximation of the mean turbulent wind. Moreover,
it involves a hypergeometric function from which it is difficult to extract the maximum
growth rate (Young & Wolfe 2013). Miles (1993) revisited his original work using the
logarithmic wind profile and including the effects of turbulence. Using a variational
method, confirmed by matched asymptotic expansions, he found an approximate formula
for β and fitted a subset of the experimental growth rates collated by Plant (1982).
The coefficient α has generally been assumed to be negative and is neglected, evidently
computed only by Conte & Miles (1959) and Miles (1959). However, we have been unable
to demonstrate that α < 0 and our analysis shows that such an assumption is false.

Lighthill (1962) showed that the energy transfer from the wind to the waves occurs at
the critical level, which is the height at which the wind speed equals the phase speed of
water waves, observed for example by Hristov, Miller & Friehe (2003) in the range 16 <
c/u� < 40. Furthermore, in order to approximate the growth rate of the Miles instability,
Carpenter, Gua & Heifetz (2017) modelled the air–water interface and the critical level as
interacting vortex sheets. However, their minimal model does not yield the dependence of
the maximum growth rate on the physical parameters.

In § 2, we describe the normal modes of the air–water interface in the presence of a wind
field. We then recover the results of Miles’ theory perturbatively using a small air–water
density ratio; ε � 1. In § 3, we use asymptotic methods to solve the Rayleigh equation
for waves whose wavelength is much larger than the characteristic length scale of a given
wind profile. We note that, in an appendix to Morland & Saffman (1992), Miles used such
a long wave approximation to simplify the exact solution for an exponential wind profile,
but because we work directly with the Rayleigh equation, our approach is more general.
We check the accuracy of our asymptotic expressions numerically, using a variant of the
method proposed by Hughes & Reid (1965). In § 4, we obtain explicit expressions for α
and β, and show that α can be non-negative. Next, we determine the growth rate of the
Miles instability, and fit the entire range of the data compiled by Plant (1982) using the
logarithmic profile. In § 5, we study the strong wind limit introduced by Young & Wolfe
(2013). We find that the fastest growing wave is characterized by α = 0 and is therefore
accompanied by an aerodynamic pressure that is proportional to the wave slope, consistent
with the Jeffreys sheltering hypothesis. We note that this result also holds approximately
for moderate wind. We conclude in § 6.

2. Wind-wave model

Ripples on the water surface create small perturbations in the wind field. The
perturbed velocity field is U + u, with u = u(x, z, t)x̂ + w(x, z, t)ẑ, where t is time.
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The incompressibility condition, ∇ · u = 0, allows us to introduce the streamfunction,
ψ(x, z, t), such that u = ∂zψ and w = −∂xψ .

2.1. Normal modes
We consider a surface displacement field of the form η(x, t) = Re{η̂ exp[ik(x − ct)]},
where c is a complex phase speed to be determined. The x-average over a wavelength,
2π/k, is denoted by an overbar. Thus, since η(x, t) = 0, the unperturbed water surface,
z = 0, corresponds to the mean water level. Following Young & Wolfe (2013), we define
the wave energy, E ≡ K + V , as the sum of the mean kinetic energy per unit area, K , and
the mean potential energy per unit area, V , which are given by

K(t) ≡
∫ 0−

−∞
dz
ρw|u|2

2
+
∫ +∞

0+
dz
ρa|u|2

2
and V(t) ≡ 1

2

{
(ρw − ρa)g η2+σ (∂xη)2

}
,

(2.1a,b)

where ρw is the density of water. The rate of change of wave energy is

dE
dt

=
∫ +∞

0+
dz τ(z, t)U′(z), (2.2)

and τ ≡ −ρa uw is the wave-induced Reynolds stress.
Following the canonical procedure (e.g. Drazin & Reid 1981), we write the

streamfunction in terms of normal modes as ψ(x, z, t) = Re{ψ̂(z) exp[ik(x − ct)]}. This
leads to the Rayleigh equation

Lψ̂ = 0, with L(z, c) = [U(z)− c]

[
d2

dz2 − k2

]
− U′′(z), (2.3)

where the prime denotes differentiation with respect to z. The solution of (2.3) in the water,
where there is no shear, is ψ̂(z ≤ 0) = ψ̂(z = 0) ekz, which we use to derive the boundary
condition at z = 0+ and obtain (Morland & Saffman 1992)(

kc2 − g − σ

ρw
k2
)
ψ̂(0) = ε{c2ψ̂ ′ + (cU′ − g)ψ̂}|0+ . (2.4)

2.2. Perturbative resolution of the eigenvalue problem
Following Janssen (2004) and Young & Wolfe (2013), we expand the eigenvalue and the
eigenfunction in the air in a power series in ε � 1 as

c = c0 + ε c1 + · · · and ψ̂a = ψ̂0 + ε ψ̂1 + · · · , (2.5a,b)

where ‘a’ denotes ‘air’. Similarly, the amplitude of the surface displacement, η̂, and the
amplitude of the perturbation pressure in the air, p̂a = p̂a(z), are

η̂ = η̂0 + ε η̂1 + · · · and p̂a = p̂0 + ε p̂1 + · · · . (2.6a,b)

To leading order the ripples are not affected by the wind, but they induce a neutral
perturbation on the air flow, determined by

L(z, c0) ψ̂0(z) = 0, z ≥ 0. (2.7)
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Asymptotic interpretation of the Miles wind-wave instability

The leading-order eigenvalue, c0, is by definition the phase speed of water waves.
Imposition of the boundary condition (2.4) yields the dispersion relation

c0(k) = cmin√
2

√
kcap

k
+ k

kcap
, (2.8)

where

cmin ≡
[

4σg
ρw

]1/4

and kcap ≡
√
ρwg
σ
. (2.9a,b)

The minimum phase speed, cmin, arises from the competition between surface tension and
gravitational forces and occurs when k = kcap; the capillary wavenumber.

