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Abstract

In this paper, a model for lateral dispersion in open-channel flow is studied in-
volving a diffusion equation which has a nonlinear term describing the effect of
buoyancy. The model is used to investigate the interaction of two buoyant pollu-
tant plumes. An approximate analytic technique involving Hermite polynomials is
applied to the resulting PDEs to reduce them to a system of ODEs for the centroids
and widths of the two plumes. The ODEs are then solved numerically. A rich va-
riety of behaviour occurs depending on the relative positions, widths and strengths
of the initial discharges. It is found that for two plumes of equal strength and
width discharged side-by-side, the plumes move apart and the rate of spreading is
inhibited by their interaction, whereas when one plume is initially much wider than
the other, both plumes tend to drift to the side of the narrower plume. Finally, the
PDEs are solved numerically for two sets of initial conditions and a comparison is
made with the ODE solutions. Agreement is found to be good.

1. Introduction

It is a common feature of pollutant discharges into rivers and estuaries that
the pollutant has a different density to the water into which it is discharged.
When this is the case, the pollutant is nonpassive, since its buoyancy causes
stratification and secondary flow. An important example of this is thermal
discharge, i.e. when the pollutant is warm water. A complete modelling of
the dispersion of such a discharge requires us to examine the flow field in
each of a number of different zones. Smith [4] identifies these zones for
discharge in shallow water as (i) a near field, featuring vertical stratification
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and the influence of outfall geometry, (ii) a middle field of vertically mixed
flow which is spreading laterally, and (iii) a far field where the lateral mixing
is almost complete. Buoyancy-driven secondary flow occurs in both the mid-
and far-field. In certain situations (e.g. in rivers or in mid-tide estuary flow)
the primary flow can be considered as steady and unidirectional.

The effect of buoyancy on midfield flow for this case has been studied
experimentally and analytically by Prych [2]. He found that in the presence
of density differences, a secondary flow is set up which enhances the lateral
mixing process. Unfortunately, agreement between Prych's analysis and his
experiments is not good. In response to this, Smith [4] carried out an analytic
study in which some of the simplifying assumptions made by Prych are re-
laxed to include phenomena such as stratification and horizontal circulation.
The following equation is derived in Smith's analysis as a limiting case in
which all longitudinal derivatives are neglected with respect to axes moving
with the bulk velocity:

Qt ~ a,. l~0 ' ~2 l »„ I I a,. ' (1-1)

where c is the depth-averaged concentration of contaminant, y is the lateral
displacement and the coefficients Do and D2 are given by

(1.2)

(1-3)

h being the water depth, «„ the friction velocity, and ag the reduced grav-
ity of the buoyant contaminant. This is the equation derived by Erdogan
and Chatwin [1] in the context of longitudinal mixing in pipe flow. The dis-
persion coefficient has a nonconstant term proportional to the square of the
concentration gradient, which quantifies the enhancement of lateral mixing
due to buoyacy. Comparisons are shown in Smith [3] between predictions
based on (1.1) and some of Prych's experiments in which secondary flow is
the main mechanism for buoyancy-induced dispersion. These comparisons
show much better agreement than that obtained by Prych.

When there are two discharges of the buoyant pollutant, it is convenient
to regard the resulting plumes separately, even when the two pollutants are
the same (e.g. hot water). Thus we require two equations, one each for the
concentrations of the two pollutants, c{ and c2. The nonconstant term
in the dispersion coefficient will now be proportional to the sum of the
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concentration gradients. Thus we arrive at a system of two coupled PDEs:

dcA-±\n ... n f «£L ., *£iVl *£L (i.4a)
dt dy[ ° 2\dy dy) J dy
dc, d f fdc. dc , \ 2 ldc , . ., .
—- = —£>„ + £>, I—- H - I —- (1.4b)dt dy[ ° 2 V 3y ay y J a^

On adding equations (1.4) and putting c — cx+ c2, the Erdogan-Chatwin
equation is recovered.

