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Abstract
Let 𝒢 be a special parahoric group scheme of twisted type over the ring of formal power series over C, excluding
the absolutely special case of 𝐴(2)2ℓ . Using the methods and results of Zhu, we prove a duality theorem for general
𝒢: there is a duality between the level one twisted affine Demazure modules and the function rings of certain torus
fixed point subschemes in affine Schubert varieties for 𝒢. Along the way, we also establish the duality theorem for
𝐸6. As a consequence, we determine the smooth locus of any affine Schubert variety in the affine Grassmannian of
𝒢. In particular, this confirms a conjecture of Haines and Richarz.
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1. Introduction

Let G be an almost simple algebraic group over C and let Gr𝐺 be the affine Grassmannian of G. The
geometry of the affine Grassmannian is related to integral highest weight representations of Kac-Moody
algebras via the affine Borel-Weil theorem. Similarly, the geometry of affine Schubert varieties are
closely related to affine Demazure modules.

Let T be a maximal torus in G and let 𝑋∗(𝑇)+ be the set of dominant coweights. For any 𝜆 ∈ 𝑋∗(𝑇)+,
let Gr𝜆𝐺 be the associated affine Schubert variety in Gr𝐺 , which is the closure of the 𝐺 (O)-orbit Gr𝜆𝐺 ,
where O = C[[𝑡]]. Evens-Mirković [EM] and Malkin-Ostrik-Vybornov [MOV] proved that the smooth
locus of Gr𝜆𝐺 is exactly the open Schubert cell Gr𝜆𝐺 . Zhu [Zh1] proved that there is a duality between the
affine Demazure modules and the coordinate ring of the T-fixed point subschemes of affine Schubert
varieties when G is of type A and D, and in many cases of the exceptional types 𝐸6, 𝐸7 and 𝐸8. As a
consequence, this gives another approach to determine the smooth locus of Gr𝜆𝐺 for type 𝐴, 𝐷 and many
cases of type E.

In this paper, we study a connection between the geometry of twisted affine Schubert varieties and
twisted affine Demazure modules. Following the method of Zhu in [Zh1], we will use the weight
multiplicities of twisted affine Demazure modules to determine the smooth locus of twisted affine
Schubert varieties.

Let G be an almost simple algebraic group of simply-laced or adjoint type with the action of a
‘standard’ automorphism 𝜎 of order m, defined in Section 2.1. When G is not of type 𝐴2ℓ , 𝜎 is just
a diagram automorphism. Assume that 𝜎 acts on O by rotation of order m. Let 𝒢 be the 𝜎-fixed
point subgroup scheme of the Weil restriction group ResO/Ō (𝐺O), where Ō = C[[𝑡𝑚]]. Then 𝒢

is a special parahoric group scheme over Ō in the sense of Bruhat-Tits. One may define the affine
Grassmannian Gr𝒢 of 𝒢. Following [PR, Zh2], we will call it a twisted affine Grassmannian. For any
�̄� the image of a dominant coweight 𝜆 in the set 𝑋∗(𝑇)𝜎 of 𝜎-coinvariants of 𝑋∗(𝑇), the twisted affine
Grassmannian Gr𝒢 and twisted affine Schubert varieties Gr�̄�𝒢 share many similar properties with the
usual affine Grassmannian Gr𝐺 and affine Schubert varieties. For instance, a version of the geometric
Satake isomorphism for 𝒢 was proved by Zhu in [Zh3].

In the literature, special parahoric group schemes are parametrized by special vertices on local
Dynkin diagrams. In this paper, our approach is more Kac-Moody theoretic. For this reason, we use the
terminology of affine Dynkin diagrams instead of local Dynkin diagrams. Following [HR], there are
two special parahoric group schemes for 𝐴(2)2ℓ , and in this case, the parahoric group scheme 𝒢 that we
consider is special but not absolutely special. We prove Theorem 4.5 in Section 4, which asserts the
following.

Theorem 1.1. For any special parahoric group scheme 𝒢 induced from a standard automorphism 𝜎,
the following restriction is an isomorphism:

𝐻0(Gr�̄�𝒢,ℒ) → 𝐻0((Gr�̄�𝒢)𝑇
𝜎
,ℒ |

(Gr�̄�𝒢)𝑇
𝜎 ),

where ℒ is the level one line bundle on Gr𝒢, 𝑇𝜎 is the 𝜎-fixed point subgroup of a 𝜎-stable maximal
torus T in G and (Gr�̄�𝒢)𝑇

𝜎 is the 𝑇𝜎-fixed point subsheme of Gr�̄�𝒢.
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The above theorem can not be extended to the absolutely special parahoric group scheme of type
𝐴(2)2ℓ , as there is no level one line bundle on Gr𝒢 (cf. [Zh2]). This theorem extends Zhu’s duality to

the twisted setting. The dual 𝐻0(Gr�̄�𝒢,ℒ)∨ is a twisted affine Demazure module; see Theorem 3.10.
Hence, Theorem 1.1 is a duality between twisted affine Demazure modules and the coordinate rings
of the 𝑇𝜎-fixed point subschemes of twisted affine Schubert varieties. One of the motivations of the
work of Zhu [Zh1] is to give a geometric realization of Frenkel-Kac vertex operator construction for
untwisted simply-laced affine Lie algebras. The analogue of Frenkel-Kac construction for twisted affine
Lie algebras also exists in literature; see [BT, FLM]. In fact, our Theorem 1.1 implies a geometric
Frenkel-Kac isomorphism; see Theorem 4.9.

As a consequence of Theorem 1.1, we obtain Theorem 4.10 and Theorem 4.11, which asserts the
following.
Theorem 1.2.
1. If 𝒢 is not of type 𝐴(2)2ℓ , then for any �̄� ∈ 𝑋∗(𝑇)𝜎 , the smooth locus of the twisted affine Schubert

variety Gr�̄�𝒢 is exactly the open cell Gr�̄�
𝒢

.
2. If 𝒢 is special but not absolutely special of type 𝐴(2)2ℓ , then for any �̄� ∈ 𝑋∗(𝑇)𝜎 , the smooth locus of

the twisted affine Schubert variety Gr�̄�𝒢 is the union of Gr�̄�
𝒢

and possibly some other cells Gr�̄�
𝒢

, which
are completely determined in Theorem 4.11.

When 𝒢 is absolutely special of type 𝐴(2)2ℓ , our method is not applicable, as there is no level one line
bundle on the affine Grassmannian of𝒢. Nevertheless, Richarz already proved in his Diploma [Ri2] that
in this case, the smooth locus of any twisted affine Schubert variety is the open cell; see Remark 4.12.
Thus, our Theorem 1.2 confirms a conjecture of Haines-Richarz [HR, Conjecture 5.4]. Beyond that,
we also completely determine the smooth locus of twisted affine Schubert varieties for special but not
absolutely special parahoric group scheme 𝒢 of type 𝐴(2)2ℓ . Richarz studied the twisted affine Schubert
varieties in [Ri2] and determined their smooth loci in the case of absolutely special group schemes of
type 𝐴(2)2ℓ and the special parahoric group scheme of type 𝐴(2)2ℓ−1. It is also worthwhile to mention that
the smooth locus of the quasi-minuscule Schubert variety for 𝐷 (3)4 is determined by Haines-Richarz
in [HR] by rather lengthy computations. In fact, one can define special parahoric group schemes over
any base field k of any characteristic, and the twisted Schubert variety Gr�̄�𝒢 over the field k. By the
works [HLR, HR, Lo], Theorem 1.2 remains true for normal twisted Schubert varieties over any field k
(Schubert varieties are always normal if the characteristic is not bad).

To prove Theorem 1.1, one ingredient is Theorem 4.2 in Section 4, which asserts that the 𝑇𝜎-fixed
point ind-subscheme (Gr𝒢)𝑇

𝜎 is isomorphic to the affine Grassmannian Gr𝒯 , where 𝒯 is the 𝜎-fixed
point subscheme of the Weil restriction group ResO/Ō (𝑇O).

Let 𝜋 : P1 → P̄1 be the map given by 𝑡 ↦→ 𝑡𝑚, where P̄1 is a copy of P1. Another main ingredient of the
proof of Theorem 1.1 is the construction of the level one line bundle L on the moduli stack BunG of G-
torsors, where G is the parahoric Bruhat-Tits group scheme obtained as the 𝜎-fixed subgroup scheme of
the Weil restriction group ResP1/P̄1 (𝐺P1 ) with G being simply-connected. This is achieved in Section 3.
It is known that the level one line bundle on BunG does not necessarily exist for an arbitary parahoric
Bruhat-Tits group scheme G over a smooth projective curve – for example when G is of type 𝐴2ℓ ; cf.
[He, Remark 19 (4)] [Zh2, Proposition 4.1]. In Theorem 3.13, when 𝜎 is standard, we prove that there
exists a level one line bundle L on the moduli stack BunG of G-torsors. Following the method of Sorger
in [So], we use the nonvanishing of twisted conformal blocks to construct this line bundle on BunG ,
where the general theory of twisted conformal blocks was recently developed by Hong-Kumar in [HK].

By the work of Zhu in [Zh2], for each dominant coweight 𝜆, one can construct a global Schubert
variety Gr𝜆G , which is flat over P1. The fiber over the origin is the twisted affine Schubert variety Gr�̄�𝒢,
and the fiber over a generic point is isomorphic to the usual affine Schubert variety Gr𝜆𝐺 . With the level
one line bundle on BunG when G is simply-connected, we can construct the level one line bundle on
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the global affine Schubert variety Gr𝜆G for G being either simply-connected or adjoint. The main idea of
this paper is that our duality theorem for twisted affine Schubert varieties can follow from Zhu’s duality
theorem for usual affine Schubert varieties via the level one line bundle on the global affine Schubert
variety Gr𝜆𝐺 .

