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Abstract

By using fixed point index theory, we present the existence of positive solutions for a
Sturm-Liouville singular boundary value problem with at least one positive solution. Our
results significantly extend and improve many known results even for non-singular cases.

1. Introduction

In this paper, we show the existence of positive solutions for the following Sturm-
Liouville singular boundary value problem (BVP):

. - , , - w - w , , Xg(t)F(t,u) = 0, 0 < r < 1 .
P(t)
au(0) - lim Pp(t)u'{t) = 0, (1.1)

where a, /?, y, 8 > 0, 0y + ay + a8 > 0, A. > 0, F : [0, 1] x [0, +oo) -> [0, +00)
is a continuous function and p(t) and g(t) may be singular at t = 0 and/or t = 1.

This problem arises in a variety of applications and the existence of positive solu-
tions is very important (see [1,7-9,12] for references along these lines). If p (r) = 1,
kg(t)F(t,x) = aiOx" for 0 < p < 1, $ = 8 = 0 and a = y = 1, BVP (1.1)
becomes the well-known Emden-Fowler equation with a Dirichlet boundary value
condition. In [12], using the method of lower and upper solutions, Zhang obtained
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a necessary and sufficient condition for the existence of positive solutions for the
Emden-Fowler equation with a Dirichlet boundary value condition which is a spe-
cial case of BVP (1.1). In [3] and [6], Dalmasso, and Ha and Lee supposed some
monotone conditions on F(t,x) to prove the existence of positive solutions for BVP
(1.1) in a suitable subinterval for k. In [9] and [3,4,6,7,10], the authors proved their
main results (when p (t) = 1 and under suitable boundary value conditions) by using
the norm-type cone expansion and compression theorem and under the assumption
that F(t, x) is either superlinear or is sublinear.

In this paper, without any monotone assumptions imposed on F(t, x) with respect
to x, we consider a more general BVP (1.1) with more general boundary conditions.
We also allow p (t) and g(t) to have suitable singularities (such as t = 0 and/or t = 1).
Thus the aim of this paper is to obtain at least one positive solution for BVP (1.1) in
an explicit interval for any A. and then we show how to apply our theorems to prove
the existence of positive solutions to the Sturm-Liouville singular BVP. Our results
extend and improve many known results in [4,7-10,12].

By a positive solution of BVP (1.1), we mean a function u € C([0, 1], R+) f]
C'((0, 1), R+) with p(t)u'(t) e C'((0, 1), R+) satisfying BVP (1.1) with u being
nonnegative and not identically zero on [0, 1]. If, for a particular k, BVP (1.1) has a
positive solution u, the k is called an eigenvalue and u a corresponding eigenfunction
of BVP (1.1).

We adopt the following assumptions:

(//,) p € C'((0, 1), (0, +oo)), 0 < /0' dt/p(t) < +oo;
(H2) F{t, x) e C([0, 1] x [0, +oo), [0, +oo)), g(t) e C((0, 1), [0, +oo)) and

0 < / G(t, t)p(t)g(t)dt < +00,
Jo

where G(t, s) is Green's function for

1
0

Pit)

au(O)- lim 6p(t)u'(t) = 0,

- lim 8p(t)u'(t) =0,

that is,

G(t, s) =
-(/3 + aB(0, s))(S + yB(t, 1)), 0 < s < t < 1,
P

-03 + aB(0, t))(S + yB(s, 1)), 0 < t < s < 1,
P

(1.2)

where B(t, s) = f' dv/p(v) and p = a8 + ayB(0, 1) + fry.
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This paper is organised as follows. In Section 2, we present some properties of
Green's functions (1.2) to be used in defining a positive operator. Also, we give
some preliminaries. In Section 3, we give our main results and applications. We will
give an appropriate Banach space and construct a cone applying the fixed point index
theorem to show the existence of positive solutions for BVP (1.1) in an open interval
of eigenvalues. In Section 4, we give our discussions on the conditions of the main
theorems. We state some fixed point index theorems which will be needed in this
paper. The following Lemmas 1.1 and 1.2 can be found in [5].

LEMMA 1.1. Let K be a positive cone in real Banach space E, Q be a bounded
open set of E, 6 € £2 and T : K D £2 —> K be completely continuous (or more
generally, condensing). Suppose that Tu ^ (j,uforany u e KOdSlandfj, > 1. Then

LEMMA 1.2. Let K be a positive cone in real Banach space E and Q.be a bounded
open set of E. Let T : K C\Q -> K be completely continuous and suppose that

(i) infu£Kndn \\Tu\\ > 0,
(ii) Tu £ (Aufor any u e K D 3£2 and 0 < ix < 1.