Following Phillips (1977), the leading-order amplitude of the aerodynamic pressure
(cf. (1.1)) is

p̂0(0+) = ρwc2
0(μ+ iγ )kη̂0, with μ, γ = O(ε). (2.10)

The phase difference between the aerodynamic pressure and the wave slope is proportional
to μ, which can be considered as the deviation from Jeffreys’ sheltering hypothesis.
Because

p̂0 = ρa W(ψ̂0,U − c0), (2.11)

where W is the Wronskian, the eigenvalue at the next order – determined by the boundary
condition (2.4) – can be written as

ε c1 = c0

2

⎛
⎜⎜⎜⎝μ+ iγ − ε

1 +
[

k
kcap

]2

⎞
⎟⎟⎟⎠ . (2.12)

Hence, μ is twice the wind-dependent relative change of the phase speed of water waves
due to the coupling with the air, and γ is the energy growth rate, normalized by the angular
frequency of water waves. The last term in (2.12), which did not appear in Miles (1957), is
the difference between the phase speed of interfacial waves and the phase speed of surface
waves. Moreover, if we expand the wave energy as

E = E0 + ε E1 + · · · , (2.13)

we find

γ = 1
kc0

ε

E0

dE1

dt

∣∣∣∣
t=0

. (2.14)

Now, comparing (2.14) with (2.2), we retrieve the result of Janssen (2004);

γ = τ̂0(z = 0+)
kE0

, where τ̂0(z) = −ρa
k
2

Im{ψ̂0(z)ψ̂ ′∗
0 (z)} (2.15)

is the leading-order amplitude of τ(z, t), in which the star denotes complex conjugation,
and E0 is the energy (per unit area) of water waves. This demonstrates that water waves
extract energy from the wind through the work of the wave-induced Reynolds stress.
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2.3. Boundary-value problems
The wind profile has velocity scale V , and length scale L, giving the dimensionless
variables

z = z
L
, k = kL, U = U

V
, and C = c0

V
. (2.16a–d)

We consider two standard wind profiles, shown in figure 1. For the exponential profile,
V = U∞ and L = d, and for the logarithmic profile, V = u� and L = z0, where all symbols
are defined in the legend of figure 1. Their dimensionless forms are

U(z) = 1 − e−z and U(z) = ln(1 + z)/κ, (2.17a,b)

respectively. We stress that typical values of z0 are of the order of millimetres (Wu 1975)
while the wavelengths of capillary–gravity waves range from millimetres to hundreds of
metres. Thus, most wind waves are long in the sense that their wavelengths are much
greater than the characteristic length scale of the wind profile, and k = kz0 is a natural
small parameter.

For the three dispersion relations given in table 1, we solve the following boundary-value
problem:

χ ′′(z)−
[
k2 + U′′(z)

U(z)− C(k)

]
χ(z) = 0, χ(0) = 1, χ ′(z)+ k χ(z) −→

z→+∞ 0,

(2.18a–c)

where χ ≡ ψ̂0/ψ̂0(0) is the leading-order normalized streamfunction amplitude. We
emphasize that physically relevant wind profiles satisfy

lim
z→+∞

U′′(z)
U(z)− C(k)

= 0, (2.19)

which justifies the far field condition (2.18c). In practice, the coefficients defined in (2.10),
which are more physical than the α and β introduced by Miles (1957), are calculated as
follows:

μ = ε

(
U′

kC
+ Re{χ ′}

k

)∣∣∣∣
0+

and γ = ε

k
Im
{
χ ′(0+)

}
. (2.20a,b)

Note that α = εμ/C2 and β = εγ /C2. The Miles formula states that (Janssen 2004)

γ = −ε π

k

U
′′
c

U′
c

|χc|2, (2.21)

where the subscript ‘c’ denotes evaluation at the critical level zc = zc(k), defined by

U(zc) = C. (2.22)

The expression (2.21) originates from the global property of the solution of the
boundary-value problem (2.18)

Im
{
χ ′(0+)

} = −π
U

′′
c

U′
c

|χc|2, (2.23)

which we use to assess the accuracy of our numerical solutions.
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Asymptotic interpretation of the Miles wind-wave instability

Gravity waves Capillary waves Capillary–gravity waves

Control parameters Fr ≡ V√
gL

We ≡ ρwV2L
σ

Cmin ≡ cmin

V
and kcap ≡ kcapL

C(k)
1

Fr
√
k

√
k

We
Cmin√

2

√
kcap

k
+ k

kcap

m
1

Fr2
1

We
C2

min
2

q
2
3

2 1

Table 1. The first row shows the control parameters of the three kinds of waves considered here: the Froude
number, Fr, and the Weber number, We, describe the competition between the shear in the air and the relevant
restoring force; Cmin and kcap are a dimensionless minimum phase speed and a dimensionless capillary
wavenumber, respectively. The second row gives the corresponding dimensionless dispersion relations. The
third row gives the small parameter, m � 1, defining the strong wind limit for each, and the last row gives the
exponents q characterizing the associated asymptotic states in the case of the exponential wind profile.

We evaluate the accuracy of the asymptotic methods developed here using the
asymptotic suction boundary layer profile, U(z) = 1 − e−z, for which an exact solution
of the Rayleigh equation exists (Young & Wolfe 2013). However, for comparison with
experimental data we shall use the more common mean turbulent boundary layer profile,
U(z) = ln(1 + z)/κ .