The proof of Theorem 1.1 relies on the duality theorem of Zhu in the untwisted case. However,
Zhu only established the duality in the case of type 𝐴, 𝐷 and some cases of type 𝐸6, 𝐸7.𝐸8. To fully
establish Theorem 1.1, we need to prove the duality theorem for 𝐸6 in the untwisted setting. In the case
of 𝐸6, the duality has been established by Zhu when 𝜆 is the fundamental coweight �̌�1, �̌�2, �̌�3, �̌�5, �̌�6
(Bourbaki labelling), and Zhu also showed that the duality theorem will hold in general if the duality
also holds for �̌�4, which is the most difficult case. In Section 5, we establish the duality theorem for �̌�4.
This completes the duality theorem for 𝐸6 in general. One of the main techniques is a version of Levi
reduction lemma (due to Zhu) in Lemma 5.2. In addition, we crucially use the Heisenberg algebra action
on the basic representation of affine Lie algebra, and the Weyl group representations in weight zero
spaces. To make Levi reduction lemma work for the 𝜔2-weight space of the irreducible representation
𝑉 (𝜔4), we use the idea of “numbers game” by Proctor [Pro] and Mozes [Mo] which was originally
used to study minuscule representations. Finally, another key step is Proposition 5.8, which is verified
by Travis Scrimshaw using SageMath [Sag], see Appendix A.

We should also mention another application of the duality theorem for simply-laced simple algebraic
groups. In [KTWWY], the duality theorem is crucially used for the proof of Hikita conjecture for the
transversal slices of affine Grassmannians.

After our work first appeared in arXiv:2010.11357, Pappas-Zhou [PZ] gave a different proof of the
Haines-Richarz conjecture for absolutely special parahoric subgroups.

2. Main definitions

Let G be an almost simple algebraic group over C of adjoint or simply-connected type. We choose a
maximal torus and Borel subgroup 𝑇 ⊂ 𝐵 ⊂ 𝐺. We denote by 𝑋∗(𝑇) the lattice of weights of T, and by
𝑋∗(𝑇) the lattice of coweights. Their natural pairing is denoted by 〈, 〉. Let Φ denote the set of roots of
G, and denote by Φ+ the set of positive roots of G with respect to B. Let Φ̌ denote the set of coroots,
so (Φ, 𝑋∗(𝑇), Φ̌, 𝑋∗(𝑇)) is a root datum for G, and write W for the Weyl group of G. Let Q denote the
root lattice of G, and �̌� the coroot lattice.

We follow the Bourbaki labelling of the vertices of the Dynkin diagram in [Bo]. We denote by
{𝛼𝑖 | 𝑖 ∈ 𝐼} (respectively {�̌�𝑖 | 𝑖 ∈ 𝐼} the set of simple roots in Φ (respectively coroots in Φ̌), where I
is the set of vertices of the associated Dynkin diagram of G. Let {𝜔𝑖 | 𝑖 ∈ 𝐼} be the set of fundamental
weights of G, and let {�̌�𝑖 | 𝑖 ∈ 𝐼} be the set of fundamental coweights of G. We also choose a pinning
{𝑥𝛼𝑖 , 𝑦𝛼𝑖 | 𝑖 ∈ 𝐼} of G with respect to B and T.

Let 𝔤, 𝔟, 𝔥 denote the Lie algebras of 𝐺, 𝐵,𝑇 respectively. Let {𝑒𝑖 , 𝑓𝑖 | 𝑖 ∈ 𝐼} denote the set of
Chevalley generators associated to the pinning {𝑥𝛼𝑖 , 𝑦𝛼𝑖 | 𝑖 ∈ 𝐼}. Let 𝑒𝜃 (resp. 𝑓𝜃 ) be the highest (resp.
lowest) root vector in 𝔤, such that [𝑒𝜃 , 𝑓𝜃 ] is the coroot 𝜃∨ of 𝜃.

2.1. Standard automorphisms

Let 𝜎 be an automorphism of order m on G preserving B and T. Let 𝜏 be a diagram automorphism
preserving 𝐵,𝑇 and a pinning {𝑥𝛼𝑖 , 𝑦𝛼𝑖 | 𝑖 ∈ 𝐼}. Let r be the order of 𝜏.

When 𝔤 is not 𝐴2ℓ , we take 𝜎 to be 𝜏. When 𝔤 is 𝐴2ℓ , by [Ka, Theorem 8.6], there exists a unique
automorphism 𝜎 of order 𝑚 = 4 such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜎(𝑒𝑖) = 𝑒𝜏 (𝑖) , if 𝑖 ≠ ℓ, ℓ + 1;
𝜎(𝑒𝑖) = i𝑒𝜏 (𝑖) , if 𝑖 ∈ {ℓ, ℓ + 1};
𝜎( 𝑓𝜃 ) = 𝑓𝜃 ,

(2.1)
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where i is a square root of −1. One can check that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜎( 𝑓𝑖) = 𝑓𝜏 (𝑖) , if 𝑖 ≠ ℓ, ℓ + 1;
𝜎( 𝑓𝑖) = −i 𝑓𝜏 (𝑖) , if 𝑖 ∈ {ℓ, ℓ + 1};
𝜎(𝑒𝜃 ) = 𝑒𝜃

. (2.2)

In fact, 𝜎 = 𝜏 ◦ iℎ , where ℎ ∈ 𝔥 such that

𝛼𝑖 (ℎ) =
{

0, if 𝑖 ≠ ℓ, ℓ + 1
1, if 𝑖 = ℓ, ℓ + 1

.

This automorphism induces a unique automorphism on G. We still call it 𝜎.
We call these automorphisms on G or 𝔤 ‘standard’, as the fixed point Lie subalgebra 𝔤𝜎 is the standard

finite part of the associated twisted affine Lie algebra �̂�(𝔤, 𝜎) (cf. Section 3.1) in the sense of Kac [Ka,
§6.3]. From 𝜎, we will construct a twisted affine Grassmannian and a line bundle of level one on it.
There will be no level one line bundle on the twisted affine Grassmannian associated to 𝜏 on G of type
𝐴2ℓ . Throughout this paper, we will only consider standard automorphisms.

The following table describe the fixed point Lie algebras for all standard automorphisms:

(𝔤, 𝑚) (𝐴2ℓ−1, 2) (𝐴2ℓ , 4) (𝐷ℓ+1, 2) (𝐷4, 3) (𝐸6, 2)
𝔤𝜎 𝐶ℓ 𝐶ℓ 𝐵ℓ 𝐺2 𝐹4

, (2.3)

where by convention, 𝐶1 is 𝐴1 and ℓ ≥ 3 for 𝐷ℓ+1. When (𝔤, 𝑚) ≠ (𝐴2ℓ , 4), the fixed point Lie algebra
𝔤𝜎 is well known as listed in the above table. When (𝔤, 𝑚) = (𝐴2ℓ , 4), the fixed Lie algebra 𝔤𝜎 is of
type 𝐶ℓ , which can follow from the twisted Kac-Moody theory; cf. [Ka, §6.3, §8.4].

Recall that we follow the Bourbaki labelling of the vertices of the Dynkin diagram. Set

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛽𝑖 = 𝛼𝑖 |𝔥𝜎 , for 𝑖 = 1, 2, · · · , ℓ, if (𝔤, 𝑚) = (𝐴2ℓ−1, 2), or (𝐷ℓ+1, 2)
𝛽1 = 𝛼1 |𝔥𝜎 , 𝛽2 = 𝛼2 |𝔥𝜎 , if (𝔤, 𝑚) = (𝐷4, 3)
𝛽1 = 𝛼2 |𝔥𝜎 , 𝛽2 = 𝛼4 |𝔥𝜎 , 𝛽3 = 𝛼3 |𝔥𝜎 , 𝛽4 = 𝛼1 |𝔥𝜎 , if (𝔤, 𝑚) = (𝐸6, 2)
𝛽𝑖 = 𝛼𝑖 |𝔥𝜎 , for 𝑖 = 1, 2, · · · , ℓ − 1; 𝛽ℓ = (𝛼ℓ + 𝛼ℓ+1) |𝔥𝜎 = 2𝛼ℓ |𝔥𝜎 , if(𝔤, 𝑚) = (𝐴2ℓ , 4).

(2.4)

Let 𝐼𝜎 be the set of all subscript indices of 𝛽𝑖 . Then for each case, the set { 𝛽 𝑗 | 𝑗 ∈ 𝐼𝜎 } gives rise to
the set of simple roots of 𝔤𝜎 . One can see easily that this labelling will coincide with Bourbaki labelling
for nonsimply-laced types Dynkin diagrams.

We now define a map 𝜂 : 𝐼 → 𝐼𝜎 . When (𝔤, 𝑚) ≠ (𝐴2ℓ , 4), 𝜂 is defined such that 𝛽𝜂 (𝑖) = 𝛼𝑖 |𝔥𝜎 for
any 𝑖 ∈ 𝐼. When (𝔤, 𝑚) = (𝐴2ℓ , 4), set

𝜂(𝑖) = 𝜂(2ℓ + 1 − 𝑖) = 𝑖, for any 1 ≤ 𝑖 ≤ ℓ.

Let { 𝛽 𝑗 | 𝑗 ∈ 𝐼𝜎} be the set of simple coroots of 𝔤𝜎 . We can describe 𝛽 𝑗 as follows:

𝛽 𝑗 =
∑

𝑖∈𝜂−1 ( 𝑗)
�̌�𝑖 . (2.5)

The description of 𝛽 𝑗 also appears in [Ha, Section 3] in a slightly different setting.
Let { 𝜆 𝑗 | 𝑗 ∈ 𝐼𝜎 } be the set of fundamental weights of 𝔤𝜎 , and let { �̌� 𝑗 | 𝑗 ∈ 𝐼𝜎 } be the set of

fundamental coweights of 𝔤𝜎 . The fundamental weights can be described as follows:

𝜆 𝑗 = 𝜔𝑖 |𝔥𝜎 , for some 𝑖 with 𝜂(𝑖) = 𝑗 . (2.6)
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In the case of fundamental coweights, we need to describe them separately. When (𝔤, 𝑚) ≠ (𝐴2ℓ , 4),

�̌� 𝑗 =
∑

𝑖∈𝜂−1 ( 𝑗)
�̌�𝑖 . (2.7)

When (𝔤, 𝑚) = (𝐴2ℓ , 4), we have

�̌� 𝑗 =

{
�̌� 𝑗 + �̌�2ℓ+1− 𝑗 , 𝑗 = 1, 2, · · · , ℓ − 1
1
2 (�̌�ℓ + �̌�ℓ+1), 𝑗 = ℓ

. (2.8)

2.2. Affine Grassmannian of special parahoric group schemes

Let K denote the field of formal Laurent series in t with coefficients inC. Let O denote the ring of formal
power series in t with coefficients in C. By abuse of notation, we still use 𝜎 to denote the automorphism
of order m on K and O such that 𝜎 acts on C trivially, and 𝜎(𝑡) = 𝜖−1𝑡, where 𝜖 = 𝑒

2𝜋i
𝑚 . Set K̄ = K𝜎

and Ō = O𝜎 . Then K̄ = C((𝑡)) and Ō = C[[𝑡]], where 𝑡 = 𝑡𝑚.
Let 𝒢 be the smooth group scheme ResO/Ō (𝐺O)𝜎 over Ō, which represents the following group

functor

𝑅 ↦→ 𝐺 (O ⊗Ō 𝑅)𝜎 , for any Ō − algebra 𝑅,

where the 𝐺 (O ⊗Ō 𝑅) denotes the group of 𝜎-equivariant morphisms from Spec (O ⊗Ō 𝑅) to G, where
𝜎 acts on O as above and acts on G as a standard automorphism defined in Section 2.1. Then, 𝒢 is a
special parahoric group scheme in the sense of Bruhat-Tits, as we choose 𝜎 to be standard. In fact, up to
isomorphism, this construction exhausts all special parahoric subgroups in 𝒢(K) when 𝒢 is not of type
𝐴(2)2ℓ , and special but not absolutely special for 𝐴(2)2ℓ in the sense of [HR, §5], as in this case the special
fiber of 𝒢 has a quotient isomorphic to Sp2ℓ .