Theni(T,KnQ,K) = 0.

2. Some preliminaries

For Green's function (1.2), it is easily to verify the following properties:

(I) G(t,s) < G(s,s) < Q3 + afl(0, l))(<5 + yfl(0, l))/p < +oo, for any
t, s € [0, 1].

(II) If [a, b] C (0, 1), then G(t, s) > (fi + aB(0, a))(S + yB(b, l))/p > 0 for
any t, s € [a, b\.

(HI) G(t, s) > coG(s, s) for any t e [a, b] c (0, 1) and s e [0, 1], where

) p + ctB(fi,a)

Note that it is easy to check that 0 < co < 1.

REMARK 2.1. It follows from (I), (//]) and (H2) that there exist 0 < a < b < 1
such that

0< / p(t)dt < +oo, 0< min / G(t, s)p(s)g(s)ds < +oo,

0 < max / G(t, s)p(s)g(s)ds < +oo.

'elC'lJo

https://doi.org/10.1017/S1446181100013560 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013560


560 Yan Sun, Lishan Liu and Yeol Je Cho [4]

In the rest of this paper, a and b will be taken this way and we denote

f"
I = min I G(t,s)p(s)g(s)ds and

tela.b] Ja

L = max I G(t,s)p(s)g(s)ds.

Note that 0 < I < L < +00. Now, let

E = C[0, 1], C+[0, 1] = {« 6 C[0, 1] I u > 0},

K = \u C+[0, min
ie[a,b]

where o> is the constant defined by (2.1) and \\u\\ = sup,€[0,, |M(/)I- It is easy to see
that K is a cone in C[0, 1] and K c C+[0, 1].

From the condition (H2) and the property (I) of Green's function (1.2), we may
define an operator T : C+[0, 1] -> C+[0,1] by

(Tu)(t) = X I G(t, s)p(s)g(s)F(s, u(s))ds.
Jo

It is well known that « is a solution of BVP (1.1) if and only if u € K is a fixed
point of the operator T.

LEMMA 2.1. Assume that the conditions (Hi)-(H2) hold. Then T : C+[0, 1] -*
C+[0, 1] Ma completely continuous operator.

PROOF. By the Lebesgue dominated convergence theorem, it is easy to prove that
T : C+[0, 1] -»• C+[0, 1] is continuous and

(Tu)'(t) = -L(kj (p+aB(O,s))p(s)g(s)F(s,u(s))ds\

8 + yB(s, l))p(s)g(s)F(s, u(s))ds\ . (2.2)

If g{t) 6 C[0, 1] and F(t, x) e C([0, 1] x [0, 00)), then we can see that (2.2) implies
that T : C+[0, 1] -> C+[0, 1] is compact.

We now discuss a more general situation about g(t) 6 C(0, 1) and F(t, x) e
C([0, 1] x [0, 00)). We define a function, for n > 2, by

inf{#(0, sU/«)}. i f O < r < l / n ,

g(t), if 1/n < f < (n - l)//i,

inf{g(0,g(l/w)}, if (n - l)/n < f < 1.
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We define an operator Tn : C
+[0, 1] -»• C+[0, 1] by

rB«)(0 = k [
Jo

(rB«)(r) = X / G(f, s)p(s)gn(s)F(s, u(s))ds,
Jo

where n > 2, « e C[0, 1] and r 6 [0, 1]. Obviously, Tn is compact on C+[0, 1] for
any n > 2. Denote BR = {u e C+[0, 1] | ||w|| < R}. Then {Tn} converges uniformly
to T as n -> +oo. In fact, for any 7? > 0, f 6 [0, 1] and M e Bs, it follows from (//2)
that

f kG(t, s)p(s)[g(s) - gn(s)]F(s, u(s))ds
Jo

k f1/n

-(8 + yB(t,l)) / (P + aB(O,s))p(.s)\g(s)-gn(s)\F(s, u(s))ds
P Jo

-G8+a5(0
P

. 0) [ (
J(n-l)/n

< C(R)k(j (8 + aB(O, s))p(s)\g(s) - gn(s)\ds

fl \

J(n-\)/n )

where

), 1)} max__ F(t,x),

and we have used G(t, s) < G(s, s) for t, s e [0, 1]. Hence {Tn) converges uniformly
to T as n —> oo and so T is completely continuous also. This completes the proof.