3. Long wave asymptotics

Long waves are characterized by k � 1. The following analysis is valid for the three
functions C(k) given in table 1. For capillary–gravity waves, the wavelength is of the
order of the capillary wavelength, lcap ≡ 2π/kcap, so lcap must be large compared with L,
namely

kcap � 1. (3.1)

3.1. General procedure
Setting k = 0 in (2.18a), we find two linearly independent solutions (Drazin & Reid 1981)

χ1(z) ≡ U(z)− C and χ2(z) ≡ χ1(z)

∫ z dz̃
χ1(z̃)2

. (3.2a,b)

We call the outer solution the linear combination of χ1 and χ2, namely

χout(z) ≡ E χ1(z)+ F χ2(z), with E,F ∈ C. (3.3)

We consider wind profiles such that U′ > 0, U′′ < 0 and U′′′ > 0, so that there exists a
unique position zs between the critical level, zc, and infinity at which

Q(k, zs) = 0, where Q(k, z) ≡ k2 + U′′(z)
U(z)− C(k)

. (3.4)

Then the outer solution holds for z � zs. Equation (2.19) together with the far field
condition (2.18c) imply that χ(z) ∼ χ∞(z) for z  zs, where

χ∞(z) � Ge−kz, with G ∈ C. (3.5)
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We stress that zs = zs(k). For standard wind profiles, we show in Appendix A that

lim
k→0

zs = +∞, but lim
k→0

kzs = 0. (3.6)

In order to match the outer solution and the far field solution within an intermediate layer
centred at z = zs, we introduce the rescaled variable ξ ≡ kz. Then, we determine the
constants E, F and G using the matching condition

lim
z→+∞χout(z) = lim

ξ→0
χ∞(ξ). (3.7)

Clearly, the asymptotic behaviour of χout depends on the choice of U = U(z), whereas

χ∞(ξ) ∼ G(1 − ξ), ξ → 0. (3.8)

Hence, there are profiles, such as the logarithmic profile, for which matching is not
possible. However, we note that the solution of the Rayleigh equation has an inflexion
point at z = zs, and thus its behaviour is linear within the intermediate layer. Therefore,
we anticipate that patching, rather than rigorous matching, of χout and χ∞ at z = zs will
still give reasonable results. In order for rigorous matching of solutions in all cases, a
more detailed treatment around the point z = zs is necessary, but we provide numerical
evidence that the present approach faithfully reproduces the behaviour in this region.

In practice, we work with a transformed variable Z = Z(z, zc), such that the function Q
introduced in (3.4) becomes independent of C(k). Using this transformation, the domain
[0,+∞) becomes [Zinf ,+∞), where Zinf = Zinf (zc) depends on the wind profile and can
be negative. In all cases considered here, we check that Zinf ≤ 1, even in the limit k → 0.

3.2. Matching for the exponential profile: U(z) = 1 − e−z

For this profile, we use the variables

Z ≡ z − zc and X(Z) ≡ χ(z), (3.9a,b)

in terms of which the boundary-value problem (2.18) becomes

X′′(Z)−
[
k2 + 1

1 − eZ

]
X(Z) = 0, X(−zc) = 1, X′(Z)+ kX(Z) −→

Z→+∞
0.

(3.10a–c)

Here, the outer solution is

Xout(Z) = E(1 − e−Z)+ F(1 − e−Z)

{
1

1 − eZ + Log
(

eZ − 1
)}
, (3.11)

where Log denotes a continuation of the natural logarithm to the negative real numbers

Log(z − zc) ≡ ln |z − zc| − iπ for z < zc. (3.12)

The choice of the branch cut, which is just above the negative real axis as U′
c > 0, follows

from Lin (1955). The matching condition (3.7) gives E = G and F = −k G, with the
remaining constant, G, being determined by the boundary condition (3.10b).
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Asymptotic interpretation of the Miles wind-wave instability

We construct a uniformly valid composite solution using the Van Dyke additive rule
(see e.g. Bender & Orszag 1999) as

Xunif (Z) = Xout(Z)+ X∞(Z)− (E + F Z)

= G(k, p)
{

1 − e−Z − k

[
1 − e−Z

1 − eZ + (1 − e−Z)Log(eZ − 1)
]

+ e−kZ − (1 − kZ)
}
,

(3.13)

where

G(k, p) = 1 − p

1 − kp + k ln(p)+ ikπ
, and p ≡ C−1. (3.14)

Note that p = p(k) because of the dispersion relation, C = C(k). In Appendix B, we
retrieve the expression for χc when zc � 1 that Miles derived in an appendix to Morland
& Saffman (1992).

3.3. Patching for the logarithmic profile: U(z) = ln(1 + z)/κ

We perform the coordinate transformation

Z ≡ 1 + z

1 + zc
and X(Z) ≡ χ(z), (3.15a,b)

and hence the boundary-value problem (2.18) becomes

X′′(Z)−
[
ε̂2 − 1

Z2 ln(Z)

]
X(Z) = 0, X

(
1

1 + zc

)
= 1, X′(Z)+ ε̂X(Z) −→

Z→+∞
0,

(3.16a–c)

where we have introduced ε̂ ≡ k(1 + zc). We use ε̂ instead of k as a small parameter.
After a patching at Zs ≡ (1 + zs)/(1 + zc), we find the following outer solution:

Xout(Z) =

⎧⎪⎨
⎪⎩
(J(Zs) ln(Z)− H(Zs) [ln(Z) li(Z)− Z])

G(zc, Zs)

Zs
e−ε̂Zs if Z > 1,

(J(Zs) ln(Z)− H(Zs) [ln(Z) [li(Z)− iπ] − Z])
G(zc, Zs)

Zs
e−ε̂Zs if Z < 1,

(3.17)

where

li(Z) ≡ P
∫ Z

0

dz̃
ln(z̃)

(3.18)

is the logarithmic integral function, in which P denotes the Cauchy principal value. The
amplitude of the far field solution is

G(zc, Zs) = Zs(1 + zc) eε̂Zs

H(Zs)g(zc)− J(Zs)f (zc)− iπH(Zs)f (zc)
, (3.19)

where

H(Zs) ≡ 1
ε̂Zs

+ 1, J(Zs) ≡ H(Zs) li(Zs)− ε̂Zs
2, (3.20)

f (zc) ≡ (1 + zc) ln(1 + zc), and g(zc) ≡ 1 + f (zc) li
(

1
1 + zc

)
. (3.21)

Clearly, for a given dispersion relation, the above parameters are all functions of k.
Matching is not possible here because the behaviour of Xout(Z) at large Z is not linear.
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Figure 2. Comparison of the uniformly valid composite solution (3.13) with the numerical solution of the
Rayleigh equation for the exponential wind profile, for two values of k and C = 0.25. The dots and the stars
depict the real and imaginary parts of the numerical solution, respectively. The continuous line shows the real
part of (3.13) and the dashed line the imaginary part.
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Figure 3. Comparison of the outer and far field solutions patched at the inflexion point, z = zs, with the
numerical solution of the Rayleigh equation for the logarithmic wind profile, for two values of k and
C = 0.5. The dots and the stars depict the real and imaginary parts of the numerical solution, respectively.
The continuous line shows the real part of the outer solution (3.17) and the dashed line the imaginary part. The
dash-dotted and dotted lines represent the real and imaginary parts of the far field solution (3.5), respectively.

