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The quark model

3.1 Introduction

The quark model arose from the analysis of symmetry patterns observed when
particles were grouped together according to their spin and parity. When the eight
mesons with J p = 0− are displayed in a strangeness (S) versus isospin (I3) plane,
they form the octet of Fig. 3.1. An identical pattern emerges for the eight vector
mesons with J p = 1− also shown in Fig. 3.1. The vector mesons are excited states
of the particles in the J p = 0− octet. The symmetry pattern was interpreted as a
generalization of the isospin group SU(2) to the group SU(3) which incorporates
both isospin and strangeness. Gell-Mann and Neeman (1964) proposed that the
eight baryons with J p = 1

2
+

also belong to an octet of SU(3), thus establishing a
parallelism between meson and baryon states. Finally, many static properties of the
particles exhibit the SU(3) symmetry.

Since the fundamental representation of the group SU(3) is a triplet, it is natural
to try to interpret the hadronic states in the octets as bound states of triplets or of
triplets with antitriplets. If the fundamental fields also carry baryon number, the
product of triplet ⊗ antitriplet would be mesons with zero baryon number. The
product of three triplets carries baryon number and contain octets and a decuplet
as was required by the observed states of baryons. This is the quark model of
Gell-Mann (1964) and Zweig (1964).

The spectroscopy of particles and their SU(3) properties are covered in many
books, for instance in the references at the end of this chapter, and we shall concen-
trate on symmetries of the currents, which are more relevant for the electroweak
theory.
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22 The quark model

Figure 3.1. Meson octets with J p = 0− and J p = 1−.

3.2 Current algebra

The original model contained a triplet of quarks

q =
⎛
⎝u

d
s

⎞
⎠ (3.1)

with the quantum numbers

Quark Q/e I I3 B Y

u 2/3 1/2 1/2 1/3 1/3
d −1/3 1/2 −1/2 1/3 1/3
s −1/3 0 0 1/3 −2/3

where Q, I, I3, B, and Y are the charge, isospin, third component of isospin, baryon
number, and hypercharge, respectively. The quantum numbers of the quarks satisfy
the Gell-Mann–Nishijima relation,

Q = T3 + Y

2
, (3.2)

a rule that was established originally for hadronic states.
Next we shall rewrite the currents in terms of quark fields and formulate several

of their properties. This approach is motivated by the fact that several properties of
the currents and their couplings to hadrons are explained as symmetry properties
of SU(3) and in many cases they are identical with predictions of the simple quark
model. In fact, for a long time the quark model was used as a tool for abstracting
properties and relations, whose validity is more general in field theories. In the
early days the quark model was supplemented with strong interactions mediated
by vector mesons in order to verify the validity of the results in theories with
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3.2 Current algebra 23

interactions. Among the regularities are relations between the masses of particles
within a multiplet and regularities of the currents. We describe below conservation
laws of the currents and outline the algebra of currents.

The electromagnetic interaction of leptons is

Lem
int = ej em

µ (x)Aµ(x), (3.3)

with

jµ(x) = ē(x)γµe(x) + µ̄(x)γµµ(x) + · · ·. (3.4)

Similarly, we can construct the electromagnetic current of quarks,

jµ(x) =
∑

i

eqi q̄iγµqi

= 2

3
ūγµu − 1

3
d̄γµd − 1

3
s̄γµs

= 1

2
(ūγµu − d̄γµd) + 1

6
(ūγµu + d̄γµd − 2s̄γµs). (3.5)

In the last equation we separated the current into two parts, in order to show explicitly
its SU(3) content. Let λa be the Gell-Mann matrices for SU(3), then we define vector
and axial currents

j a
µ(x) = q̄(x)γµ

λa

2
q(x) (3.6)

j a
µ5(x) = q̄(x)γµγ5

λa

2
q(x) (3.7)

with q given in Eq. (3.1). Then the electromagnetic current in (3.5) is

j em
µ (x) = j3

µ + 1√
3

j8
µ, (3.8)

which reproduces Eq. (2.11).
With the quark currents it is also convenient to study the symmetries of the

Lagrangian

Lquark = L0 + Lmass, (3.9)

with

L0 = iq̄ /∂q and Lmass = muūu + mdd̄d + mss̄s. (3.10)

We now state the invariance properties under global transformations. L0 is
invariant under the transformation

q −→ q ′ = Uq with U = eiθαλa/2, (3.11)
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24 The quark model

where θα are constants, i.e. independent of space and time. Such a transformation
is called global. In proving the invariance under unitary transformations recall that
eAeB = eA+B+ 1

2 [A,B], provided that A, B commute with [A, B]. The term Lmass is
not, in general, invariant under the global transformation. It becomes invariant only
when all quark masses are equal:

m = mu = md = ms. (3.12)

A consequence of the symmetry is the conservation of all vector currents. Consider

