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DIRECT FINITENESS OF CERTAIN MONOID ALGEBRAS

by W. D. MUNN

(Received 8th September 1994)

A semigroup is said to be completely regular if and only if each of its elements lies in a subgroup. It is shown
that the algebra of a completely regular monoid (semigroup with identity) over a field of characteristic zero is
directly finite.

1991 Mathematics subject classification: 16S36, 20M25.

A ring R with unity 1 is termed directly finite (or von Neumann finite) if and only if,
for all a,beR,ab=l implies ba = \. Kaplansky [3] has shown that the group algebra of
an arbitrary group over a field of characteristic zero is directly finite. The purpose of
this note is to generalise Kaplansky's result from group algebras to a wider class of
monoid algebras, namely those in which the monoids are completely regular.

To facilitate the discussion, it is convenient to introduce a further concept. A ring R is
said to be quasidirectly finite if and only if, for all a,beR,ab = a + b implies ab = ba. It is
easily seen that, for the case in which R has a unity, direct finiteness and quasidirect
finiteness are equivalent properties. However, the second property can be useful in the
study of a monoid algebra—for, in general, there are important auxiliary semigroup
algebras that need not have unity elements. In fact we shall show that the algebra of a
completely regular semigroup over a field of characteristic zero is quasidirectly finite.
The result stated in the summary above is an immediate consequence.

We begin with an elementary lemma that provides a basis for induction.

Lemma 1. Let R be a ring, let S be a subring of R and let T be an ideal of R such
that R = S@T. Then R is quasidirectly finite if and only if S and T are quasidirectly
finite.

Proof. It is clear that if R is quasidirectly finite then so also are S and T. Assume,
conversely, that S and T are quasidirectly finite and suppose that a,beR are such that
ab = a + b. Write a = at +a2 and b = b1+b2, where al,bleS and a2,b2e T. Then

albi=ai+bl, (1)

a2b2 + alb2 + a2bl = a2 + b2. (2)
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Since S is quasidirectly finite, (1) implies that

Mi=*i+ai- (3)

Now let Rl be an overring of R containing a unity 1. We operate in Rl and deduce
results on R itself. From (3), the equation

(1 -* , ) ( ! -* i ) = l (4)

holds in R1. Thus, from (4) and (2),

Hence, since a2{\ —&i) and (1 —al)b2 lie in T and this ring is quasidirectly finite,

+ «2(l-*i)- (5)

Pre- and post-multiplying both sides of (5) by 1— bl and 1— al respectively, and using
(4), we see that

= b2{\-al)+(\-bl)a2;

that is,

(6)

Finally, (3) and (6) combine to give ba = b + a. Thus R is quasidirectly finite. •

It is easy to deduce from Lemma 1 (or indeed to show directly) that if R is a
quasidirectly finite ring and the ring Rl is formed by adjoining a unity to R in the usual
way then Rl is directly finite.

By a semilattice we mean a commutative semigroup consisting of idempotents. A ring
R is said to be graded by a semilattice Y if and only if R has a family of subrings
Rx{a.eY) (called the homogeneous components of R) such that R = @xeY^x and, for all
a,/?e Y,RaRfi^Rafi. The main result below relies on the fact that the semigroup algebras
that we consider have a natural semilattice-grading.

First, we establish

Lemma 2. Let R be a semilattice-graded ring. Then R is quasidirectly finite if and
only if each of its homogeneous components is quasidirectly finite.

Proof. Let R = ©aerRa< where Y is a semilattice, each Rx(<xe Y) is a subring of R
and, for all a, j? e y,/?ai?p c fl^. Clearly, if R is quasidirectly finite then so is each Rx.
Now suppose that, for all a e Y, Ra is quasidirectly finite. For xeR, we denote the
i?a-component of x by xa (a e Y).
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Let a,beR be such that ab = a + b. We may assume that a and b are both nonzero.
Let Z denote the subsemigroup of Y generated by the (finite) subset {a 6 Y: oa # 0 or
ba^0}. Since Y is locally finite, Z is a finite semilattice. Write S: = @aeZRa. Then S is a
subring of R containing a and b and it suffices to show that S is quasidirectly finite.
Note first that Z is partially ordered by the rule that

0L^P<>aP( = P<x) = a (<x,j9eZ).