3.4. Discussion
In figures 2 and 3, we compare our uniformly valid composite solution for the exponential
profile, and our patched solution for the logarithmic profile with the numerical solutions.
Both the matching and the patching give excellent results for sufficiently small values of
k, the magnitude of which depends on the wind profile. We note that these are plots for
fixed values of k and C and that any of three dispersion relations can be retrieved with a
proper choice of the control parameters. Moreover, we assess our approach by checking
that Xunif (Z) and Xout(Z) satisfy the global property (2.23). Above the critical level, the
phase of the solution of the Rayleigh equation is constant, equal to the phase of G, showing
that long waves interact with the wind between the mean water level and the critical level.

For the two standard wind profiles considered here, both the real and the imaginary
part of the solution of (2.18) have an extremum at z = z�, between the critical level, zc,
and the inflexion point, zs. Let k� ≡ k�L, where k� is the dimensional wavenumber of the
fastest growing wave. In Appendix E, we show the extremum is always a maximum for the
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imaginary part, whereas for the real part it is a minimum when k < k� but a maximum
when k > k�. We also show that the air flow above wind waves has two elliptic points at the
level z = z� in the domain kx ∈ [0, 2π[. These elliptic points can be seen in figure 13(a)
of Young & Wolfe (2013), obtained from the hypergeometric solution of the Rayleigh
equation in the case of the exponential profile, and in figure 1(e) of Hristov et al. (2003),
obtained from the numerical solution for the logarithmic profile.

4. Application to the Miles instability

4.1. Normalized energy growth rate and deviation from the sheltering hypothesis
We calculate the coefficients μ and γ for long waves using the expressions (2.20a,b). In
the case of the exponential profile, we find

μ
exp
long(k) = −ε (p − 1)2[1 − kp + k ln(p)]

[1 − kp + k ln(p)]2 + [kπ]2 , (4.1)

and γ
exp
long(k) = επk(p − 1)2

[1 − kp + k ln(p)]2 + [kπ]2 , (4.2)

and in the case of the logarithmic profile, we find

μ
log
long(k) = εH(Zs)

k ln(1 + zc)

H(Zs)g(zc)− J(Zs)f (zc)[
H(Zs)g(zc)− J(Zs)f (zc)

]2 + [
πH(Zs)f (zc)

]2 , (4.3)

and γ
log
long(k) = ε

k

π(1 + zc)H2(Zs)[
H(Zs)g(zc)− J(Zs)f (zc)

]2 + [
πH(Zs)f (zc)

]2 . (4.4)

The dependence upon the physical parameters, Fr, We, Cmin and/or kcap, is contained in
the inverse phase speed, p, for the exponential profile, or the critical level, zc, and the
transformed inflexion point, Zs, for the logarithmic profile.

For capillary–gravity waves and the logarithmic profile we compare the numerical
evaluation of μ and γ with our asymptotic expressions in figure 4, and note that the
plots for the exponential profile are very similar. In anticipation of the strong wind limit
(see § 5.2), we have chosen the control parameters, kcap and Cmin, such that the fastest
growing waves are driven by both gravity and surface tension. We maintain the scaling
of the wavenumber with the length scale of the wind profile, L, although we note that we
could also use the capillary wavelength. For both profiles, the asymptotics show very good
agreement with the numerics, even when k = O(1). The normalized growth rate, γ , has a
maximum at k = k� in the long wave regime. The deviation from the Jeffreys sheltering
hypothesis, as captured byμ (cf. (2.10)), is equal to zero for a wavenumber close to k = k�,
indicating that the fastest growing wave is such that the aerodynamic pressure is almost
in phase with the wave slope. Thus, we demonstrate the validity of Jeffreys’ intuition
of wind-wave growth and show that the assumption of Conte & Miles (1959) and Miles
(1959) that α < 0 was erroneous.

4.2. Classical case: logarithmic profile and σ = 0
Plant (1982) collected experimental data for the normalized energy growth rate
(multiplied by 2π). In figure 5, we compare his results with the long wave asymptotics
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Figure 4. Long wave asymptotic results for capillary–gravity waves and the logarithmic profile. (a) Twice the
wind-dependent relative change of phase speed, μ. (b) The normalized energy growth rate, γ , as a function of
the dimensionless wavenumber, k = kL, where L is the length scale associated with the wind profile. (c) Plot
of γ vs μ for two values of Cmin.

for the logarithmic profile and gravity waves characterized by a Froude number
Fr = 12; the range of k used here is [10−5, 0.135]. Our analysis provides a good fit of the
entire range of data, contrary to that of Miles (1993). Nonetheless, the measurements were
made in different conditions and the data analysed using different dispersion relations;
for instance, Larson & Wright (1975) considered capillary–gravity waves. Therefore, it
would be more appropriate to consider a range of Froude numbers, or more generally a
range of Cmin and kcap, the control parameters for capillary–gravity waves. In addition to
the challenging aspects of making these measurements, this may explain the significant
scatter of the data.