In Section 2, scalings are introduced which nondimensionalise (1.4). The
rest of this paper concerns the study of the dimensionless equations

dc1=d_l. fdc, dc^2^
dt dy

dc2 d
~dt=d~y

The limits of weak and strong nonlinearity are discussed for the one-plume
case in Section 3, and the symmetric case for two plumes in Section 4. In
Sections 5 and 6 an approximate analytic technique is presented resulting in
a system of ODEs. These can be solved numerically more cheaply than can
(1.5), and therefore several cases may be studied by varying the initial condi-
tions to show the rich variety of behaviour that can occur. By studying these
results and analysing the significance of-some of the terms in the ODEs, much
insight into the behaviour of the system is gained. This is done in Section 7.
Since the analytic approach is applied to the dimensionless equations, com-
ments concerning the range of validity of the ODE model apply equally to all
situations for which the dimensionless times, distances and concentrations
are the same. This range of validity is discussed in Section 8, where a com-
parison is made for two particular cases between the ODE model predictions
and a full numerical solution of (1.5). Agreement is found to be excellent for
an asymmetric case and fair for a symmetric case suggesting that the model
is valid over a wide range.

2. Non-dimensionalisation

The total amount of pollutant discharged is represented by the quantity

M= ^'(cl+c2)dy, (2.1)
J

and is conserved by (1.4). We may normalise M, Do and D2 to unity by
nondimensionalising the equations with the following scalings:

T={D2M
2/D3

Q)l/2 (2.2)
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L = (D0T)i/2 (2.3)

C = M/L. (2.4)
We can therefore study without loss of generality the dimensionless equations
(1.5), with initial conditions such that M = 1.

3. Limiting cases for a single species

In the case of just one plume, the equation to be solved is

dt dy[l+\dy
Although this equation has not been solved analytically in general, there are
solutions in the limiting cases where one or other of the terms in the disper-
sion coefficient dominates.

When concentration gradients are vanishingly small (the linear limit), we
arrive at the linear diffusion equation. For this case, it has been shown that
the concentration c eventually assumes a Gaussian profile as it proceeds
downstream, with the lateral dimension increasing as t1^2, regardless of the
initial conditions. This can be shown by using the Hermite expansion

c = -7^— £ ^-Hen(r,)e-"/2 (3.2)

with the deformed co-ordinate

*l=y/<r{t), (3.3a)

where
a(t) = [2(t + to)]

1/2. (3.3b)

If we take moments of the diffusion equation, the nth moment being formed
by writing the diffusion equation in terms of the deformed co-ordinate, mul-
tiplying both sides of the diffusion equation by Hen{rj) and integrating over
rj, then a series of evolution equations is generated for the coefficients an{t).
It is found that the leading coefficient is conserved, whereas the other coeffi-
cients decay algebraically.

At the other extreme is the limit of strong nonlinearity, i.e. when the non-
constant term is very large. For the one-plume case in this limit there is a
similarity solution, derived in Smith [5], which takes the form

(52.25M2t)l/6
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with

f 7 IM ( )

(52.25Af2O/6

There are four things to be noted with regard to this solution. First, the
lateral dimension increases as tx^6 not t^2, so that for small times (when the
nonlinear limit is valid) the solution spreads more rapidly than in the linear
limit. Secondly, the solution is of finite extent, unlike the Gaussian solution
of the linear limit. Thirdly, the solution supports singularities in the second
derivative of concentration, both at the centre where c oc 1 - 3/2f/4y'3, and
at the edges where c oc (1 - |?/|)3/2 . Fourthly, the rate of spreading depends
on the source strength M, so that stronger plumes spread faster than weaker
plumes. Note also that this limit is applicable when concentration gradients
are very high; but in this case diffusion occurs rapidly with the effect of
quickly reducing the gradients. Therefore the limit of strong nonlinearity is
valid only on a short time-scale.

4. The symmetric case for two species

We shall be interested in the behaviour of the plume centroids yx(t) and
y2(t) and the plume spreads ax{t) and o2(t), where

( 4 2 )

and Mt is the conserved quantity

/ ctdy, i = l , 2 .
J—oo

Equation (1.5a) gives the following evolution equation for yx :

±2L_ ( _ _ L £L(h\dy
dt - Mx / _ (.dy ) -dy-dy Mx J_x dy\dy) dy'

For the symmetric case in which cx(y) — c2(— y), the two terms in (4.3) have
opposite sign, but the first term is twice as big as the second. Hence the
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sign of the first term determines the sign of dy{/dt. Typically this will be
negative since dcl/dy is negative in the region of overlap. In this case the
effect of interaction will be for the two plumes to move apart.