Remark 2.1. When G is of type 𝐴2ℓ , the parahoric group scheme 𝒢 = ResO/Ō (𝐺O)𝜏 is absolutely
special of type 𝐴(2)2ℓ , where 𝜏 acts on G by a nontrivial diagram automorphism and acts on O by 𝑡 ↦→ −𝑡.
But we will not consider this case, except in Remark 4.12.

We can similarly define the smooth group scheme 𝒯 := ResO/Ō (𝑇O)𝜎 , which has connected fibers
(cf. [BrT, Lemma 4.4.16, Lemma 4.4.8]). Note that, for general almost simple algebraic group G, we can
still define𝒢 and 𝒯, but we need to take the neutral components of ResO/Ō (𝐺O)𝜎 and ResO/Ō (𝑇O)𝜎 ,
respectively. For convenience, throughout this paper, we only work with G being adjoint or simply-
connected.

Let 𝐿+𝒢 denote the jet group and 𝐿𝒢 be the loop group of 𝒢 over C; that is, for all C-algebras R, we
set 𝐿+𝒢(𝑅) = 𝒢(𝑅[[𝑡]]) and 𝐿𝒢(𝑅) = 𝒢(𝑅((𝑡))). We denote by Gr𝒢 the affine Grassmannian of 𝒢,
which is defined as the fppf quotient 𝐿𝒢/𝐿+𝒢. In particular, we have

Gr𝒢 (C) = 𝐺 (K)𝜎/𝐺 (O)𝜎 .

It is known that Gr𝒢 is a projective ind-variety; cf. [PR, Theorem 1.4]. Following [PR, Zh2], we
will call it a twisted affine Grassmannian of 𝒢. We can also attach the twisted affine Grassmannian
Gr𝒯 := 𝐿𝒯/𝐿+𝒯 of 𝒯. This is a highly non-reduced ind-scheme. Moreover,

Gr𝒯 (C) = 𝑇 (K)𝜎/𝑇 (O)𝜎 .
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For any 𝜆 ∈ 𝑋∗(𝑇), we can naturally attach an element 𝑡𝜆 ∈ 𝑇 (K). We now define the norm 𝑛𝜆 ∈ 𝑇 (K)𝜎
of 𝑡𝜆,

𝑛𝜆 :=
𝑚−1∏
𝑖=0

𝜎𝑖 (𝑡𝜆) = 𝜖
∑𝑚−1

𝑖=1 𝑖𝜎𝑖 (𝜆) 𝑡
∑𝑚−1

𝑖=0 𝜎𝑖 (𝜆) . (2.9)

There exists a natural bijection

𝑇 (K)𝜎/𝑇 (O)𝜎 � 𝑋∗(𝑇)𝜎 , (2.10)

where 𝑋∗(𝑇)𝜎 denotes the set of 𝜎-coinvariants in 𝑋∗(𝑇). Any �̄� ∈ 𝑋∗(𝑇)𝜎 corresponds to the coset
𝑛𝜆𝑇 (O)𝜎 , where 𝜆 is a representative of �̄�. By Theorem [PR, Theorem 0.1], the components of Gr𝒢
can be parametrized by elements in 𝜋1 (𝐺)𝜎 , where 𝜋1 (𝐺) � 𝑋∗(𝑇)/�̌�, and (𝑋∗(𝑇)/�̌�)𝜎 is the the set
of coinvariants of 𝜎 in 𝑋∗(𝑇)/�̌�.

When G is of adjoint type, we describe (𝑋∗(𝑇)/�̌�)𝜎 in the following table.

(𝐺, 𝑚) (𝐴2ℓ−1, 2) (𝐴2ℓ , 4) (𝐷2ℓ+1, 2) (𝐷2ℓ , 2) (𝐷4, 3) (𝐸6, 2)
𝑋∗(𝑇)/�̌� Z/2ℓZ Z/(2ℓ + 1)Z Z/4Z Z/2Z × Z/2Z Z/2Z × Z/2Z Z/3Z
(𝑋∗(𝑇)/�̌�)𝜎 Z/2Z 0 Z/2Z Z/2Z 0 0

. (2.11)

2.3. Twisted affine Schubert varieties

Let 𝑒0 be the base point in Gr𝒢 (C). For any �̄� ∈ 𝑋∗(𝑇)𝜎 , let 𝑒�̄� denote the point 𝑛𝜆𝑒0 ∈ Gr𝒢 (C). The
point 𝑒�̄� only depends on �̄� ∈ 𝑋∗(𝑇)𝜎 . Let 𝑋∗(𝑇)+𝜎 denote the set of images of 𝑋∗(𝑇)+ in 𝑋∗(𝑇)𝜎 via
the projection 𝑋∗(𝑇) → 𝑋∗(𝑇)𝜎 . Then, we have the following Cartan decomposition for Gr𝒢 (cf. [Ri1,
Proposition 2.8]):

Gr𝒢 (C) =
⊔

�̄�∈𝑋∗ (𝑇 )+𝜎

Gr�̄�𝒢, (2.12)

where Gr�̄�
𝒢

:= 𝐺 (O)𝜎𝑒�̄�. The Schubert variety Gr�̄�𝒢 is defined to be the reduced closure of Gr�̄�
𝒢

in Gr𝒢.
Moreover,

dim Gr�̄�𝒢 = 2〈𝜆, 𝜌〉,

where 𝜌 is the sum of all fundamental weights of 𝔤. It is easy to see that the dimension is independent
of the choice of 𝜆.

For any �̄�, �̄� ∈ 𝑋∗(𝑇)+𝜎 , we write �̄� � �̄� if Gr�̄�
𝒢
⊆ Gr�̄�𝒢. For any 𝑖 ∈ 𝐼, let �̌�𝑖 denote the image of �̌�𝑖 in

𝑋∗(𝑇)𝜎 . For any 𝑗 ∈ 𝐼𝜎 , set

𝛾 𝑗 = �̌�𝑖 , if 𝑗 = 𝜂(𝑖). (2.13)

It is clear that 𝛾 𝑗 is well defined.
The following lemma follows from [Ri1, Corollary 2.10].

Lemma 2.2. �̄� � �̄� if and only if �̄� − �̄� is a nonnegative integral linear combination of { 𝛾 𝑗 | 𝑗 ∈ 𝐼𝜎 }.

By the ramified geometric correspondence [Zh3, §1], the set 𝑋∗(𝑇)𝜎 can be realized as the weight
lattice of the reductive group 𝐻 := (�̌�)𝜏 , where �̌� is the Langlands dual group of G and 𝜏 is a diagram
automorphism on �̌� corresponding to the one on G, and { 𝛾 𝑗 | 𝑗 ∈ 𝐼𝜎 } is the set of simple roots for H.

https://doi.org/10.1017/fms.2025.10057 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10057


8 M. Besson and J. Hong

Moreover, 𝑋∗(𝑇)+𝜎 is the set of dominant weights of H, and the partial order � is exactly the standard
partial order for dominant weights of H.

We now assume G is of adjoint type. From the perspective of the geometric Satake, we can determine
the minimal elements in 𝑋∗(𝑇)+𝜎 , in other words the minimal Schubert variety in each connected com-
ponent of Gr𝒢. From the table (2.11), we see that when (𝐺, 𝑚) = (𝐴2ℓ−1, 2), Gr𝒢 has two components,
where Gr�̌�1

𝒢
is the minimal Schubert variety in the non-neutral component, since �̌�1 gives the minuscule

dominant weight of 𝐻 � Sp2ℓ . When (𝐺, 𝑚) = (𝐷ℓ+1, 2), Gr𝒢 also has two components and Gr�̌�ℓ

𝒢
is the

minimal Schubert variety in the non-neutral component, since �̌�ℓ is the minuscule dominant weight of
𝐻 � Spin2ℓ+1. Otherwise, Gr𝒢 has only one component. In fact, when (𝐺, 𝑚) = (𝐴2ℓ , 4), 𝐻 � SO2ℓ+1,
in which case the lattice 𝑋∗(𝑇)𝜎 concides with the root lattice of H.

Let S denote the following set:

𝑆 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0} if (𝐺, 𝑟) ≠ (𝐴2ℓ−1, 2), (𝐷ℓ+1, 2)
{0, �̌�1} if (𝐺, 𝑟) = (𝐴2ℓ−1, 2)
{0, �̌�ℓ } if (𝐺, 𝑟) = (𝐷ℓ+1, 2)

. (2.14)

For any 𝜅 ∈ 𝑆, let Gr𝒢,𝜅 be the component of Gr𝒢 containing the Schubert variety Gr𝜅
𝒢

, or equivalently
containing the point 𝑒𝜅 . Then,

Gr𝒢 = �𝜅 ∈𝑆 Gr𝒢,𝜅 .

2.4. Global affine Grassmannian of parahoric Bruhat-Tits group schemes

Let C be a complex projective line P1 with a coordinate t, and with the action of 𝜎 such that 𝑡 ↦→ 𝜖𝑡. Let
�̄� be the quotient curve 𝐶/𝜎, and let 𝜋 : 𝐶 → �̄� be the projection map. Then �̄� is also isomorphic to
P1. Let G = Res𝐶/�̄� (𝐺 ×𝐶)𝜎 be the group scheme over �̄�, which is the 𝜎-fixed point subgroup scheme
of the Weil restriction Res𝐶/�̄� (𝐺 × 𝐶) of the constant group scheme 𝐺 × 𝐶 from C to �̄�. Then, G is
a parahoric Bruhat-Tits group scheme over �̄� in the sense of Heinloth [He, §1]. Let o (resp.𝑜) be the
origin of C (resp.�̄�), and let∞ (resp. ∞̄) be the infinite point in C (resp. �̄�).