∂

∂xµ

{
ū(x, p′)γµd(x, p)

} = ∂

∂xµ
j †µ(x), (3.13)

which in momentum space becomes

ū(x, p′)
[

p/′ − p/
]
d(x, p) = (mu − md)ū(x, p′)d(x, p). (3.14)

This current is conserved when the two masses become equal.
Let us try to repeat this argument for axial transformations:

q −→ q ′ = V q = ei�αλa/2 ·γ5q. (3.15)

Now the kinetic term L0 is again invariant, but the mass term is not invariant even
when the masses are equal. The Lagrangian is invariant under global γ5 transfor-
mations when all quark masses are zero. In fact the axial current is not conserved
and its divergence is

∂

∂xµ
j †µ5(x) = ū(x, p′)

[
p/′ − p/

]
γ5d(x, p) = (mu + md)ū(x, p′)γ5d(x, p). (3.16)

When the Lagrangian is invariant under the axial transformations (3.15), all quark
masses must vanish and the axial current is conserved. The two cases are examples
of Noether’s theorem, which states that, for every continuous global transformation
that leaves the Lagrangian invariant, there is a current that is conserved.

Relations of the second class are abstracted from the quark model and establish
equal-time commutation relations of currents.

In quantum field theory the quark fields satisfy the following equal-time canon-
ical anticommutation relations:{

q†
τ (x), qτ ′(x ′)

}
x0=x ′

0
= δττ ′δ(3)(�x − �x ′),

(3.17){
qτ (x), qτ ′(x ′)

}
x0=x ′

0
=

{
q†

τ (x), q†
τ ′(x ′)

}
x0=x ′

0

= 0,

where τ and τ ′ run from 1 to 12, i.e. there are three flavors and to each of them
there correspond four spinor components. One can derive equal-time commutation
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3.2 Current algebra 25

relations for the SU(3) currents using the identity

[AB, C D] = −AC{D, B} + A{C, B}D − C{D, A}B + {C, A}DB. (3.18)

The final result, outlined in Problem 2, is[
j a
µ(x), j b

0 (x ′)
]

x0=x ′
0
= − f abc j c

µ(x)δ(3)(�x − �x ′). (3.19)

On integrating this equation over three-dimensional space we arrive at[
j a
µ(x), Qb(x0)

]
x0=x ′

0
= i f abc j c

µ(x), (3.20)

where Qb(x0) is the charge corresponding to the vector current, defined by

Qb(x0) =
∫

d3x jb
0 (x). (3.21)

It is now straightforward to derive from (3.20) the commutation relation for the
charges: [

Qa, Qb
] = i f abc Qc. (3.22)

Similarly, we can repeat the above steps for the axial current to obtain[
Qa, Qb

5

] = i f abc Qc
5, (3.23)[

Qa
5, Qb

5

] = i f abc Qc. (3.24)

We see that the vector and axial charges form an algebra that closes under commu-
tation relations. If we define left- and right-handed charges

Qa
L,R = 1

2

(
Qa ∓ Qb

5

)
, (3.25)

they also satisfy the algebra[
Qa

L, Qb
R

] = 0,[
Qa

L, Qb
L

] = i f abc Qc
L,

[
Qa

R, Qb
R

] = i f abc Qc
R. (3.26)

It says that the left-handed sector does not communicate with the right-handed
sector. Thus each sector by itself forms an SU(3) algebra. The group now is
SU(3)L × SU(3)R, known as the chiral group. The theory based on the chiral group
and the approximation that the u and d quark masses are very small, relative to
those of the other quarks, is known as chiral theory. The chiral theory can explain
many of the regularities observed at small masses and momenta. We shall have the
opportunity to remark on the implications of such a theory in Sections 5.2 and 15.6.

We can also express the weak hadronic current given by

jhad
µ = ūγµ(1 − γ5)d cos θc + ūγµ(1 − γ5)s sin θc (3.27)
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26 The quark model

in terms of the octet currents (3.6) and (3.7). Defining

V a
µ = j a

µ, Aa
µ = j a

µ5, (3.28)

one obtains

jhad
µ = [(

V 1
µ + iV 2

µ

) − (
A1

µ + iA2
µ

)]
cos θc + [(

V 4
µ + iV 5

µ

) − (
A4

µ + iA5
µ

)]
sin θc

(3.29)

and we recover the 	S = 0 part of (2.17) and the 	S = 1 part of (2.18).
Expressing the hadronic currents in terms of quark fields sets them in one-to-

one correspondence with the leptonic currents. The equal-time commutators give
non-linear relations between observables, thus determining their relative strengths.
Prominent among them are several sum rules that are valid at small and large
momentum transfers.