5. Hermite expansion for two species

We have seen from the one-plume case that at larger times the concentra-
tion profiles tend to become Gaussian. With this in mind, we now attempt
to apply the Hermite expansion method mentioned in Section 3 to the two-
plume equations (1.5). The deformed co-ordinates to be used are

{ t ) , (s.ia)

ri2 = (y-y2(t))/a2(t), (5.1b)

where yx and y2 are the centroids of the respective plumes, and a\ and
ffj are the variances; an(t) and bn(t) are the Hermite coefficients relating to
the first and second plumes respectively. In the {t, rjx) co-ordinate system,
(1.5a) becomes

<--rffzL + ! t 0 lfr1- (5-2)dt \2ox
2 dt ax d

The nth Hermite component of this equation is then

-Tt f CxHen(r\x)dr\x = - ^ - J J - / cxHen%)drjx

+ !in-

(5.3)

Substituting the Hermite series representations for c, and c2, and using the
orthogonality properties of the Hermite polynomials gives

n do\\ ndy n ( n l ) / da\

( 5 4 )
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where

70(0 = 0 (5.5)

The following evolution equations for yx and of are obtained from (5.4)
by putting n equal to 1 and 2 respectively:

Evolution equations for y2 and a2 a r e obtained similarly. Note that for this
problem, ao(t) and bo(t) remain constant at unity for all t, i.e. the total
amoung of pollutant is conserved. The integrals I^t) and I2(t) are calcu-
lated in the next section by way of a near-Gaussian approximation, which we
expect to be good at moderate times when the nonlinear effects are not too
great.

6. Calculation of /,(*) and I2(t)

Using integration by parts on (5.6) gives

In order to calculate In{t) explicitly for n = 1 and 2 , we substitute once
again the Hermite expansions for c, and c2 . This yields three triply-infinite
series involving triple products of the Hermite coefficients. Since our choice
of deformed co-ordinates ensures that ax(t), a2(t), bx{t) and b2{t) are
all identically zero, we may truncate each series after the leading term if we
assume that the at{t) and b^t) are small for / > 3 ; this is the near-Gaussian
approximation. We may then write

(2nf2

i- (6-2)
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Thus

(2) . .
Ji (0 =

and

J±\) =

where A = y2 — y{ and aR — <7,/<72. Similarly

( 6 - 3 )

(6.4)

^ l i ^ + 2 r ' l ) l 2 d n v (6.6)
(T2 J -oo

Further analysis gives

(6.9)
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where

/<« - Ml f°° rte-^dn - I (*\ " ^ (6 10)

'^ni" dtix, (6.11)
O2 J—oo

and

(6.12)
a2 J-oo

Further analysis gives

2 ) 2 + (fff + 2a2)3
2<72T « + 2^)'

In ^ 2

K '

^2
(3)(0 = - V " exp[-A2/(ff2 + 2a\)\ (

•i 2 2 2 /1 4 o 2 2 4\ 2 2 A 4
/ Jff, (T2 A (4(7. + off. <T2 + (T2) 4(7, (Tj A \ .

" V(2<T2 + (7 2 ) 2 + (2C72 + (T2)3 +(2<7J! + (72
2)4/

Substitution into the evolution equations (5.7) and (5.8) gives, along with the
analogous results for y2 and <T2 , a closed system of four ODEs which can
be solved numerically.