The group scheme G has the following properties:

1. For any 𝑦 ∈ �̄�, if 𝑦 ≠ 𝑜, ∞̄, the fiber G |𝑦 over y is isomorphic to G; the restriction G𝑦 to the formal
disc D𝑦 around y is isomorphic to the constant group scheme 𝐺D𝑦 over D𝑦 .

2. When 𝑦 = 𝑜 or ∞̄ in �̄�, G |𝑦 has a reductive quotient 𝐺𝜎; the restriction G𝑦 to D𝑦 is isomorphic to
the parahoric group scheme 𝒢.

Similarly, we can define the parahoric Bruhat-Tits group scheme T := Res𝐶/�̄� (𝑇 × 𝐶)𝜎 .
Given an R-point 𝑝 ∈ 𝐶 (𝑅), we denote by Γ𝑝 ⊂ 𝐶𝑅 the graph of p where 𝐶𝑅 := 𝐶 × Spec(𝑅), and

denote by Γ̂𝑝 the formal completion of 𝐶𝑅 along Γ𝑝 , and let Γ̂×𝑝 be the punctured formal completion
along Γ𝑝 . Let 𝑝 be the image of p in �̄�. We similarly define �̄�𝑅, Γ�̄� , Γ̂�̄� and Γ̂×�̄� .

For any C-algebra R, we define

GrG,𝐶 (𝑅) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (𝑝,P , 𝛽)

�������
𝑝 ∈ 𝐶 (𝑅)
P a G-torsor on �̄�

𝛽 : P |�̄�𝑅\Γ�̄�
� P̊ |�̄�𝑅\Γ�̄�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (2.15)

where P̊ is the trivial G-bundle.
The functor GrG,𝐶 is represented by an ind-scheme which is ind-proper over C. We call it the global

affine Grassmannian GrG,𝐶 of G over C.

https://doi.org/10.1017/fms.2025.10057 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10057


Forum of Mathematics, Sigma 9

For any 𝑝 ≠ 𝑜,∞ ∈ 𝐶, the fiber GrG, 𝑝 := GrG,𝐶 |𝑝 is isomorphic to the usual affine Grassmannian
Gr𝐺 , and the fiber GrG, 𝑝 over 𝑝 = 𝑜,∞ is isomorphic to the twisted affine Grassmannian Gr𝒢 of the
parahoric group scheme 𝒢.

Remark 2.3. One can define the global affine Grassmannian GrG over �̄�; see [Zh2, Section 3.1]. The
global affine Grassmannian defined above is actually the base change of GrG along 𝜋 : 𝐶 → �̄�.

We can also define the jet group scheme 𝐿+𝐶G over C as follows,

𝐿+𝐶G (𝑅) :=

{
(𝑝, 𝛾)

����� 𝑝 ∈ 𝐶 (𝑅)𝛾 is a trivialization of the trivial G-torsor on �̄� along Γ̂�̄�

}
(2.16)

Again, 𝐿+𝐶G is the base change of the usual jet group scheme 𝐿+G of G along 𝜋 : 𝐶 → �̄�. For any
𝑝 ≠ 𝑜,∞ ∈ 𝐶, the fiber 𝐿+𝐶G |𝑝 is isomorphic to the jet group scheme 𝐿+𝐺 of G, and the fiber 𝐿+𝐶G |𝑝
over 𝑝 = 𝑜,∞ is isomorphic to jet group scheme 𝐿+𝒢.

We have a left action of 𝐿+𝐶G on GrG,𝐶 given by

((𝑝, 𝛾), (𝑝,P , 𝛽)) ↦→ (𝑝,P ′, 𝛽), (2.17)

where P ′ is obtained by choosing a trivialization of P along Γ̂�̄� and then composing this trivialization
with 𝛾 and regluing with 𝛽.

We also can define the global loop group 𝐿𝐶G of G over C,

𝐿𝐶G (𝑅) :=

{
(𝑝, 𝛾)

����� 𝑝 ∈ 𝐶 (𝑅)𝛾 is a trivialization of the trivial G-torsor on �̄� along Γ̂×�̄�

}
. (2.18)

Then GrG,𝐶 is isomorphic to the fppf quotient 𝐿𝐶𝒢/𝐿+𝐶𝒢. We can also define 𝐿+𝐶T and 𝐿𝐶T
similarly. Then,

𝐿𝐶T |𝑝 �
{
𝑇K𝑝 if 𝑝 ≠ 𝑜,∞
𝒯 if 𝑝 = 𝑜,∞

,

where K𝑝 is the field of formal Laurant series of C at p.

2.5. Global Schubert varieties

For each 𝑝 ∈ 𝐶, we can attach a lattice 𝑋∗(𝑇)𝑝 ,

𝑋∗(𝑇)𝑝 =

{
𝑋∗(𝑇) if 𝑝 ≠ 𝑜,∞
𝑋∗(𝑇)𝜎 if 𝑝 = 𝑜,∞

.

By [Zh2, Proposition 3.4], for any 𝜆 ∈ 𝑋∗(𝑇), there exists a section 𝑠𝜆 : 𝐶 → 𝐿𝐶T , such that for any
𝑝 ∈ 𝐶, the image of 𝑠𝜆(𝑝) in 𝑋∗(𝑇)𝑝 is given by{

𝜆 ∈ 𝑋∗(𝑇) if 𝑝 ≠ 𝑜,∞
�̄� ∈ 𝑋∗(𝑇)𝜎 if 𝑝 = 𝑜,∞

.

This naturally gives rise to C-points in GrT ,𝐶 and GrG,𝐶 , which will still be denoted by 𝑠𝜆. Following
[Zh2, Definition 3.1], for each 𝜆 ∈ 𝑋∗(𝑇), we define the global Schubert variety Gr𝜆G,𝐶 to be the minimal
𝐿+𝐶G-stable irreducible closed subvariety of GrG,𝐶 that contains 𝑠𝜆. Then, [Zh2, Theorem 3] asserts the
following.
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Theorem 2.4. The global Schubert variety Gr𝜆G,𝐶 is flat over C, and for any 𝑝 ∈ 𝐶, the fiber Gr𝜆G, 𝑝 is
reduced and

Gr
𝜆
G, 𝑝 �

{
Gr

𝜆
𝐺 if 𝑝 ≠ 𝑜,∞

Gr
�̄�
𝒢 if 𝑝 = 𝑜,∞

.

3. Construction of level one line bundle on BunG

In this section, we keep the assumption that G is of adjoint type with the action of a standard automor-
phism 𝜎.

3.1. Borel-Weil-Bott theorem on Gr𝒢
Let �̂�(𝔤, 𝜎) := 𝔤(K)𝜎 ⊕ C𝐾 be the twisted affine algebra as a central extension of the twisted loop
algebra 𝔤(K)𝜎 with the canonical center K, whose Lie bracket is defined as follows:

[𝑥 [ 𝑓 ] + 𝑧𝐾, 𝑥 ′ [ 𝑓 ′] + 𝑧′𝐾] = [𝑥, 𝑥 ′] [ 𝑓 𝑓 ′] + 𝑚−1Res𝑡=0
(
(𝑑𝑓 ) 𝑓 ′

)
(𝑥, 𝑥 ′)𝐾, (3.1)

for 𝑥 [ 𝑓 ], 𝑥 ′ [ 𝑓 ′] ∈ 𝔤(K)𝜎 where 𝑥, 𝑥 ′ ∈ 𝔤, 𝑓 , 𝑓 ′ ∈ K, and 𝑧, 𝑧′ ∈ C, and where Res𝑡=0 denotes the
coefficient of 𝑡−1𝑑𝑡, and (, ) is the normalized Killing form on 𝔤 (i.e., (𝜃, 𝜃) = 2).

We use 𝑃(𝜎, 𝑐) to denote the set of highest weights of 𝔤𝜎 which parametrizes the integrable highest
weight modules of �̂�(𝔤, 𝜎) of level c; see [HK, Section 2]. For each 𝜆 ∈ 𝑃(𝜎, 𝑐), we denote by ℋ𝑐 (𝜆)
the associated integrable highest weight module of �̂�(𝔤, 𝜎).

Recall that {𝜆𝑖 | 𝑖 ∈ 𝐼𝜎} is the set of fundamental weights of 𝔤𝜎 , where we follow the labellings in
(2.4). Also, { 𝛽𝑖 | 𝑖 ∈ 𝐼𝜎 } is the set of simple coroots of 𝔤𝜎 .
Lemma 3.1. For a standard automorphism 𝜎, we have

𝑃(𝜎, 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0} if (𝔤, 𝑚) ≠ (𝐴2ℓ−1, 2), (𝐷ℓ+1, 2)
{0, 𝜆1} if (𝔤, 𝑚) = (𝐴2ℓ−1, 2)
{0, 𝜆ℓ } if (𝔤, 𝑚) = (𝐷ℓ+1, 2)

.

Proof. We first consider the case when (𝔤, 𝑚) ≠ (𝐴2ℓ , 4). We can read from [HK, Lemma 2.1], for any
𝜆 ∈ (𝔥𝜎)∨, 𝜆 ∈ 𝑃(𝜎, 1) if and only if

〈𝜆, 𝛽𝑖〉 ∈ Z≥0 for any 𝑖 ∈ 𝐼𝜎 ,

and 〈𝜆, 𝜃0〉 ≤ 1, where 𝜃0 is the highest short root of 𝔤𝜎 and 𝜃0 is the coroot of 𝜃0, and hence, 𝜃0 is the
highest coroot of 𝔤𝜎 . In this case, 𝜆 ∈ 𝑃(𝜎, 1) if and only if 𝜆 = 0 or a minuscule dominant weight of
𝔤𝜎 (cf. [BH, Lemma 2.13]). Following the labellings in [Ka, Table Fin, p53], when 𝔤𝜎 is of type 𝐶ℓ ,
𝜆1 is the only minuscule weight; when 𝔤𝜎 is of type 𝐵ℓ , 𝜆ℓ is the only minuscule weight. Any other
nonsimply-laced Lie algebra has no minuscule weight. This finishes the argument of the lemma when
(𝔤, 𝑚) ≠ (𝐴2ℓ , 4).