4.3. Interpretive framework of the Miles mechanism
Jeffreys (1925) proposed that wind waves grow because of a pressure asymmetry due to
flow separation: the air flowing over a wave separates on the downwind side and reattaches
on the upwind side of the next crest. Banner & Melville (1976) argue that there is no air
flow separation unless the waves break. In § 4.1 we showed that the condition for optimal
growth is equivalent to Jeffreys’ idea of the aerodynamic pressure being in phase with the
wave slope. We develop this finding in § 5 with the aid of the strong wind limit. Jeffreys’
idea can be understood as follows. In the absence of wind, the aerodynamic pressure is in a
phase opposite to that of the surface displacement – high pressure at the wave troughs, low
pressure at the wave crests – and the streamlines of the air flow adjust to the water surface.
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Larson & Wright (1975)
Snyder et al. (1981), wave-following sensors

Snyder et al. (1981), fixed sensors
Miles (1993)
Long gravity waves, Fr = 12, logarithmic profile

Shemdin & Hsu (1967)
Wu et al. (1977, 1979)

100

u�/c0
10–1

10–5

10–4

10–3

10–2

10–1

100

2πγ

Figure 5. Comparison of the normalized energy growth rate (multiplied by 2π) calculated using the long
wavelength asymptotics for the logarithmic profile and gravity waves characterized by a Froude number
Fr = 12, with the experimental data compiled by Plant (1982). The dashed line shows the results of Miles
(1993) for the same Froude number.

x

z

N
M

High pressure Low pressure

Figure 6. Streamlines of the air flow (dashed) over water waves, modified from Stewart (1974). The solid line
depicts the water surface, defined by the displacement η(x, t) = a cos(kx − ωt). The wave slope is ∂xη(x, t) =
−ka sin(kx − ωt), and the vertical speed of the points on that curve is ∂tη(x, t) = ωa sin(kx − ωt). Point M
has a phase equal to −π/2 (positive slope), and thus moves downward. Point N has a phase equal to π/2
(negative slope), and thus moves upward. The pressure asymmetry, caused by the phase shift of the streamlines,
enhances the motion of M and N. Thick black arrows represent the velocity field of the air flow perturbation,
u = ux̂ + wẑ. We observe that uw < 0, where the overbar denotes the average over a wavelength.

For growth to happen, a phase shift of the streamlines is required (Lighthill 1962; Stewart
1974), as shown in figure 6. The optimal phase shift can even be intuited by observing
that a node on the windward side (point M) is moving down while a node on the leeward
side (point N) is moving up. Therefore, if the pressure is maximal windward and minimal
leeward, the motion of the nodes will be enhanced, and hence the optimal phase shift is
equal to π/2.

Mathematically, a non-zero phase shift can only arise from a complex leading-order
streamfunction amplitude; ψ̂0(z) ∈ C. We recall that ψ̂0 is the first term in an expansion
in powers of the air/water density ratio ε, regarded as a coupling constant. Therefore, ψ̂0
determines the neutral perturbation induced by the water waves on the air flow. Because
the Rayleigh equation (2.7) has real coefficients, only a singularity can lead to a complex
solution and hence to a critical layer.
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In § 2, we introduced the wave-induced Reynolds stress, τ = −ρauw, where u and w are
the velocity components of the air flow perturbation and the overbar denotes the average
over a wavelength. It is evident from figure 6 that a phase shift of the streamlines implies
that τ > 0. This view of the growth in terms of a positive wave-induced Reynolds stress
was first pointed out by Stewart (1974) and formalized by Janssen (2004), and we made the
connection with the energy growth rate in the end of § 2.2. The leading-order amplitude of
τ(z, t) is shown in (2.15) and clearly displays the necessity of a complex streamfunction.
(Note that the quantity on the right-hand side of (2.15) is piecewise constant.) As a
consequence of the global property (2.23), τ̂0 maintains the same positive value from the
water surface up to the critical level, z = zc, and then jumps to zero as it must vanish in
the far field.

Since the original work of Miles (1957) our understanding of the basic question of how
wind waves grow has advanced in three key aspects: (i) waves grow due to the work of
a positive wave-induced Reynolds stress; (ii) waves grow due to the phase shift of the
streamlines of the air flow; and (iii) waves grow due to an asymmetric pressure distribution.
Our contribution here is to prove that for optimal growth the phase shift must be equal
to π/2, as intuited by Jeffreys. Furthermore, we made clear that all these contributions
have the same mathematical basis – a complex streamfunction – and the same physical
foundation – a critical layer.

5. Strong wind limit

Following Young & Wolfe (2013), we introduce a parameter m, which is a measure of the
strength of the wind. As seen in table 1, m depends on the restoring force. In the strong
wind limit, defined by m � 1, k� tends to the point at which μlong vanishes, which shows
that the Jeffreys sheltering hypothesis is in fact the condition for optimal growth of wind
waves. A derivation of the results stated below is given in Appendix C.

5.1. Exponential wind profile
For U(z) = 1 − e−z, when m � 1 the normalized energy growth rate becomes a
Lorentzian function

γ
exp
long,SW(k)

γmax(q)
=

[
Δ(q)

]2
[k − k�]2 + [

Δ(q)
]2 , (5.1)

where ‘SW’ denotes ‘strong wind’, and

γmax(q) ≡ ε

πm3q/2 and Δ(q) ≡ qπmq. (5.2a,b)

The parameterΔ is the half-width at half-maximum, and q is a rational number completely
determined by the restoring force. For gravity waves, q = 2/3 (Young & Wolfe 2013),
while q = 2 for capillary waves. Furthermore

k� = mq/2 − q2

2
mq ln(m)+ q4

4
m3q/2 [ln(m)]2 − q3

4
m3q/2 ln(m)+ · · · , (5.3)

which generalizes the asymptotic formula obtained by Young & Wolfe (2013) using the
exact solution of the Rayleigh equation.