3.3 Quantum chromodynamics

In spite of its successes, the quark model was received with a lot of skepticism
because there was no experimental evidence for particles with fractional charges.
To some authors this remained a mystery; to others the quarks remained a mnemonic
for deriving useful rules. An additional objection concerned the fact that there was
no theory describing the strong interactions among quarks. The attitude changed
in the late sixties when inelastic electron–nucleon-scattering experiments provided
evidence for point-like constituents, partons, within hadrons. Furthermore, corre-
lations between electron- and neutrino-induced reactions provided evidence that
the partons carried the quark quantum numbers. These topics will be studied in
detail in Chapters 10 and 11. The final result was the formulation of a theory for
the strong interactions whose fundamental fields are the quark and vector mesons –
the gluons.

The theory of strong interactions is known as quantum chromodynamics or, in
short, QCD. There are strong indications that each quark carries an additional quan-
tum number called color; hence the name of the theory chromodynamics (color =
chroma). The choice of names of the colors as red, white, and blue, or another
triplet of names, is arbitrary but the fact that they are three in number is important.
The quarks interact with each other by the exchange of vector bosons that change
the colors of the quarks (Gross and Wilczek, 1973; Politzer, 1973).

We include in this section a few introductory remarks and discuss topics related
to QCD in various sections of the book.
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igsγµ
λa

2

Figure 3.2. A gluon–fermion vertex.

The theory of strong interactions is in many respects similar to QED. We write
a quark of a specific flavor as a triplet of color SU(3):

q(x) =
⎛
⎝ qr

qw

qb

⎞
⎠.

The theory also contains eight vector mesons – the gluons – coupled to quarks.
There is again a vector vertex, with the new coupling constant gs for the strong
interactions, and a λα matrix acting on the quarks. The effective coupling constant
for the strong interactions,

αs(p) = g2
s (p)

4π
,

is now large and calculations with the exchange of a single gluon are neither accurate
nor useful. One considers the cumulative effect from the exchange of many gluons,
which modify the coupling constant, making it a function of momentum carried by
the gluon.

The strong coupling constant has a remarkable property. At small momenta it
is very large, binding the quarks into hadrons, so quarks cannot be separated as
asymptotic particles. At large momenta of the gluons, the strong coupling constant
becomes small, making perturbative calculations possible. As a consequence there
are two types of calculations in QCD. One of them involves large momenta, for
which perturbative summations of many gluons are possible. In a second class of
calculations, numerical simulations of QCD replace continuous space-time by a
finite but large four-dimensional lattice for space and time. Sophisticated computer
programs have been written for handling gluon and quark fields on the lattice.
These are non-perturbative calculations that should produce, among other results,
confinement.

Throughout this book we shall study decays and reactions that involve both
strong and weak interactions. The weak interactions of hadrons will be expressed
in terms of the quark substructure by writing the currents in terms of quark fields and
estimating or calculating matrix elements of quark operators for transitions between
hadronic states. The success of these methods varies from process to process. This
is a still developing field of research, as will become evident in several sections of
this book.
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28 The quark model

Problems for Chapter 3

1. The lowest-lying baryon states are built with three quarks with L = 0. There are ten states
with J p = 3+

2 . To this decuplet belongs 	++(uuu). Construct the wave function of 	++

with space, spin, and color contributions so that it obeys Fermi statistics. Finally, argue
that color is necessary in order for the Pauli principle to be preserved. See Kokkedee
(1969).

2. The weak vector current builds, together with the electromagnetic current, an algebra.
For a better understanding we consider the SU(2) algebra. The generators of the group
SU(2) are the matrices τ 1, τ 2, and τ 3, with the following property:[

τ i , τ j
] = 2iεi jkτk .

We now define the currents

j a
µ = q̄(x)

τ a

2
γµq(x),

which satisfy an algebra.
The fermion fields obey the canonical quantization{

q†
τ (x), qτ ′ (y)

}
x0=y0

= δττ ′δ(3)(�x − �y)

and

{qτ (x), qτ ′ (y)}x0=y0
= {

q†
τ (x), q†

τ ′ (y)
}

x0=y0
= 0.

(a) Show the following relation:[
�ατ a, �βτ b

] = 1

2

{
�α, �β

}[
τ a, τ b

] + 1

2

[
�α, �β

]{
τ a, τ b

}
,

where �α and �β are arbitrary Dirac matrices.
(b) Using the identity

[AB, C D] = −AC{B, D} + A{C, B}D − C{D, A}B + {C, A}DB,

show that [
q†

σ (x)qτ (x), q†
σ ′ (y)qτ ′ (y)

]
x0=y0

= {
q†

σ (x)δσ ′τ qτ ′ (y) − q†
σ ′ (y)δστ ′qτ (x)

}
δ(3)(�x − �y)|x0=y0 .

(c) It follows now that[
iq̄γµ

τ a

2
q(x), iq̄γ0

τ b

2
q(y)

]
x0=y0

= −iεabcq̄(x)
τ c

2
γµq(y)δ(3)(�x − �y).
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