7. Discussion and numerical solution of the ODEs

In the evolution equations (5.7) and (5.8), the integrals /,(?) and I2{t)
quantify the effect of the nonlinearity. In order to understand the physical
significance of the terms in these integrals, and the type of behaviour that
ensues, some particular cases have been studied. The equations have also
been solved numerically using a NAG routine, and results for the various
cases are shown and discussed.
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All but one of the terms in these integrals is proportional to an exponential
involving the ratio of the separation A to some combination of the spreads
er, and a2 . If this ratio is large, these terms become exponentially small. The
term that does not depend on A is J2

l\t). This term describes the effect
of the nonlinearity on one plume in isolation; in other words, it does not
involve the interaction of the two plumes. When only this term is included,
the equations reduce to the one-plume evolution equation for the spread al

described in Smith [3]. In the strong nonlinear limit this gives

dot
dt

and therefore the same t1*6 power law as in the similarity solution.
Interesting two-plume behaviour thus occurs when the separation A is

not too big. We consider separately cases of zero initial separation and non-
zero initial separation. When there is no initial separation, the integral Ix {t)
is zero, so the plume centroids do not deviate and A remains zero for all
time. Figure 1 shows numerical results for the case of two plumes of equal
strength, and no separation. The excess variance plotted is found by calcu-
lating the variance a\ of the first plume in the presence of the second, and
then subtracting the variance it would have if the second plume was absent.
As Figure 1 shows, the growth of the excess variance depends on the rela-
tive initial plume widths (where the expression 'plume width' refers to the
square root of the variance). When the initial plume widths are compara-
ble, the excess variance grows rapidly at small times, and then levels off to
a constant value at larger times, when the plumes have become sufficiently
wide for linear diffusion to dominate. The behaviour is identical when the
second plume is initially narrower, since the plume widths then equalise on a
time-scale smaller than that on which the first plume is spreading. When the
second plume is much wider, however, the initial growth of excess variance
is reduced, and the final value is correspondingly less. In terms of the ODEs,
the case of equal initial plume widths is identical to a one-plume case, and it
may easily be shown that I2(t) has the same form as in the limit of large A
but with M, replaced by Mx+ M2.

The excess variance in this case is due to the increased overall source
strength leading to higher concentration gradients. However when a2 is
initially much larger than cr,, the concentration gradients associated with the
second plume are initially much smaller, and the effect of the second plume
on the spread of the first at small times is slight until the plume widths have
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FIGURE 1. Excess variance of first plume due to presence of second plume
A/, = 0 . 5 , M2 = 0.5, A(0) = 0, <72(0) = 10~4

ff2
2(0) = 10~4(—), 0.02(---), 0.1(—) and 1.0(---).

equalised. This accounts for the reduced initial growth. Figures 2 (page 462)
and 3 (page 463) show similar results for cases of unequal plume strengths.
Results are similar, but it can be seen that the effect of the second plume is
greater when its strength relative to the first is greater (Figure 3).

When there is initial separation, the behaviour may be expected to be
different since the plumes may move away from or towards each other. Some
results for Mx = M2 and A(/o) = 0.2 are shown in Figures 4a-d (pages 464-
465). Figures 4a and 4b are plots of the plumes centroids and excess variance
respectively against time, for various initial second plume widths; in Figures
4c and 4d the same data is plotted against logarithmic time axes to show
the smalltime behaviour more clearly. The results can be interpreted as a
transition between the following three cases.

When both initial plume widths are much smaller than the initial sepa-
ration, the plume widths equalise before the plumesoverlap significantly, so
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FIGURE 2. Excess variance of first plume due to presence of second plume
M , = 0 . 9 , M2=0.1, A(0)=0 , <rf(0)=10~4

cr2
2(O) = 10~4(—), 0.02(> • • ) , 0.1(—) and 1.0(---).
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FIGURE 3. Excess variance of first plume due to presence of second plume
M, = 0.1, M2 = 0.9, A(0) = 0 , <7,2(0) = 10"4

•), 0.H-) and 1 .Of 1.