LEMMA 2.2. 7\C+[0, 1]) c K and then T(K) c K.

PROOF. For all u e C+[0, 1], f e [0, 1], we have

(Tu)(t) = X I G(t,s)p(s)g(s)F(s,u(s))ds
Jo

<k f G{s,s)p(s)g(s)F(s, u(s))ds.
Jo

Thus it follows that

||rii|| < k f G(s, s)p(s)g(s)F(s, u(s))ds.
Jo
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On the other hand, by (III), we have

min (Tu)(t) = min A. / G(t, s)p(s)g(s)F(s, u(s))ds
t€[a,b] te[a,b] JQ

>kco I G(s, s)p(s)g(s)F(s, u(s))ds.
JO

This implies min,£[a,b\(Tu)(t) > a>|| 5"«|| and thus Tu e K. Therefore we have
T(C+[O, 1]) C K. This completes the proof.

3. The main results and examples

We now give our main theorems and some examples.

THEOREM 3.1. Assume that the conditions (Hi) and (H2) are satisfied. In addition,
assume that

(H3) 0 < F° = limsup m&x(F(t,x)/x) < L~\

0 < /"' < Fx = liminf min (F(t, x)/x) < +oo.
J:-»+OO te[a,b]

Then BVP (1.1) has at least one positive solution in K for any

(3.1)

where L and I are defined as in Remark 2.1.

PROOF. Let A. satisfy (3.1) and £i > 0 be a real number such that Foo — £i > 0 and

Next, by the first part of (#3), there exists rx > 0 such that

F{t. x) < (F° + Bi)x < (F° + e,)r, < (L"1 + e,)r, (3.3)

for all t € [0, 1] and 0 < x < r,.
Letfi, = [u € C[0, 1] I INI < r,}. It follows from (3.3) that, for all u e

\\Tu\\ = max* f G(t,s)p(s)g(s)F(s,u(s))ds
'elO.H Jo

< (F° + e,)r,A. max / G(t,s)p(s)g(s)ds

< n = ||U||,
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which implies that Tu ^ /MU for all u e K D 3 ^ and /x > 1. It follows from
Lemma 1.1 that

i(7\ Kr\QuK) = 1. (3.4)

On the other hand, by the second part of (H3), there exists r2 > 0 and r2 > r\ > 0
such that F(t,x) > (F* - e,)* for all x > cor2 and a < t < b. Let £22 = {« e
C[0, 1] | ||w|| < r2}. Then we have min(e|afcl «(r) > «||u|| = a)r2 for all K € KDdQ2-

We now prove that Tu ^ fj,u for all u 6 ^ n 3fi2 and 0 < /x < 1. In fact,
if not, there exist u0 e K H 3S22 and 0 < /x0 < 1 such that Tu0 = /X0M0. Let
r = min,€[Oifc] «0(0- Then, for any a < t < b, and M0 e K C\ 3fi2, we have r > o;r2

and

«o(O =
/o

rb

G(t,s)p(s)g(s)F(s, uo(s))ds

- £ , ) / G(t, s)p(s)g(s)uo(s)ds
J a

/ G(f
•/a

min / G(t, s)p(s)g(s)ds

which yields a contradiction r > r. It can also be seen from the previous calculation
that, for any u e K n dQ2 and a < t < b, (Tu)(t) > oir2 and so

inf || Tu || > o>r2 > 0.

It follows from Lemma 1.2 that

i(T,KDQ2,K)=0. (3.5)

Since 0 € fi]" C fi2, it follows from (3.4) and (3.5) that

, A: n (fi2\n7). ^) = HT, K n n2, A:) -
= 0 - 1 = - 1 . (3.6)

It follows from [5, Theorem 2.3.2] that T has a fixed point u* in K n (ft2\?2O and
that M* is a positive solution of BVP (1.1). This completes the proof.
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EXAMPLE 3.1. Consider the following second-order differential equation boundary
value problem:

= » •

u(0) = w ( l ) = 0 .

It is obvious that g(t) = l / \ /7 is singular at t = 0. It is difficult to solve the
problem using the results in [4,8,10] or their extensions.