In the case of capillary–gravity waves, kcap and m are both small parameters (see (3.1)),
so that there exists an exponent ν > 0 such that kcap = mν . This exponent, originating
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from the choice of the control parameters, determines the value of k�/kcap, and hence
whether the fastest growing waves are driven by gravity, surface tension or both. We find
that, if ν = 1/2, then k�/kcap = O(1), and hence the effects of gravity and surface tension
play an equal role in the fastest growing waves. For ν = 1/2, we generalize the strong
wind limit formula (5.1) to capillary–gravity waves by taking q = 1 and performing the
transformations

γmax(q) → γmax(q)
x2
� + 1

and Δ(q) → Δ(q)Q(x�), (5.4a,b)

where

x� ≡ k�

kcap
� 119

81
and Q(x�) ≡

[
x2
� + 1

]3/2 2
√

x�
x2
� + 3

. (5.5a,b)

We also obtain the asymptotic form of μexp
long as m � 1, which is

μ
exp
long,SW(k)

μmax(q)
= 2Δ(q)[k − k�]

[k − k�]2 + [
Δ(q)

]2 , with μmax(q) ≡ γmax

2
. (5.6)

From (5.1) and (5.6), we deduce that, in the strong wind limit, the graph of γ vs μ becomes
a circle of radius μmax, centred at (0, μmax).

5.2. Logarithmic wind profile
For U(z) = ln(1 + z)/κ , we find numerically that, in the strong wind limit, the fastest
growing gravity wave is determined by

k
grav
� ∼ N1

√
m, m � 1, (5.7)

where N1 = 0.22. Moreover, we show that the corresponding maximum growth rate is

γ grav
max ∼ N2

ε

κ2πm
, m � 1, (5.8)

where N2 = 0.29. Whereas the small parameter m = Fr−2 provides a convenient means
of carrying out the asymptotic analysis, we believe that the Froude number itself provides
better physical intuition. In particular, we see from figure 5 that in practice Fr = O(10).
Thus, we rewrite (5.7) and (5.8) as

k
grav
� ∼ N1

Fr
and γ grav

max ∼ N2
ε

κ2π
Fr2. (5.9a,b)

In figure 7(a), we plot the position of the maximum of γ log
long(k) and the position of the

zero of μlog
long(k) as a function of Fr. For both quantities, the results can be fitted with

an inverse power law, with the fit for γ slightly better than that for μ. Furthermore, the
two sets of points are quite close to each other, confirming that for large values of Fr the
position of the zero of μ is an excellent approximation to the position of the maximum
of γ . Figure 7(b) shows the amplitude of the maximum growth rate as a function of Fr,
fitted with a square law. We explain in Appendix C that (5.9b) is deduced from (5.9a)
by assuming that μ = 0 determines the maximum of γ . As shown in figure 7(a), such an
assumption is very reasonable but inevitably introduces some error.
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Figure 7. (a) The position of the maximum of γ log
long(k) and the position of the zero of μlog

long(k), and (b) the
amplitude of the maximum growth rate γ grav

max for gravity waves and the logarithmic wind profile as a function
of the Froude number.

In contrast, the growth rate of capillary waves does not have a maximum, but diverges
at small k and, independent of the value of m, μlog

long does not vanish. Nonetheless, the
assumption that the effect of gravity is negligible does not hold for k � kcap. Therefore,
this divergence of γ is not physical.

In the case of capillary–gravity waves, as for the exponential profile, there exists an
exponent ν̃ > 0 such that kcap = mν̃ . We show that k�/kcap = O(1) for ν̃ = 1 (see figure 4
where kcap = 0.8) and

γ CG
max ∼ N3

ε

π [κm]2 , m � 1, (5.10)

where N3 is a numerical constant. Therefore, the wind–wave interaction has similar overall
characteristics for both the exponential and the logarithmic wind profiles, differing only in
the numerical details.

6. Conclusion

We examine the Miles mechanism of wind-wave instability through the lens of an
asymptotic analysis of the Rayleigh equation. In the view of Miles (1957), free surface
waves with phase speed c0 perturb the wind field, and energy is transferred from the mean
flow to the perturbation at the critical level, z = zc, where the wind speed is equal to c0.
The subsequent feedback on the normal stress at the water surface leads to the growth of
waves. However, the coupling with the wind field also affects the phase speed. We calculate
the energy growth rate normalized by the angular frequency of free surface waves, γ ,
and twice the wind-dependent relative change of the phase speed, μ. The emphasis is on
μ and γ being respectively proportional to the real and imaginary parts of the Fourier
components of the aerodynamic pressure (see (2.10)). A parameter m accounts for the
competition between the shear in the air and the restoring force; gravity and/or surface
tension. In the strong wind limit, defined by m � 1, we find that (i) the functionsμ = μ(k)
and γ = γ (k) are self-similar with respect to m; (ii) the similarity exponents depend on
the restoring force and the wind profile (see (5.1) and (5.6) for the exponential profile); and
(iii) γ is maximal whenμ = 0, consistent with the sheltering hypothesis of Jeffreys (1925).
In other words, the growth of surface waves is optimal when the aerodynamic pressure
is in phase with the wave slope, and the overall instability mechanism is qualitatively
independent of the strength of the wind and of the restoring force. Additionally, we
show that long waves interact with the wind only between the mean water level and the
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critical level, z = zc. Finally, we use our asymptotic solutions to fit the entire range of data
compiled by Plant (1982).
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Appendix A. Inflexion point in the solution of the Rayleigh equation

The solution of the Rayleigh equation has an inflexion point at z = zs, determined by

k2 + U′′(z)
U(z)− C(k)

= 0. (A1)

Here, we solve (A1) in the small k limit.

A.1. The exponential profile: U(z) = 1 − e−z

For the exponential profile, we use the variable Z = z − zc and (A1) becomes

k2 + 1
1 − eZ = 0. (A2)

Hence,

Zs = ln
(

1 + 1
k2

)
∼ −2 ln(k), k � 1, (A3)

from which we see that the matching requirement, kZs → 0 as k → 0, is fulfilled.