we have the symmetric case studied in Section 4, and it can easily be shown
that /j(r) is always positive so that the two plumes move apart in agreement
with the result obtained in that section. A plausible explanation for this
effect is that, when the plumes are beginning to overlap, the concentration
gradients due to the two plumes in the space between them cancel out lead-
ing to low combined concentration gradients and low diffusion rates there,
whereas diffusion rates on the outward side of each plume are hardly affected
by the other. Since the overall diffusion is reduced, the excess variance goes
negative, until the plumes merge sufficiently for diffusion to be enhanced.
When one of the initial plume widths is increased beyond the value of the
initial separation, the plumes overlap before their widths have had time to
equalise. In this case the centroid of the wider plume moves towards the
narrower plume, and the growth of the excess variance is more in line with
the results of Figure 1. It would seem that the small region of relatively
high concentration gradients on the nearer side of the wider plume increases
the rate of diffusion there, giving an overall flux of concentration towards
the other plume. The narrower plume moves away, however, since the gra-
dient from the wider plume enhances diffusion on the far side of the narrower
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• 1 I I .
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FIGURE 4a. Plume centroids of first plume due to presence of second plume
M , = 0 . 5 , M2 = 0.5, A(0) = 0.2, crf(O) = 10~4

<r2
2(0)= 10~4(—), 0 .02(--0. 0.1(—) and 1.0((---).
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FIGURE 4b. Excess variance of first plume due to presence of second plume
M, = 0.5, M2 = 0.5, A(0) = 0.2, 2 4
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FIGURE 4C. Plume centroids against logonthmic time
M , = 0 . 5 , M2 = 0.5, A(0) = 0.2, <r,2(0) = 10~4

2 4 -) , 0.1 (---)and 1.0 (---)

I.0E-64
I

l.eE-83
[

].BE-e2
I

i.0E-ai

FIGURE 4d. Excess variance against logarithmic time
Mx = 0.5, M2 = 0.5, A(0) = 0.2, CT,2(0) = 10~4

<T2
2(0) = 1 0 " 4 (—), 0 .02(---) , 0.1 ( - - - ) and 1.0 (---) .
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plume. Finally, when one of the initial plume widths is of order 1 or greater
(in nondimensional units), the concentration gradients associated with it be-
come too small for significant nonlinear interaction to occur.

Figures 5a-d and 6a-d (pages 468-470) show results for unequal plume
strengths. In Figures 5a-d, the first plume is stronger, so the excess variance
takes much smaller values, and the centroid of the first plume deviates little.
Much of the behaviour is similar to that shown in Figures 4a-d, but there
are some significant differences. In the case of equal initial plume widths,
the centroid of the second (weaker) plume deviates less than either plume in
the equal strength case, because the concentration gradients in between the
plumes do not cancel out to the same extent. Indeed, Figure 5c reveals that
at very small times the weaker plume moves towards the stronger one; this
is presumably a result of interaction with the tail of the stronger plume. In
Figures 6a-d, the second plume is stronger, so the excess variance takes larger
values and it is the first plume that deviates significantly; the case in which
the stronger plume has an initial variance of 0.1 exhibits greater centroid
deviation than in other figures.

e.ea e.B2
i i r

e.M e.e<> e.es

FIGURE 5a. Plume centroids of first plume due to presence of second plume
My = 0 . 9 , M2 = 0.1, A(0) = 0.2, <x2(0)=l(T4

<72
2(0) = 10~4(—), 0.02(---), 0.1(—) and 1.0(---).
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FIGURE 5b. Excess variance of first piume due to presence of second plume
M , = 0 . 9 , M2=0A, A(0) = 0.2, <x2(0) = 10~4

2 4<72
2(0)= 10~4(—), 0. ), 0.1(—) and 1.0(---).

FIGURE 5C. Plume centroids against logarithmic time
M , = 0 . 9 , M2 = 0.1, A(0) = 0.2, <7,2(0) = 10~4

, 2

<72
2(0) = 10"4(—), (—) and

https://doi.org/10.1017/S0334270000007165 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007165


468 P. J. Wicks [18]

e.825

-e.ees
1.8E-04 1.6E-03

FIGURE 5d. Excess variance against logarithmic time
Af ,=0 .9 , M2 = 0.l, A(0) = 0.2, <T2(0) = 10~4

ff2
2(0)= 10"4(—), 0.02(---), 0.1(—) and 1.0(---).