We now study this problem using Theorem 3.1. Let p(t) = ̂ /i, g(t) = l/lfi and

v-4
• 3 , \ A

sin JC I I , 0F(t,x) = (1 + t)xJ + 2008 h 901 sinjc3! ) , 0 < t < 1.
\ l+x

It is easy to see that the conditions (//)) and (H2) hold, where a = y = 1 and
yg = 8 — 0. The Green's function of (3.7) is (by simple calculation)

\\fii*{\-£i*), if 0 < r < * < 1.

By taking a subinterval [a, b] — [1/4, 3/4], then we have

lim sup max = ^92, (3.8)
' e [ 0 1 1 AC

liminf min F ( f ' J : ) = ^2009.25. (3.9)
-T — +0O /€|l/4.3/4| x

We now compute L and / in Theorem 3.1. Since

= / G(t,s)p(s)g(s)ds
Jo

1 8 t\ ,5/6\ ,5/3 , 1 8 / , , ,5/6\2 ,5/6

~ 2 5 ( 1 ~ ? ) r + 2 5 ( ~ 1 + ' > '
18

25 V 7

we have

5/6\ , , N5/618 / / I \ 5 / 6 \ / 1 \ 5 / 6 9
= — 1 - -F= ~ ^ = — = 0.18. (3.10)

25 V V^22y / \-y2lJ 50

https://doi.org/10.1017/S1446181100013560 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013560


[9] Positive solutions of singular nonlinear BVP 565

On the other hand, we have

/O/4

= /

Jl/4
cp(t)= / G(t,s)p(s)g(s)ds

- L?"il-*>•**+f. i
91 — 14- I5? I 18 9

100 • 2 ' / 3 25 V ' 200 V '

25 \~ + 1

= — — (22/3 + (-22 / 3 - 8 • 21/3 • 35/6 + 3 • 62/3) t5'6 + I6t5/3).

It is easy to verify that

/ = min <p(t) = (p(3/4) = (— 2 • v 4 — 9V3 + v243 + 6v36) (3.11)
(£[1/4,3/4] 400 V /

and, by Theorem 3.1 and (3.8)—(3.11), BVP (3.7) has at least one positive solution in
K for any

400

By simple computation, we have

400
^ 0.993168,

9 ( - 2 ^ 4 - 9>/3 + >/243 + 6v/36) ^2009.25

- ^ = % 1.23064.
9^/92

Thus it follows that the approximate subinterval about A is (0.99317, 1.2306). In
particular, we can see that BVP (3.7) has at least one positive solution when A = 1.

REMARK 3.1. From Theorem 3.1, we can see that F(f, x) need not be superlinear
or sublinear. So our conclusion extends and improves the corresponding results
in [2,4,7,10]. In fact, Theorem 3.1 still holds if one of the following conditions
holds:

(i) Fro = 00, F° > 0, A e (0, 1/LF°),
(ii) Foo = 00, F° = 0, A e (0, +00),

(iii) Foo > / - ' > 0, F° = 0, A e (1//Fro, +00).
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THEOREM 3.2. Suppose that the conditions (//]) and (H2) hold. In addition, assume
that

(H4) 0 < F°° = lim sup max 1^1-L < L~\
jr-H-oo 'e[0,l] x

0 < / - ' < FQ = liminf min — < +00.
x->0+ tela.b) x

Then BVP (I.I) has at least one positive solution for each

ke(l/lF0,l/LF°°), (3.12)

where L and I are defined as in Remark 2.1.

PROOF. Let X satisfy (3.12) and e2 > 0 be a real number such that

— < X < — — . (3.13)
(F0-e2)l (F°° + £2)L

Let H(t,x) = supje((U| F(t, s), then F(t,x) < H(t,x) and H is increasing for
x e [0, +00).

For any e > 0, by the first part of (//4), there exists r0 > 0 such that

F(t, x) < (F°° + s)x, x > /•<,, 0 < t < 1,

and hence

F(t,x) < Mo + (F°° + E)X, x>0,0<t<l,

where Mo = maX(,^)e|o,i]X|o,ro] F(t, x). Thus we have

limsup max : — < F°°.
icfQ 11 v

On the other hand, since F(t, x) < H(t, x), then we get

limsup max = F .
x _ + o o <e[0,l| X

Therefore there exists r3 such that r3 > r0 > 0 and H(t,x) < (F°° + e2)x for all
* > r3 andO < / < 1.