Now, we assume that (𝔤, 𝑚) = (𝐴2ℓ , 4). In this case, it is more convenient to choose a different set of
simple roots for 𝔤𝜎 rather than the one described in (2.4). Namely, we can choose

{𝛼𝑖 |𝔥𝜎 | 𝑖 = 1, 2, · · · , ℓ − 1} ∪ {−𝜃 |𝔥𝜎 }

as a set of simple roots of 𝔤𝜎 . With this set of simple roots, we can also read from [HK, Lemma 2.1],
for any 𝜆 ∈ (𝔥𝜎)∨, 𝜆 ∈ 𝑃(𝜎, 1) if and only if 𝜆 = 0. �

Remark 3.2. It is not true that 0 ∈ 𝑃(𝜎, 1) for any automorphism 𝜎. For example, 0 ∉ 𝑃(𝜏, 1), when
𝔤 = 𝐴2ℓ and 𝜏 is a diagram automorphism; instead, 0 ∈ 𝑃(𝜏, 2).
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We define the following map:

𝜄 : 𝑋∗(𝑇) → (𝔥𝜎)∨, (3.2)

such that for any 𝜆 ∈ 𝑋∗(𝑇), 𝜄(𝜆) (ℎ) = (𝜆, ℎ), where we regard 𝜆 as an element in 𝔥 and (, ) is
the normalized Killing form on 𝔥. It is clear that 𝜄(0) = 0. This map naturally descends to a map
𝑋∗(𝑇)𝜎 → (𝔥𝜎)∨. By abuse of notation, we still call it 𝜄.

Recall some terminology introduced in Section 2.1. 𝐼𝜎 is the set parametrizing simple roots of 𝔤𝜎 ,
and we also defined a map 𝜂 : 𝐼 → 𝐼𝜎 . The set {�̌� 𝑗 | 𝑗 ∈ 𝐼𝜎} is the set of fundamental coweights of
𝔤𝜎 , and {𝜆 𝑗 | 𝑗 ∈ 𝐼𝜎} is the set of fundamental weights of 𝔤𝜎 . We also recall that �̌�𝑖 is a simple coroot
of 𝔤 for each 𝑖 ∈ 𝐼, and 𝛾 𝑗 is the image of �̌�𝑖 in 𝑋∗(𝑇)𝜎 . The following lemma already appears in [Ha,
Lemma 3.2] in a slighly different setting.

Lemma 3.3. For any 𝑗 ∈ 𝐼𝜎 , we have

𝜄(𝛾 𝑗 ) =
{
𝛽 𝑗 , if (𝔤, 𝑚) ≠ (𝐴2ℓ , 4), or , (𝔤, 𝑚) = (𝐴2ℓ , 4) and 𝑗 ≠ ℓ
1
2 𝛽ℓ , if (𝔤, 𝑚) = (𝐴2ℓ , 4) and 𝑗 = ℓ

.

Proof. By the definition of 𝜄, for any 𝛾 𝑗 = �̌�𝑖 with 𝑗 = 𝜂(𝑖), and 𝑘 ∈ 𝐼𝜎 , we have the following equalities:

〈�̌�𝑘 , 𝛾 𝑗〉 = 〈�̌�𝑘 , 𝜄(�̌�𝑖)〉 = (�̌�𝑘 , �̌�𝑖) = 〈�̌�𝑘 , 𝛼𝑖〉.

Then, this lemma readily follows from the description of fundamental coweights of 𝔤𝜎 in (2.7) and
(2.8). �

Recall the set S defined in (2.14).

Lemma 3.4. For any 𝑖 ∈ 𝐼, we have 𝜄(�̌�𝑖) = 𝜆𝜂 (𝑖) . As a consequence, 𝜄 maps 𝑋∗(𝑇)+𝜎 bijectively into
the set of dominant weights of 𝔤𝜎 . Furthermore, 𝜄 maps S bijectively into 𝑃(𝜎, 1).

Proof. For any 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐼𝜎 , we have

〈𝜄(�̌�𝑖), 𝛽 𝑗〉 =
(
�̌�𝑖 , 𝛽 𝑗

)
= (�̌�𝑖 ,

∑
𝑎∈𝜂−1 (𝑖)

�̌�𝑎) = 𝛿𝜂 (𝑖) , 𝑗 .

Hence, 𝜄(�̌�𝑖) = 𝜆𝜂 (𝑖) .
In view of Lemma 3.1, 𝜄 maps S bijectively into 𝑃(𝜎, 1). �

Remark 3.5. In view of Lemma 3.3 and Lemma 3.4, when (𝐺, 𝑚) ≠ (𝐴2ℓ , 4), the root systems of 𝔤𝜎

and 𝐻 := (�̌�)𝜏 can be naturally identified, where H is discussed in Section 2.3. Namely, { �̌�𝑖 | 𝑖 ∈ 𝐼}
is a set of fundamental weights of H corresponding to {𝜆 𝑗 | 𝑗 ∈ 𝐼𝜎} of 𝔤𝜎 , and the set of simple roots
{ 𝛾 𝑗 | 𝑗 ∈ 𝐼𝜎} corresponds to { 𝛽 𝑗 | 𝑗 ∈ 𝐼𝜎 } of 𝔤𝜎 .

For any 𝑔 ∈ 𝐺 (K)𝜎 , we can define a Lie algebra automorphism

Âd𝑔 (𝑥 [ 𝑓 ]) := Ad𝑔 (𝑥 [ 𝑓 ]) +
1
𝑚

Res𝑡=0 (𝑔−1𝑑𝑔, 𝑥 [ 𝑓 ])𝐾, (3.3)

for any 𝑥 [ 𝑓 ] ∈ 𝔤(K)𝜎 , where (, ) is the normalized Killing form on 𝔤. By Lemma 3.4, 𝜄(𝜅) ∈ 𝑃(𝜎, 1)
for any 𝜅 ∈ 𝑆. Thus, 𝑐𝜄(𝜅) ∈ 𝑃(𝜎, 𝑐) for any level 𝑐 ≥ 1.

Set

ℋ𝑐 := ⊕𝜅 ∈𝑆ℋ𝑐 (𝑐𝜄(𝜅)). (3.4)
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Let �̃� := 𝔤 ⊗ K ⊕ C𝐾 ′ ⊕ C𝑑 ′ be the untwisted Kac-Moody algebra associated to 𝔤, where 𝐾 ′ is the
canonical center and 𝑑 ′ is the scaling element. We may define an automorphism 𝜎 on �̃� as follows:

𝜎(𝑥 [ 𝑓 (𝑡)]) = 𝜎(𝑥) [ 𝑓 (𝜖𝑡)], 𝜎(𝐾 ′) = 𝐾 ′, 𝜎(𝑑 ′) = 𝑑 ′,

for any 𝑥 [ 𝑓 ] ∈ 𝔤 ⊗ K. Then the fixed point Lie algebra �̃�𝜎 is exactly the twisted Kac-Moody alegbra
�̃�(𝔤, 𝜎) containing �̂�(𝔤, 𝜎) as the derived algebra. Following from [Ka, Theorem 8.7,§8], in this
realization, the canonical center K in �̃�(𝔤, 𝜎) is equal to 𝑚𝐾 ′, and the scaling element d in �̃� is equal to
𝑑 ′ when �̃�𝜎 is not 𝐴(2)2ℓ , and 𝑑 = 2𝑑 ′ when �̃�𝜎 = 𝐴(2)2ℓ .

For any 𝑔 ∈ 𝐺 (K), one can define an automorphism Âd𝑔 on �̃� as in [Ku, Section 13.2.3]. From
the formula loc.cit, it is clear that if 𝑔 ∈ 𝐺 (K)𝜎 , then Âd𝑔 commutes with 𝜎. In particular, it follows
that Âd𝑔 restricts to an automorphism on �̃�(𝔤, 𝜎). One may observe easily that, restricting further to
�̂�(𝔤, 𝜎), this is exactly the automorphism defined in (3.3).

By demanding that 𝑑 · 𝑣𝜅 = 0 for each 𝜅 ∈ 𝑆, the action �̂�(𝔤, 𝜎) on ℋ extends uniquely to an action
of �̃�(𝔤, 𝜎).

Lemma 3.6. For any 𝑔 ∈ 𝐺 (K)𝜎 , there exists an intertwining operator 𝜌𝑔 : ℋ𝑐 �ℋ𝑐 such that

𝜌𝑔 (𝑥 [ 𝑓 ] · 𝑣) = Âd𝑔 (𝑥 [ 𝑓 ]) · 𝜌𝑔 (𝑣), (3.5)

for any 𝑥 [ 𝑓 ] ∈ 𝔤(K)𝜎 and 𝑣 ∈ℋ𝑐 . In particular, for any 𝜅 ∈ 𝑆,

Âd𝑛−𝜅 (ℋ𝑐 (0)) = ℋ𝑐 (𝑐𝜄(𝜅)), and Âd𝑛−𝜅 (ℋ𝑐 (𝑐𝜄(𝜅))) = ℋ𝑐 (0). (3.6)

Proof. Let 𝐺 ′ be the simply-connected cover of G, and let 𝑝 : 𝐺 ′(K)𝜎 → 𝐺 (K)𝜎 be the induced map.
Then,

𝐺 (K)𝜎 = �𝜅 ∈𝑆𝑛
−𝜅𝐺 ′(K)𝜎 , (3.7)

where 𝐺 ′(K)𝜎 = 𝑝(𝐺 ′(K)𝜎). By twisted analogue of Faltings Lemma (cf. [HK, Proposition 10.2]),
for any element 𝑔 ∈ 𝐺 ′(K)𝜎 , there exists an operator 𝜌𝑔 which maps ℋ𝑐 (𝑐𝜄(𝜅)) to ℋ𝑐 (𝑐𝜄(𝜅)) with the
desired property (3.5), for any 𝜅 ∈ 𝑆. By decomposition (3.7), it suffices to show that, for nonzero 𝜅,
𝑛−𝜅 satisfies property (3.6).