I . . . . I i . . . . i

\

-e.3
0.00 0.02

FIGURE 6a. Plume centroids of first plume due to presence of second plume
A/, = 0 . 1 , A/2 = 0.9, A(0) = 0.2, <T,2(0) = 10~4

4 - ) , 0.1(---) and 1.0(---).
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FIGURE 6b. Excess variance of first plume due to presence of second plume
Af ,=0 .1 , M 2 = 0 . 9 , A(0) = 0.2, <7,2(0) = 1(T4

a2
2(0) = 1(T4(—), 0.02(..-), 0.1(—) and 1.0(---).

FIGURE 6C. Plume centroids against logarithmic time
Ml = 0.1, M2 = 0.9, A(0) = 0.2, a\{0) = 10~4

ff2
2(0) = 10"4(—), 0.02(---), 0.1(—) and 1.0(---).
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FIGURE 6d. Excess variance against logarithmic time
Mx = 0.1, M2 = 0.9, A(0) = 0.2, <7,2(0) = 10~4

^ 4 - ) , 0.1(--) and 1.0(---).

8. Numerical solution of the PDEs: Comparison of results

The approximation made in Section 6 is based on the assumption that the
nonlinearity of (1.5) causes the concentration profiles to deviate only slightly
from Gaussian. One would expect this to be a good approximation when
the nonlinear term is not strong compared to the linear term, i.e. when the
nondimensional concentration gradients are not particularly high. However
even when the nonlinear term is dominant, Smith [5] has shown that the
rate of spreading of the similarity solution for the one-plume case of Sec-
tion 3 and that predicted by the ODE model differs by only 3 or 4 percent.

In the two-plume case, skewness may arise if diffusion is inhibited lo-
cally by the concentration gradients having opposite sign. Equations (1.5)
are solved numerically by using distorted co-ordinates based on the simi-
larity solution of Section 3. The Crank-Nicholson method yields nonlinear
difference equations which are solved iteratively at each time-step using the
Newton-Raphson method.
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Figures 7 and 8 (page 472) show snapshots of the concentration profiles
of the PDE solutions at times when the nonlinear term is still significant but
not overwhelming. Figure 7 shows an asymmetric case in which the centroids
move to one side; Figure 8 shows a symmetric case in which the centroids
move apart. The results are compared with Gaussian solutions based on the
centroids and widths predicted by the ODE model. Figure 7 shows excellent
agreement even at quite a small time. The inward side of the wider plume
is wavy, due to the sharp variations in the diffusion coefficient over that re-
gion, but the Gaussian profile nevertheless fits remarkably well. Agreement
is also good in the symmetric case of Figure 8 for a larger time, although
there is considerable skewness arising from low values of the diffusion coeffi-
cient in between the centroids. At smaller times when the nonlinear term is
still dominant, agreement is less good. These results suggest that for asym-
metric cases where the concentration gradients of the two plumes do not
cancel, the analytic approach has a very wide range of validity and the qual-
itative phenomena discussed in Section 7 are accurately preserved. For the

8.5 -

0.8

- 1 . 5 1.5

FIGURE 7. Comparison of a numerical solution of the p.d.e's (—) with results obtained
from the o.d.e. model (- - -) at time t = 10~4 with Ml = 0.5, M2 = 0.5, A(0),= 0.2,
tr,2(0) = 10~4

and CT|(0) = 10~4
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FIGURE 8. Comparison of a numerical solution of the p.d.e's (—) with results obtained from
the o.d.e. model ( ) at time t = 3.16 * 10~3 with Af, = 0.5, M2 = 0.5, A(0) = 0.2,
CT,2(0) = 10~4 and a\(0) = 0.1.

symmetric case, the model is valid in downstream areas where the dimen-
sionless concentration gradients are at most of order unity.

9. Conclusions

An analytic method has been used to reduce a PDE model for buoyancy-
affected dispersion to a system of ODEs, via an approximation involving
the assumption that the concentration profiles remain Gaussian. Although
this assumption ignores some of the possible behaviour, e.g. skewness of
the profiles, the agreement demonstrated above is sufficient for considerable
insight to be gained. The ODE model reveals that nonlinear interactions
between the plumes give rise to a rich variety of behaviour which depends
critically on the initial conditions.
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