Now, let Q3 - {u € C[0, 1] | ||u|| < r3}. For all u € K fl 3fi3, we then obtain

||7M|| = max X f G(t, s)p(s)g(s)F(s, u(s))ds

<maxA/ G(t,s)p(s)g(s)H(s,u(s))ds

'elO.H Jo

G(t,s)p(s)g(s)H(s,ry)ds

• i

r3 =
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which implies that Tu ^ /xu for all u e K D 3fi3 and fi > 1. It follows from
Lemma 1.1 that

i(7\ ff n «3, AT) = 1. (3.14)

By the second part of (H4), let r4 > 0 and r4 < r3 be such that F(t, x) > (Fo — £2)x
for all 0 < x < r4 and a < t < b. Let QA = [x e C[0, 1] | ||u|| < r4}. Then we have
max,e[flii] u(t) < \\u\\ = r4, for all M 6 K n 3fi4.

We now prove that Tu ^ ju,u for all u € K Pi 3fi4 and 0 < /x < 1. In fact,
if not, there exist M0 £ ^ H 3Q4 and 0 < //<> < 1 such that 7M0 = Aio«o- Let
T = min,e(afc] MO(/). Then, for any a < t < b and u0 e K D 3fi4, we have

G(t,s)p(s)g(s)F(s,uQ(s))ds[
Jo

> X / G(r, s)p (s)g(s)F(s, uo(s)) ds
Ja

- £ 2 ) / G(t,s)p(s)g(s)uo(s)ds
Ja

f"
> k(F0 - £2)T / G(f, S)P (S)g(s) ds

Ja

f"
> X(F0 — £2)T min / G(t, s)p(s)g(s)ds > r.

IZla.b] Ja

This implies that x > r, which is a contradiction. It can also be seen from the
previous calculation that, for any u e K Ddti* and a < t < b, (Tu)(t) > ||w||. Thus

I "̂11 > ll«ll > 0. It follows from Lemma 1.2 that
i(T, K n £24, K) = 0. (3.15)

Since 0 e Til c fi3, it follows from (3.14) and (3.15) that

i(T, K f~l (£2^?^), K) = i(T, K D ft3, /C) - i(r, A" C\ J24, A")

= 1 - 0 = 1 . (3.16)

Therefore, it follows from [5, Theorem 2.3.2] that T has a fixed point u* in K fl(fi3\?24")
and so M* is a positive solution of BVP (1.1). This completes the proof.

EXAMPLE 3.2. Consider the following second-order differential equation BVP:

-t)

^(4ru + 811n(l + n) + |sinu|) = 0, 0 < t < 1, ( 3 l 7 )

«(0) = M(1) = 0.
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It is obvious that p(t) = 1/V?(1 - t) and g(t) = (1 - t)/^i are singular at t = 0
and/or 1. It seems difficult to solve the problem using the results obtained by [4,8,10]
or their extensions.

Now we study BVP (3.17) making useof Theorem 3.2 (where we choose a = y =
1,0 = 8 = 0).

Let F(t,x) = 4tx + 81 ln(l + x) + |sinjc|, 0 < t < 1. The Green's function of
BVP (3.17) is (by simple calculation)

__ J ±sV2(5 - 3s) (2 - 5r3'2 + 3r5'2), if 0 < s < t < 1,

~ I ll'3/2<5 " 3 r) (2 " 5 j3 /2 + 3*V2) • if 0 < r < 5 < 1.

Notice that 0 < G(s, s) < 1. It is easy to see that conditions (Hj) and (//2) hold.
By taking the subinterval [a, b] = [1/4, 3/4], then wehave

limsup max '•— = 4, (3.18)
,_*+«, <e[0,l] x

liminf min F ( / ' x ) =83. (3.19)
^ - 0 + »e[ 1/4,3/4) x

We now compute L and / in Theorem 3.2. Let

$ (0= / G(t,s)p(s)g(s)ds
Jo

= — f
15 Jo

- 3s)(2 - 5t3/2 + 3r5/2) ds

=. J-(2 - 5 ^ 2 + 3r5/2) / ' 52/3(5 -
15 Jo

- V3)
8 /15

+ lf3/2(5 _ 3 r ) ( H _
15 \ 8

= JL (15,3/2 _ 1 6 r 5 / 3 _ 9 / 5 / 2 + 1Of8/3)

Then it follows that

/ 387420489 \ 0.30586 x 1024

« , t W = t To^JIBJ - 0.48357 x
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On the other hand, we have