A.2. The logarithmic profile: U(z) = ln(1 + z)/κ

For the logarithmic profile, with ε̂ = k(1 + zc) and Z = (1 + z)/(1 + zc), (A1) takes the
form

ε̂2Z2 ln(Z) = 1, ε̂ → 0+. (A4)

Equation (A4) is transcendental, but not in a particularly useful form for perturbation
theory. We let X ≡ ε̂Z and divide (A4) by − ln(ε̂). This yields

X2 [1 + ε̃ ln(X)
] = ε̃, with ε̃ ≡ − 1

ln(ε̂)
→ 0+. (A5)

Setting ε̃ = 0 on the left-hand side, we obtain X = √
ε̃ as a first approximation. Note that

we consistently have ε̃ ln(X) −→
ε̃→0+

0. Hence, we seek a solution of the form

X =
√
ε̃
[
1 + a(ε̃)

]
, with |a(ε̃)| � 1. (A6)

We substitute (A6) into (A5) to determine a(ε̃)

[
1 + a(ε̃)

]2 (1 + ε̃

2
ln(ε̃)+ ε̃ ln

[
1 + a(ε̃)

]) = 1, (A7)
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and since |a(ε̃)| � 1, (A7) can be simplified into

[
1 + 2a(ε̃)

] [
1 + ε̃

2
ln(ε̃)+ ε̃a(ε̃)

]
+ O[a2(ε̃)] = 1. (A8)

Neglecting the higher-order term ε̃a(ε̃), we eventually find

a(ε̃) = − ε̃
4

ln(ε̃)+ O[ε̃2 ln2(ε̃)], (A9)

from which we conclude that

Zs = ln
∣∣ln(ε̂)∣∣− 4 ln(ε̂)

4ε̂
∣∣ln(ε̂)∣∣3/2 , ε̂ � 1. (A10)

Finally, because the logarithm of a logarithm is an extremely slowly varying function of
its argument, we discard it and arrive at the approximation

Zs � 1

ε̂
∣∣ln(ε̂)∣∣1/2 . (A11)

This expression captures the behaviour of Zs as ε̂ goes to zero. In particular, it shows that
ε̂Zs decays very slowly to zero in the small ε̂ limit, as needed for matching.

Appendix B. Approximation of χc for the exponential profile when zc � 1

For the exponential profile, we construct in (3.13) a uniform asymptotic approximation
in terms of the variable Z = z − zc. Hence, the solution of the Rayleigh equation at the
critical level, z = zc, is

χc = lim
Z→0

Xunif (Z) = kG, (B1)

with the complex constant G given in (3.14). We rewrite (B1) as

χ−1
c = 1 − ezc

k

[
1 − k

1 − e−zc
− k ln(1 − e−zc)+ ikπ

]
. (B2)

For zc � 1, we approximate the exponential as

ezc = 1 + zc + O(z2
c ), (B3)

from which we readily find that

χ−1
c � 1 − zc

k
+ zc ln(zc)− iπzc. (B4)

This expression agrees with that obtained by Miles from the exact solution in an appendix
of Morland & Saffman (1992).

Appendix C. Maximum growth rate in the strong wind limit

Here, we determine the position and the amplitude of the normalized growth rate,
γ = γ (k), in the small m limit (see table 1).
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C.1. The exponential profile: U(z) = 1 − e−z

For the exponential profile, the normalized growth rate for long waves is given by (4.2),
which we write as

γ
exp
long(k) = D(k)

[N(k)]2 + [kπ]2 , (C1)

where
D(k) ≡ επk(p − 1)2 and N(k) ≡ 1 − kp + k ln(p). (C2a,b)

These functions depend on the wind parameter m through the dispersion relation p = p(k).
Clearly, γ exp

long becomes infinite when its denominator vanishes. Because k � 1, we expect
the maximum to occur when N = 0. Thus for a given p = p(k), we solve

N(k) = 0, as m � 1, (C3)

and retrospectively check that the solution, k�, accurately approximates the position of the
maximum of γ as m � 1. After some algebra, we obtain the expressions given in (5.3)
and (5.5a). Finally, we substitute the Taylor series approximations

D(k) = D(k�)+ O(k − k�) and N(k) = dN
dk

∣∣∣∣
k�

[k − k�] + O
(

[k − k�]2
)

(C4a,b)

into (C1), and obtain the Lorentzian function given in (5.1).
Noting that

μ
exp
long(k) = −ε(p − 1)2

N(k)

[N(k)]2 + [kπ]2 , (C5)

we use (C4b) to determine the asymptotic form of μexp
long given in (5.6).

C.2. The logarithmic profile: U(z) = ln(1 + z)/κ

For the logarithmic profile, the normalized growth rate for long waves is given by (4.4),
where the dependence on the wind parameter m comes from the critical level, zc. We
proceed as in § C.1: for a given function zc = zc(k), we numerically solve

H(Zs)g(zc)− J(Zs)f (zc) = 0. (C6)

There is no solution in the case of capillary waves. For gravity waves and m � 1, we
extract the power law given in (5.7), and use it to approximate γ log

long(k�); with the aid of
(C6), we eventually obtain (5.8). The procedure is similar for capillary–gravity waves.

Appendix D. Squire’s theorem for wind waves

For an inviscid flow between two fixed boundaries, Squire’s theorem states that, to each
three-dimensional disturbance, there corresponds a more unstable two-dimensional one
(Drazin & Reid 1981). Morland & Saffman (1992) suggest an extension of the Squire
transformation to gravity waves propagating in a direction different from the one in which
the wind blows. They conclude that the theorem holds for the exponential profile but fails
for the logarithmic profile. Here, we revisit their work and include the effect of surface
tension.

Let k̂ be the unit vector defining the direction of wave propagation and orient x̂ in the
direction of the mean wind field. We rotate the coordinate system by the angle θ ≡ (x̂, k̂)
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(Lin 1955) and show that only the component of the base-state flow in the direction of k̂
affects the disturbance. Therefore, we need only perform the transformation

V → V cos(θ), (D1)

where V is the velocity scale associated with the wind profile, which gives

m → m
cos2(θ)

. (D2)

For the exponential profile, we see from (5.2) that the transformation (D2) reduces the
maximum growth rate, regardless of the restoring force. In the case of the logarithmic
profile, the growth rate only has a maximum for gravity and capillary–gravity waves. Then,
from (5.8) and (5.10), we also infer a reduction in the maximum under the transformation
(D2).