Let « = |Z| and construct subsets Zl,Z2,..,Zn of Z successively by taking Z1 = {w},
where co is the least element of Z, and ZI + 1 = Z f u {a} if 1 ^i<n, where a is minimal in
Z\Z{ under the partial ordering. Write 7]-: = (J)a6Z.K« (i = 1,2, . . . ,n). It is clear that each
7] is an ideal of S and that

Now 7X is quasidirectly finite, since Tl = R01. Assume that n>\ and that 7] is
quasidirectly finite for i < n. By definition, 7] + 1 = i?a © 7] for some a e Z. Hence, by
Lemma 1, Ti+i is quasidirectly finite. Thus, by induction, we see that S is quasidirectly
finite, as required. •

We adopt the basic terminology and notation for semigroups established in [2] (with
the exception of the now-standard phrase 'completely regular' (see below)). Throughout,
the symbol F denotes a field. The semigroup algebra [2, §5.2] of a semigroup S over F
is denoted by F[S~] and, for a positive integer n, the F-algebra consisting of all n x n
matrices over an F-algebra R (under the usual operations) is denoted by Mn(R).

The following result was obtained by Kaplansky [3, p. 122]. (See also [4] and [5,
Corollary 2.1.9 and Example 9, p. 65].)

Lemma 3. Let F have characteristic zero and let G be a group. Then, for all positive
integers n, Mn(F[G~\) is directly finite.

From Lemma 3 we derive

Lemma 4. Let F have characteristic zero and let S be a completely simple semigroup.
Then F\_S] is quasidirectly finite.

Proof. By Rees's theorem [2, Theorem 3.5], S = Ji(G; I, A; P) for some group G, some
nonempty sets / and A and some A x / matrix P over G. Then, as in [2, Lemma 5.17],
without loss of generality we can assume that F[S]=^//(F[G];/,A;/>), the algebra of all
/ x A matrices over F[G~\ having at most finitely many nonzero entries, with the usual
addition and scalar multiplication, and with multiplication o defined in terms of
ordinary matrix multiplication by

XoY = XPY (X,YeF[ST\).
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Let A,BeF[S] be such that A°B = A + B. We have to show that AoB = B°A. Choose
nonempty finite subsets / , and A t of / and A, respectively, such that all nonzero entries
of A and B in each case lie in the / , x A , submatrix. Let T be the subalgebra of F[S>]
generated by A and B. Then each element of T is such that all entries lying outside the
/ ^ A , submatrix are zero. Let Pl denote the \ l x l l submatrix of P and let M denote
the algebra ^(F[G];/ i ,A,;P!) . Clearly, the mapping from T into M defined by
Xh-^Xl(XeT), where Xx is the IixAl submatrix of X, is an injective algebra
homomorphism. Thus

AiPlBl=A1 + B1 (1)

and it suffices to show that AlPlBl=BlP1A1.
Let N denote the F-algebra of all / , x / , matrices over F[G] under the usual

operations. Now AlPl and BtPi lie in N; and, from (1), (A1Pi)(BlP1) = AiPl + BlPl.
But, by Lemma 3 (since /1 is finite), N is directly finite and so quasidirectly finite. Hence
A1P1 + B1Pl=(B1P1)(A1P1). Post-multiplying by Bt and applying (1), we find that

Thus A1P1B1=B1P1Al. •

Remark. The same argument yields the more general result that the contracted
semigroup algebra F0[S] of a completely 0-simple semigroup S over a field F of
characteristic zero is quasidirectly finite. (Contracted semigroup algebras are defined in
[2, §5.2].)

A semigroup S is said to be completely regular if and only if each element of S lies in
a subgroup of S; that is, if and only if S is a union of groups. Such semigroups (under
the title 'semigroups admitting relative inverses') were first studied by Clifford [1], who
characterised them as semilattices of completely simple semigroups (see [2, Chapter 4]).

We now have the

Theorem. Let F be a field of characteristic zero and let S be a completely regular
semigroup. Then F[S] is quasidirectly finite.

Proof. By [2, Theorem 4.6], there exists a semilattice Y and a family of pairwise-
disjoint completely simple semigroups Sa(ct6Y) such that S=\JaeYSa and, for all
a,j?ey, SaSp^Sxp. (In fact, Y is isomorphic to the semilattice of principal ideals of S
and the Sx are the /-classes of S.) Then F[S] = 0 a e y F [ S J and, for all a,/?eY,

F[Sp]£F[S(Ip]; that is, F[S] is graded by Y and has homogeneous components
( a e Y)- By Lemma 4, each F[Sa~\ is quasidirectly finite. Hence, by Lemma 2, F[_S]

is quasidirectly finite. •

Corollary. Let F be a field of characteristic zero and let S be a completely regular
monoid. Then F[S] is directly finite.
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Remark. Since, for any positive integer n, M,,(F[G]) is directly finite when G is an
abelian group and F is an arbitrary field, a theorem analogous to that above can be
obtained by replacing the hypothesis that F has characteristic zero by the requirement
that every subgroup of S be abelian. In particular, it follows that if F is an arbitrary
field and S is a band (that is, a semigroup of idempotents) then F\_S] is quasidirectly
finite.
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