/O/4
= / G(t,s)p(s)g(s)ds

'1/4

= - i / " *2/3(5 - 35) (2 - 5r3/2 + 3t5'2) ds
15 Jl/4

1 r ,3/2(5 _ 3 r ) (2 _ 553/2 + 3,5/2)
15 J,

/
15 Jl/4

= 1 (2 -
15

1 /°
+ ±r3/2(5 _ 3 r ) /

15 ,/,
-=r ((5 - 3r)f3/2 (48073 • 23/2 • 31 / 6

2560(52 + 25V3) I V
+ 22012 • 62/3 - 2048 (52 + 25s/f\ ti/6

+512 (52 + 25 V3~) r3/3 - 192 (52 + 2 5 ^ ) f1

+ _L (o - 5tV2 + 3ts/2) ( 8 7 — (
15 v ; V 256 • 21/3 128 v

It is easy to verify that

/ = min ¥(/)
;e[l/4,3/41

= *(3/4)
= (33V^ (48073 • 22/3 • 31/6 + 22012 • 62/3 - 1024 • 22/3 • 31/6 (52 + 25^3")

+69 • 62/3 (52 + 25\/3"))) / (81920 (52 + 25<s/3~))

+ ( t \ ( (

15 y 32 y V 256 • 2'/3 128 \ 2 •
% 0.0151846. (3.21)

It follows from Theorem 3.2 and (3.18M3.20) that BVP (3.17) has at least one positive
solution for any

83x0.0151846 4x0.06325'
where

1 0.793448 and * _ «3.95257.
83x0.0151846 4x0.06325
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The approximate subinterval about A. is therefore (0.7935, 3.952). In particular, we
can see that BVP (3.17) has at least one positive solution, when A. = 1.

REMARK 3.2. From the proof of Theorem 3.2, we can see the conclusion of Theo-
rem 3.2 still holds if one of the following conditions holds:

(i) F°° < L-\F0 = oo, X 6 (0, l/LF°°),
(ii) F°° = 0, Fo = +00 , A. e (0, -t-oo),

(iii) F°° = 0, Fo > / - ' > 0 , U (1//FO, +oo) .

REMARK 3.3. It seems to be difficult to prove our results using the norm-type
expansion and compression theorem used in [4] and [10]. From Examples 3.1 and 3.2,
we can show not only the existence of positive solutions of BVP (1.1), but also provide
the subinterval about A., which was not done in previous papers (see [4,10]).

REMARK 3.4. Note that, if F is superlinear, that is, F° = 0 and F^, = +<x> or
sublinear, that is, Fo = +oo and F°° = 0 for any A. 6 (0, +oo), BVP (1.1) has at
least one positive solution. In particular, if p (?) = 1 and g(t)F(t, x) = a(t)f (x), the
conclusions of Theorems 3.1 and 3.2 hold. Thus we generalise the main results of Ma
[10]. Our results still hold for the non-singular cases as in [4] and [7].

4. Discussions on the conditions of theorems

We discuss the conditions given in our main results. Clearly, if a2 + fi1 ^ 0
or y2 + S2 ^ 0, then p = aS + ayB(0, 1) + fiy > 0. We suppose that gj(t),
/ = 0, 1, . . . , n, are nonnegative continuous functions on (0, 1). Let

H = {g(t)F(t, x) | g and F satisfy the condition (H2)}.

Then we can easily show that the following conclusions hold:

(i) UgM e H, then gi(t)F(t,x) e H, i= 1 , 2 , . . . , « .
(ii) If gi(t)F,(t, x) € H, then we have £7= 1 gt(t)Fi(t, x) e H, i = 1, 2, . . . , n,

<n^,(r)F,(r,jc) e H, min,<,<ng,(r)F,(r, x) e H.

By the above discussion, we can see that the conditions given in Theorems 3.1
and 3.2 are rather loose.

For example, consider the following equation:

M(0) = H'(1) = 0.

We obtain the following result.
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COROLLARY 4 .1 . Suppose that

(i) 0 < a , < 1, gi(t) and gj (t) (i,j = 1 , 2 , . . . , n) are nonnegative and contin-

uous {unbounded) on (0, 1);

(ii) /„' G(t, r)(g/(O + gj (0) dt < +oo, i, j = 1, 2 , . . . , n.

Then BVP (4.1) has at least one positive solution for any k G (0, +oo).

Obviously BVP (4.1) is a special case of BVP (1.1) and so this corollary can be
obtained by Theorem 3.2 directly.
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