We conclude that for both wind profiles three-dimensional perturbations have a
maximum growth rate of smaller amplitude than their two-dimensional counterparts.
Hence, Squire’s theorem extends to wind waves. The reason why Morland & Saffman
(1992) found that it does not hold in the case of the logarithmic profile is that they
used the viscous length scale instead of the roughness length as the characteristic length
scale L.

Appendix E. Fixed points of the air flow

A fixed point of the flow is given by u(x, z, t) = 0. After the expansions (2.5a,b), the
streamfunction of the air flow at the leading order in ε is

ψa
0 (x, z, t) = Re{ψ̂0(z) exp[ik(x − c0t)]}. (E1)

Because of the singularity at z = zc, ψ̂0 is a complex function. We denote ψ̂r and ψ̂i its
real and imaginary parts, respectively, and let x̃ ≡ x − c0t be the horizontal coordinate in
a frame moving at speed c0. Then, the components of the velocity field are

u(x̃, z) = ψ̂ ′
r(z) cos(kx̃)− ψ̂ ′

i (z) sin(kx̃) and w(x̃, z) = kψ̂r(z) sin(kx̃)+kψ̂i(z) cos(kx̃),
(E2a,b)

where again the prime denotes differentiation with respect to z. Here, we seek points
(x̃�, z�) such that

u(x̃�, z�) = 0,

w(x̃�, z�) = 0,

}
(E3)

and study their stability. Here, we have calculated the function χ(z) = ψ̂0(z)/ψ̂0(0),
where z is the dimensionless version of z. We now show that there is a unique point
z� located between zc and zs (the position of the inflexion point) where both the real
and imaginary parts of χ have an extremum, which implies u(x̃, z�) = 0 for any x̃. We
determine the nature of this extremum for a given value of k. Additionally, we prove that
the fixed points are elliptic.

E.1. The exponential profile: U(z) = 1 − e−z

For the exponential profile, we make the ansatz that the uniform asymptotic approximation
Xunif (Z) has an extremum at Z�  1, which we check a posteriori. The derivatives for
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Z  1 and k � 1 are

X′
unif (Z) ∼ G e−Z[1 − k(eZ + Z)], (E4)

and X′′
unif (Z) ∼ −G e−Z[keZ + 1 − k(eZ + Z)]. (E5)

Hence, Xunif has an extremum at the point Z�, the solution of

eZ + Z = 1
k
, k → 0+. (E6)

Using a similar method to that given in Appendix A, we show that

Z� = ln
{

1
k

+ ln(k)+ O [k ln(k)]
}
. (E7)

The position of the inflexion point, Zs, is given in (A3), thus

1 � Z� � Zs, as k � 1. (E8)

Using (E5) and (E6), together with the expression for G (see (3.14)), we obtain

X′′
unif (Zs) ∼ k(p − 1)

1 − kp + k ln(p)− ikπ

[1 − kp + k ln(p)]2 + [kπ]2 . (E9)

Because p > 1, we conclude that

Sign(Re{X′′
unif (Zs)}) = −Sign(μexp

long) and Im{X′′
unif (Zs)} < 0. (E10a,b)

E.2. The logarithmic profile: U(z) = ln(1 + z)/κ

For the logarithmic profile, the derivatives of the outer solution for Z > 1 are

X′
out(Z) = J − H li(Z)

ZsZ
G e−ε̂Zs, (E11)

and X′′
out(Z) = −HZ + ln(Z)[J − H li(Z)]

ZsZ2 ln(Z)
G e−ε̂Zs . (E12)

Hence, Xout has an extremum at a point Z� such that

li(Z�) = li(Zs)− ε̂Zs
2

H
. (E13)

Because the logarithmic integral function is monotonic, we have Z� < Zs. Using (E12) and
(E13) together with the expression for G (see (3.19)), we obtain

X′′
out(Zs) = −H(1 + zc)

Z� ln(Z�)
Hg − Jf + iπHF[

Hg − Jf
]2 + [

πHf
]2 , (E14)

from which we conclude that

Sign
(
Re
{
X′′

out(Zs)
}) = −Sign

(
μ

exp
long

)
and Im

{
X′′

out(Zs)
}
< 0. (E15a,b)
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E.3. The fixed points are elliptic
Having calculated z� and now need to determine x̃� such that w(x̃�, z�) = 0. Using the
polar form of ψ̂0(z) = |ψ̂0(z)|eiϕ(z), we have

w(x̃, z) = k|ψ̂0(z)| sin[kx̃ + ϕ(z)]. (E16)

As a consequence, for a given k there are two possible values for x̃�, defined as follows:

kx̃1� + ϕ(z�) = π and kx̃2� + ϕ(z�) = 0. (E17a,b)

For both wind profiles, the phase of χ(z�) is the same as the phase of G. Therefore, ϕ(z�) =
π/2 when k is equal to k�, the wavenumber of the fastest growing wave. Moreover

ϕ(z�) >
π

2
for k < k�, and ϕ(z�) <

π

2
otherwise. (E18)

In order to determine the stability of the fixed point we have just found, we study the
eigenvalues of the gradient velocity matrix. Using

cos[kx̃j� + ϕ(z�)] = (−1) j, j = 1, 2, (E19)

we obtain

∇u(x̃j�, z�) =
(

0 ψ̂ ′′
r (z�) cos(kx̃j�)− ψ̂ ′′

i (z�) sin(kx̃j�)

k2|ψ0(z�)|(−1) j 0

)
, j = 1, 2.

(E20)

The eigenvalues are the roots of the characteristic polynomial,

X2 + det ∇u(x̃j�, z�) = 0. (E21)

Using (E17) and (E18), together with the results of § E.1 and § E.2, we check that in all
cases

det ∇u(x̃j�, z�) > 0. (E22)

Thus, the eigenvalues are purely imaginary, and complex conjugates of each other.
Therefore, the fixed points are elliptic.
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