Assume 𝜅 ≠ 0 in S. From the table (2.11), the group (𝑋∗(𝑇)/�̌�)𝜎 is at most of order 2. Therefore,
𝑛−2𝜅 ∈ 𝐺 ′(K)𝜎 . For each ℋ𝑐 (𝑐𝜄(𝜅)), we denote the action by 𝜋𝑐,𝜅 : �̂�(𝔤, 𝜎) → End(ℋ𝑐 (𝑐𝜄(𝜅))). Then
the property (3.5) for 𝑛−2𝜅 is equivalent to the existence of an isomorphism of representations,

𝜌𝑛−2𝜅 : (ℋ𝑐 (𝑐𝜄(𝜅)), 𝜋𝑐,𝜅 ) � (ℋ𝑐 (𝑐𝜄(𝜅)), 𝜋𝑐,𝜅 ◦ Âd𝑛−2𝜅 ). (3.8)

Let 𝑣𝜅 be the highest weight vector in ℋ𝑐 (𝑐𝜄(𝜅)). Then 𝑣𝜅 is of 𝔥𝜎-weight 𝑐𝜄(𝜅). We regard 𝛽𝑖 as
elements in 𝔥𝜎 . By formula (3.3),

Âd𝑛−𝜅 (𝛽𝑖) = 𝛽𝑖 − (𝜅, 𝛽𝑖)𝑐 = 𝛽𝑖 − 〈𝜄(𝜅), 𝛽𝑖〉𝑐.

Hence, 𝑣𝜅 is of 𝔥𝜎-weight 0 and a highest weight vector in the representation

(ℋ𝑐 (𝑐𝜄(𝜅)), 𝜋𝑐,𝜅 ◦ Âd𝑛−𝜅 ).

By Schur lemma, there exists an intertwining operator 𝜌0𝜅 ,

𝜌0𝜅 : (ℋ𝑐 (0), 𝜋𝑐,0) � (ℋ𝑐 (𝑐𝜄(𝜅)), 𝜋𝑐,𝜅 ◦ Âd𝑛−𝜅 ). (3.9)
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We also can regard 𝜌0𝜅 as the following intertwining operator

𝜌0𝜅 : (ℋ𝑐 (0), 𝜋𝑐,0 ◦ Âd𝑛−𝜅 ) � (ℋ𝑐 (𝑐𝜄(𝜅)), 𝜋𝑐,𝜅 ◦ Âd𝑛−2𝜅 ). (3.10)

Combining isomorphisms (3.8),(3.10), we get

(ℋ𝑐 (𝑐𝜄(𝜅)), 𝜋𝑐,𝜅 )
𝜌𝑛−2𝜅
−−−−→ (ℋ𝑐 (𝑐𝜄(𝜅)), 𝜋𝑐,𝜅 ◦ Âd𝑛−2𝜅 )

(𝜌0𝜅 )−1

−−−−−−→ (ℋ𝑐 (0), 𝜋𝑐,0 ◦ Âd𝑛−𝜅 ).

We define 𝜌𝑛−𝜅 to be the following operator:

𝜌𝑛−𝜅 = (𝜌0𝜅 , (𝜌0𝜅 )−1 ◦ 𝜌𝑛−2𝜅 ) : ℋ𝑐 (0) ⊕ℋ𝑐 (𝑐𝜄(𝜅)) �ℋ𝑐 (0) ⊕ℋ𝑐 (𝑐𝜄(𝜅)).

The map 𝜌𝑛−𝜅 satisfies property (3.5). �

As discussed in Section 2.2, the components of Gr𝒢 are parametrized by elements in (𝑋∗(𝑇)/�̌�)𝜎 .
Moreover, Gr𝒢 = �𝜅 ∈𝑆 Gr𝒢,𝜅 , where S is defined in (2.14).

Let 𝒢′ be the parahoric group scheme ResO/Ō (𝐺 ′O)
𝜎 (𝐺 ′ is the simply-connected cover of G), and

let 𝐿+𝒢′ (resp. 𝐿𝒢′) denote the jet group scheme (resp. loop group scheme) of 𝒢′. The group 𝐿𝒢 acts
on 𝐿𝒢′ by conjugation. Set

𝐿+𝒢′𝜅 := Ad𝑛−𝜅 (𝐿+𝒢′).

Then, 𝐿+𝒢′𝜅 is a subgroup scheme of 𝐿𝒢′. We have

Gr𝒢,𝜅 � 𝐿𝒢′/𝐿+𝒢′𝜅 . (3.11)

By the twisted analogue of Faltings lemma (cf. [HK, Proposition 10.2]), there exists a group homo-
morphism 𝐿𝒢′ → PGL(ℋ1(0)). Consider the central extension

1→ G𝑚 → GL(ℋ1(0)) → PGL(ℋ1(0)) → 1. (3.12)

The pull-back of (3.12) to 𝐿𝒢′ defines the following canonical central extension of 𝐿𝒢′:

1→ G𝑚 → 𝐿𝒢′ → 𝐿𝒢′ → 1. (3.13)

It is known that 𝐿𝒢′ is a Kac-Moody group of twisted type (up to a scaling multiplicative group) in
the sense of Kumar and Mathieu; see [PR, §9f]. Let �𝐿+𝒢′𝜅 denote the preimage of 𝐿+𝒢′𝜅 in 𝐿𝒢′ via the
projection map 𝐿𝒢′ → 𝐿𝒢′. As the same proof as in [BH, Lemma 2.19], �𝐿+𝒢′𝜅 is a parabolic subgroup
in 𝐿𝒢′; moreover,

Gr𝒢,𝜅 � 𝐿𝒢′/�𝐿+𝒢′𝜅 (3.14)

(i.e., Gr𝒢,𝜅 is a partial flag variety of the Kac-Moody group 𝐿𝒢′).

Proposition 3.7. There exists a line bundle ℒ on Gr𝒢 such that ℒ is of level one on each component
of Gr𝒢.

Proof. We first consider the simply-connected cover 𝐺 ′ of G. By [HK, Theorem 10.7 (1)], there exists
a canonical splitting of 𝐿𝒢′ → 𝐿𝒢′ in the central extension (3.12) over 𝐿+𝒢′. We may define a line
bundle ℒ on Gr𝒢′ = 𝐿𝒢′/�𝐿+𝒢′ via the character �𝐿+𝒢′ := G𝑚 × 𝐿+𝒢′ → G𝑚 defined via the first
projection. In fact, as the argument in [LS, Lemma 4.1], this line bundle is the ample generator of
Pic(Gr𝒢′ ) of level 1. This finishes the proof of part (1).

We now consider the case when G is of adjoint type. Since the neutral component Gr𝒢,◦ is isomorphic
to Gr𝒢′ , we get the level one line bundle on Gr𝒢,◦ induced from the one on Gr𝒢′ . For any other component
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Gr𝒢,𝜅 , by (3.14), we have an isomorphism Gr𝒢,◦ � Gr𝒢,𝜅 . Therefore, this gives rise to the level one line
bundle on Gr𝒢,𝜅 . �

The line bundle ℒ on Gr𝒢 naturally has a 𝐿𝒢′-equivariant structure, since ℒ admits a unique 𝐿𝒢′-
equivariant structure on each component of Gr𝒢 as a partial flag variety of 𝐿𝒢′.

Theorem 3.8. As representations of �̂�(𝔤, 𝜎), we have 𝐻0(Gr𝒢,ℒ𝑐)∨ �ℋ𝑐 , where ℒ𝑐 is the c-th power
of ℒ.

Proof. By [PR, §9f], Gr𝒢 can be identified with the partial flag variety of the Kac-Moody group 𝐿𝒢′

constructed by Kumar [Ku]. Then, affine Borel-Weil-Bott theorem for Kac-Moody group (cf. [Ku,
Theorem 8.3.11]), the theorem follows. �

Let 𝑣0 be the highest weight vector in ℋ𝑐 . For any �̄� ∈ 𝑋∗(𝑇)𝜎 , we define

𝑣�̄� := 𝜌𝑛𝜆 (𝑣0), (3.15)

where 𝜌𝑛𝜆 in defined in Lemma 3.6. Then 𝑣�̄� is independent of the choice of the representative 𝜆 in
𝑋∗(𝑇) and is well defined up to a nonzero scalar.

Lemma 3.9. The 𝔥𝜎-weight of the vector 𝑣�̄� is −𝑐𝜄(�̄�).

Proof. For any ℎ ∈ 𝔥𝜎 , by Lemma 3.6,

ℎ · 𝑣�̄� = ℎ · 𝜌𝑛𝜆 (𝑣0) = 𝜌𝑛𝜆 (Âd𝑛−𝜆 (ℎ)𝑣0).

By the formula (3.3), we have

Âd𝑛−𝜆 (ℎ) = ℎ − 〈𝜆, ℎ〉𝐾.

It follows that

ℎ · 𝑣�̄� = −〈𝜆, ℎ〉𝑐𝑣�̄� = −𝑐𝜄(𝜆) (ℎ)𝑣�̄�.

This concludes the proof of the lemma. �

Definition 3.10. For any dominant �̄� ∈ 𝑋∗(𝑇)+𝜎 , we define the twisted affine Demazure module 𝐷 (𝑐, �̄�)
as the following 𝔤[𝑡]𝜎-module,

𝐷 (𝑐, �̄�) := 𝑈 (𝔤[𝑡]𝜎)𝑣�̄�.

In view of Lemma 3.9, 𝐷 (𝑐, �̄�) contains an irreducible representation 𝑉 (−𝑐𝜄(𝜆)) of 𝔤𝜎 of lowest
weight −𝑐𝜄(𝜆). The following theorem follows from [Ku, Theorem 8.2.2 (a)].

Theorem 3.11. As 𝔤[𝑡]𝜎-modules, 𝐻0(Gr�̄�𝒢,ℒ𝑐)∨ � 𝐷 (𝑐, �̄�).

3.2. Construction of level one line bundles on BunG

In this subsection, we consider the parahoric Bruhat-Tits group scheme G := Res𝐶/�̄� (𝐺 × 𝐶)Γ over �̄�
as in the setting of Section 2.4.

Let BunG be the moduli stack of G-torsors on �̄�. It is known that BunG is a smooth Artin stack (cf.
[He, Theorem 1]). By [He, Theorem 3], the Picard group Pic(BunG) of BunG is isomorphic to Z, since
the group 𝑋∗(G |𝑦) of characters for G |𝑦 is trivial for any 𝑦 ∈ �̄�. In this subsection, we will construct
the ample generator L ∈ Pic(BunG) when G is simply-connected, and we will construct a level one line
bundle on every component of GrG,𝐶 when G is of adjoint type.
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By Lemma 3.1, we have 0 ∈ 𝑃(𝜎, 1) for any standard automorphism 𝜎. Recall that ℋ1(0) is the
basic representation of level one associated to 0 ∈ 𝑃(𝜎, 1).

We now define the following space of twisted covacua of level one,

𝒱𝐶,𝜎 (0) :=
ℋ1(0)

𝔤[𝑡−1]𝜎 ·ℋ1(0)
, (3.16)

where 𝔤[𝑡−1]𝜎 is the Lie subalgebra of �̂�(𝔤, 𝜎).

Lemma 3.12. The dimension of the vector space 𝒱𝐶,𝜎 (0) is 1.

Proof. Let 𝑣0 be the highest weight vector in ℋ1(0). Then

ℋ1(0) = 𝑈 ((𝑡−1𝔤[𝑡−1])𝜎) · 𝑣0 = 𝑈 ((𝑡−1𝔤[𝑡−1])𝜎) (𝑡−1𝔤[𝑡−1])𝜎𝑣0 ⊕ C𝑣0,

where 𝑈 ((𝑡−1𝔤[𝑡−1])𝜎) denotes the universal enveloping algebra of (𝑡−1𝔤[𝑡−1])𝜎 . We can write
𝔤[𝑡−1]𝜎 = 𝔤𝜎 ⊕ (𝑡−1𝔤[𝑡−1])𝜎 . Hence,

𝔤[𝑡−1]𝜎 ·ℋ1(0) = 𝔤𝜎 ·𝑈 ((𝑡−1𝔤[𝑡−1])𝜎) (𝑡−1𝔤[𝑡−1])𝜎𝑣0 +𝑈 ((𝑡−1𝔤[𝑡−1])𝜎) (𝑡−1𝔤[𝑡−1])𝜎𝑣0

= 𝑈 ((𝑡−1𝔤[𝑡−1])𝜎) (𝑡−1𝔤[𝑡−1])𝜎𝑣0,

where the first equality holds since 𝔤𝜎 · 𝑣0 = 0, and the second equality holds since 𝔤𝜎 normalizes
(𝑡−1𝔤[𝑡−1])𝜎 under the Lie bracket. Therefore, dim𝒱𝐶,𝜎 (0) = 1. �

Let 𝐺 ′ be the simply-connected cover of G. Recall the Heinloth uniformization theorem for G ′ :=
Res𝐶/�̄� (𝐺 ′ × 𝐶)Γover the affine line �̄�\𝑜 (cf. [He]),

BunG′ � 𝐺 ′[𝑡−1]𝜎\ Gr𝒢′ ,

where Gr𝒢′ denotes the affine Grassmannian of 𝒢′ := ResO/Ō (𝐺 ′O)
𝜎 , and 𝐺 ′ [𝑡−1]𝜎\ Gr𝒢′ denotes the

fppf quotient.

Theorem 3.13. The line bundle ℒ descends to a line bundle L on BunG′ .

Proof. Let ℒ be the level one line bundle on Gr𝒢′ constructed from Proposition 3.7. To show that
the line bundle ℒ can descend to BunG′ , as in the argument in [So], it suffices to show that there is
a 𝐺 ′ [𝑡−1]𝜎-linearization on ℒ. This is equivalent to the splitting of the central extension (3.13) over
𝐺 ′ [𝑡−1]𝜎 . We use the same argument as in [So, Proposition 3.3], since the vector space 𝒱𝐶,𝜎 (0) is
nonvanishing by Lemma 3.12, the central extension (3.13) splits over 𝐺 ′ [𝑡−1]𝜎 . �

We consider the projection map pr : GrG′,𝐶 → BunG′ . By abuse of notation, we still denote by L the
line bundle on GrG′,𝐶 pulling-back from L on BunG′ .

Corollary 3.14. The restriction of the line bundle L to the fiber GrG′, 𝑝 is the ample generator of
Pic(GrG′, 𝑝), for any 𝑝 ∈ 𝐶.

Proof. It follows from Theorem 3.13 and [Zh2, Proposition 4.1]. �

The following theorem is interesting by itself but will not be used in this paper.

Theorem 3.15. There is a natural isomorphism

𝐻0 (BunG′ ,L) �𝒱𝐶,𝜎 (0)∨,

where 𝒱𝐶,𝜎 (0)∨ denotes the dual of 𝒱𝐶,𝜎 (0). In particular,

dim 𝐻0 (BunG′ ,L) = 1.
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Proof. The theorem follows from the same argument as in [HK, Theorem 12.1]. �

Now, we would like to construct the line bundle L of level one on GrG,𝐶 , where G = Res𝐶/�̄� (𝐺𝐶 )𝜎
with G of adjoint type.

Theorem 3.16. There exists a line bundle L on GrG,𝐶 such that the restriction of L to the fiber GrG, 𝑝

is the level one line bundle on GrG, 𝑝 , for any 𝑝 ∈ 𝐶.

Proof. Set �̊� = 𝐶\{𝑜,∞}. Then, GrG,�̊� := GrG,𝐶 |�̊� � Gr𝐺 ×�̊�. Let M be the set consisting of 0 and
miniscule coweights of G. Then, components of Gr𝐺 can be parametrized by 𝑀 � 𝑋∗(𝑇)/�̌�. For each
𝜅 ∈ 𝑀 , let Gr𝐺,𝜅 denote the component of Gr𝐺 containing 𝑒𝜅 . Let GrG,𝐶,𝜅 be the closure of Gr𝐺,𝜅 ×�̊�
in GrG,𝐶 . We call GrG,𝐶,𝜅 a 𝜅-component of GrG,𝐶 .

The neutral component GrG,𝐶,0 is naturally isomorphic to GrG′ (cf. [HY, Lemma 5.16]). Thus, by
Theorem 3.13, we naturally get the level one line bundle L0 on the neutral component GrG,𝐶,0. For any
𝜅 ∈ 𝑀 , let 𝑠𝜅 be a C-point in GrG,𝐶 as defined in Section 2.5. Then, the translation by 𝑠𝜅 gives rise to
an isomorphism

GrG,𝐶,0 � GrG,𝐶,𝜅 .

Accordingly, the line bundle L0 can be translated to the level one line bundle L𝜅 on GrG,𝐶,𝜅 . Note that
given any two elements 𝜅, 𝜅′ ∈ 𝑀 such that 𝜅 = 𝜅′ in (𝑋∗(𝑇)/�̌�)𝜎 , GrG,𝐶,𝜅 and GrG,𝐶,𝜅′ share the same
component Gr𝒢,𝜅 of Gr𝒢 at o and ∞. Then L𝜅 and L𝜅′ agree on Gr𝒢,𝜅 as they have the same levels.
Thus, {L𝜅 }𝜅 ∈𝑀 glues to be a line bundle L on GrG,𝐶 whose restriction to GrG, 𝑝 is of level one, for any
𝑝 ∈ 𝐶. �

4. Smooth locus of twisted affine Schubert varieties

In this section, we always assume that 𝜎 is a standard automorphism on G, and G is of adjoint type.

4.1. Gr𝒯 as a fixed-point ind-subscheme of Gr𝒢
We first recall a theorem in [Zh1, Theorem 1.3.4].

Theorem 4.1. The natural morphism Gr𝑇 → Gr𝐺 identifies Gr𝑇 as the T-fixed point ind-subscheme
(Gr𝐺)𝑇 of Gr𝐺 .

The original proof of this theorem is not correct (communicated to us by Richarz and Zhu indepen-
dently); also, see [HR2, Remark 3.5]. A correct proof can be found in [HR2, Proposition 3.4], and a
similar proof was known to Zhu earlier.

It is clear that 𝑇𝜎 is a subgroup scheme of 𝐿𝒯 and 𝐿𝒢. Hence, there is a natural action of 𝑇𝜎 on
Gr𝒢. We now prove an analogue of Theorem 4.1 in the setting of special parahoric group schemes.

Theorem 4.2. The natural morphism Gr𝒯 → Gr𝒢 identifies Gr𝒯 as the 𝑇𝜎-fixed point ind-subscheme
(Gr𝒢)𝑇

𝜎 of Gr𝒢.

Proof. Let 𝐿−−𝐺 be the ind-group scheme represented by the following functor, for any C-algebra R,

𝐿−−𝐺 (𝑅) := ker(ev∞ : 𝐺 (𝑅[𝑡−1]) → 𝐺 (𝑅)),

where ev∞ is the evaluation map sending 𝑡−1 to 0. Let 𝐿−−𝒢 be the ind-group scheme which represents
the following functor, for any C-algebra R,

𝐿−−𝒢(𝑅) := ker(ev∞ : 𝐺 (𝑅[𝑡−1])𝜎 → 𝐺 (𝑅)𝜎). (4.1)

We can similarly define 𝐿−−𝑇 and 𝐿−−𝒯.
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By the similar argument as in [Zh4, Lemma 2.3.5] or [HR2, Lemma 3.1], we have an open embedding

𝐿−−𝒢 ↩→ Gr𝒢 (4.2)

given by 𝑔 ↦→ 𝑔𝑒0, where 𝑒0 is the base point in Gr𝒢. Let 𝐼 be the Iwahori subgroup of 𝐿+𝒢, which is
the preimage of 𝐵𝜎 via the evaluation map ev : 𝐿+𝒢→ 𝐺𝜎 for a 𝜎-stable Borel subgroup B in G. We
have the following decomposition:

Gr𝒢 =
⊔

�̄�∈𝑋∗ (𝑇 )𝜎

𝐼𝑒�̄�. (4.3)

For each �̄� ∈ 𝑋∗(𝑇)𝜎 , we choose a representative 𝜆 ∈ 𝑋∗(𝑇). The twisted Iwahori Schubert cell

𝐼𝑒�̄� = 𝑛𝜆Ad𝑛−𝜆 (𝐼)𝑒0

is contained in 𝑛𝜆𝐿−−𝒢𝑒0. Then by the decomposition (4.3),
⋃

�̄�∈𝑋∗ (𝑇 )∗ 𝑛
𝜆𝐿−−𝒢𝑒0 is an open covering

of Gr𝒢. We may naturally regard Gr𝒯 as an ind-subscheme of Gr𝒢. Hence, we may regard 𝑒0 as the
base point in Gr𝒯 . Under this convention,⋃

𝜆∈𝑋∗ (𝑇 )𝜎

𝑛𝜆𝐿−−𝒯𝑒0 =
⋃

𝜆∈𝑋∗ (𝑇 )𝜎

𝐿−−𝒯𝑛𝜆𝑒0

is an open covering of Gr𝒯 . Therefore, it suffices to show that for each �̄� ∈ 𝑋∗(𝑇)𝜎 ,

(𝑛𝜆𝐿−−𝒢𝑒0)𝑇
𝜎 � 𝑛𝜆𝐿−−𝒯𝑒0.

Further, it suffices to show that (𝐿−−𝒢)𝑇 𝜎 � 𝐿−−𝒯, where the action of 𝑇𝜎 on 𝐿−−𝒢 is by conjugation.
From the proof of [HR2, Proposition 3.4], one may see that (𝐿−−𝐺)𝑇 𝜎 � 𝐿−−𝑇 . This actually implies
that (𝐿−−𝒢)𝑇 𝜎 � 𝐿−−𝒯. Hence, this finishes the proof of the theorem. �

An immediate consequence of Theorem 4.2 is the following corollary.

Corollary 4.3. The 𝑇𝜎-fixed C-point set in Gr𝒢 is {𝑒�̄� | 𝜆 ∈ 𝑋∗(𝑇)𝜎}.

4.2. A duality isomorphism for twisted Schubert varieties

Let Gr𝐺 be the affine Grassmannian of G, and let L be the line bundle on Gr𝐺 that is of level
one on every component of Gr𝐺 . For any 𝜆 ∈ 𝑋∗(𝑇), let Gr𝜆𝐺 denote the closure of 𝐺 (O)-orbit at
𝐿𝜆 := 𝑡𝜆𝐺 (O) ∈ Gr𝐺 . Let (Gr𝜆𝐺)𝑇 denote the T-fixed point subscheme of Gr𝜆𝐺 . Zhu [Zh1, Theorem
0.2.2] proved the following.

Theorem 4.4. When G is simply-laced and not of type E, the restriction map

𝐻0 (Gr𝜆𝐺 ,L) → 𝐻0((Gr𝜆𝐺)𝑇 ,L|(Gr𝜆𝐺 )𝑇 )

is an isomorphism.

In Section 5, we will show that this theorem also holds for 𝐸6. It was proved by Evens-Mirković [EM,
Thereorem 0.1b] and Malkin-Ostrik-Vybornov [MOV, Corollary B] that the smooth locus of Gr𝜆𝐺 is the
open cell Gr𝜆𝐺 for any reductive group G. In fact, this theorem can also be deduced from Theorem 4.4
in the simply- laced type.

We will prove a twisted version of Theorem 4.4 in full generality, and as a consequence we get
the similar result of Evans-Mirković and Malkin-Ostrik-Vybornov in twisted setting. In particular, this
confirms a conjecture of Haines-Richarz [HR].
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From Theorem 4.2, we have the identification Gr𝒯
�−→ Gr𝑇 𝜎

𝒢
. Let ℐ�̄� denote the ideal sheaf of the

𝑇𝜎-fixed subscheme (Gr�̄�𝒢)𝑇
𝜎 of Gr�̄�𝒢. Then we have a short exact sequence of sheaves

0→ ℐ�̄� → 𝒪
Gr

�̄�
𝒢

→ 𝒪
(Gr�̄�𝒢)𝑇

𝜎 → 0. (4.4)

Recall that ℒ is the line bundle on Gr𝒢 which is of level one on every component. Tensoring the
above short exact sequence with ℒ and taking the functor of global sections, we obtain the following
exact sequence:

0→𝐻0 (Gr�̄�𝒢,ℐ�̄� ⊗ℒ) → 𝐻0(Gr�̄�𝒢,ℒ)
𝑟−→ 𝐻0((Gr�̄�𝒢)𝑇

𝜎
,ℒ |

(Gr�̄�𝒢)𝑇
𝜎 ) → · · · , (4.5)

where r is the restriction map.

Theorem 4.5. For any special parahoric group scheme 𝒢 induced from a standard automorphism 𝜎,
the restriction map

𝐻0 (Gr�̄�𝒢,ℒ)
𝑟−→ 𝐻0 ((Gr�̄�𝒢)𝑇

𝜎
,ℒ |

(Gr�̄�𝒢)𝑇
𝜎 )

is an isomorphism, where ℒ is the level one line bundle on Gr𝒢.

This theorem will follow from the following proposition and Lemma 4.8.

Proposition 4.6. The map r is a surjection.

Proof. It is well known that any twisted affine Schubert variety Gr�̄�𝒢 is a usual Schubert variety in
a partial affine flag variety of Kac-Moody group. See the identification (3.11) and an argument for
untwisted case in [BH, Proposition 2.21]. By [Ku, Theorem 8.2.2 (d)], we have that for any �̄� � �̄� in
𝑋∗(𝑇)+𝜎 , the following restriction map

𝐻0(Gr�̄�𝒢,ℒ) → 𝐻0(Gr�̄�𝒢,ℒ) (4.6)

is surjective, and

𝐻0 (Gr𝒢,ℒ) = lim←−−𝐻
0 (Gr�̄�𝒢,ℒ |Gr�̄�𝒢

). (4.7)

We also have the following surjective map

𝐻0 ((Gr�̄�𝒢)𝑇
𝜎
,ℒ) → 𝐻0((Gr�̄�𝒢)𝑇

𝜎
,ℒ) (4.8)

for all �̄� � �̄�, since these𝑇𝜎-fixed closed subschemes are affine and the morphism (Gr�̄�𝒢)𝑇
𝜎
↩−→ (Gr�̄�𝒢)𝑇

𝜎

is a closed embedding. Moreover,

𝐻0((Gr𝒢)𝑇
𝜎
,ℒ |(Gr𝒢)𝑇 𝜎 ) = lim←−−𝐻

0((Gr�̄�𝒢)𝑇
𝜎
,ℒ |

(Gr�̄�𝒢)𝑇
𝜎 ).

Therefore, for any �̄� ∈ 𝑋∗(𝑇)+𝜎 , we have the following surjective maps:

𝐻0(Gr𝒢,ℒ) → 𝐻0(Gr�̄�𝒢,ℒ), 𝐻0 ((Gr𝒢)𝑇
𝜎
,ℒ) → 𝐻0((Gr�̄�𝒢)𝑇

𝜎
,ℒ).

Then to prove the map

𝐻0 (Gr�̄�𝒢,ℒ) → 𝐻0 ((Gr�̄�𝒢)𝑇
𝜎
,ℒ |

(Gr�̄�𝒢)𝑇
𝜎 )
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is surjective, it is sufficient to prove that the map

𝐻0 (Gr𝒢,ℒ) → 𝐻0 ((Gr𝒢)𝑇
𝜎
,ℒ |(Gr𝒢)𝑇 𝜎 ) (4.9)

is surjective, since we will have the following commutative diagram, for all �̄�:

𝐻0 (Gr𝒢,ℒ) 𝐻0 ((Gr𝒢)𝑇
𝜎
,ℒ |(Gr𝒢)𝑇 𝜎 )

𝐻0 (Gr�̄�𝒢,ℒ |Gr�̄�𝒢
) 𝐻0 ((Gr�̄�𝒢)𝑇

𝜎
,ℒ |

(Gr�̄�𝒢)𝑇
𝜎 ).

𝑟

(4.10)

By Theorem 4.2, we have Gr𝒯 � (Gr𝒢)𝑇
𝜎 . Therefore, the surjectivity of the map (4.9) follows from

the following Lemma 4.7. �

We first make a digression on Heisenberg algebras and their representations. Recall that 𝔥 is a fixed
Cartan subalgebra in 𝔤. The subspace �̂�𝜎 := (𝔥K)𝜎 ⊕ C𝐾 ↩→ �̂�(𝔤, 𝜎) is a Lie subalgebra. In fact, �̂�𝜎 is
an extended (completed) Heisenberg algebra with center 𝔥𝜎 ⊕C𝐾 . Therefore, any integrable irreducible
highest weight representation of �̂�𝜎 is parametrized by an element 𝜇 ∈ (𝔥𝜎)∨ and the level c (i.e.,
K acts by the scalar c on this representation). We denote this representation by 𝜋𝜇,𝑐 . By the standard
construction,

𝜋𝜇,𝑐 = ind�̂�
𝜎

(𝔥O)𝜎 ⊕C𝐾C𝜇,𝑐 , (4.11)

where ind is the induced representation in the sense of universal enveloping algebras, and C𝜇,𝑐 is the
1-dimensional module over (𝔥𝑂)𝜎 ⊕ C𝐾 where the action of (𝔥𝑂)𝜎 factors through 𝔥𝜎 .

Lemma 4.7. The restriction map 𝐻0(Gr𝒢,ℒ𝑐) → 𝐻0(Gr𝒯 ,ℒ𝑐 |Gr𝒯 ) is surjective.

Proof. Proving surjectivity here is equivalent to proving injectivity for the dual modules,

0→ 𝐻0(Gr𝒯 ,ℒ𝑐 |Gr𝒯 )∨ → 𝐻0(Gr𝒢,ℒ𝑐)∨.

Note that both of these spaces are modules for the Heisenberg algebra �̂�𝜎; the morphism is a �̂�𝜎-
morphism. Since 𝒯 is discrete, we naturally have the following decomposition:

𝐻0(Gr𝒯 ,ℒ𝑐 |Gr𝒯 ) �
⊕

�̄�∈𝑋∗ (𝑇 )𝜎

𝒪Gr𝒯 ,𝑒�̄� ⊗ℒ𝑐 |𝑒�̄� ,

where 𝒪Gr𝒯 ,𝑒�̄� is the structure sheaf of the component of Gr𝒯 containing 𝑒�̄�. We also notice that the
identity component of Gr𝒯 is naturally the formal group with Lie algebra (𝔥K)𝜎/(𝔥O)𝜎 . In view of the
construction (4.11), we have

𝐻0 (Gr𝒯 ,ℒ𝑐 |Gr𝒯 )∨ =
⊕

�̄�∈𝑋∗ (𝑇 )𝜎

𝜋−𝑐 𝜄 (�̄�) ,𝑐 ,

where the map 𝜄 : 𝑋∗(𝑇)𝜎 → (𝔥𝜎)∨ is defined in (3.2). Since each 𝜋−𝑐 𝜄 (�̄�) ,𝑐 is irreducible, and generated
by a −𝑐𝜄(�̄�)-weight vector 𝑤−𝑐 𝜄 (�̄�) , it suffices to show that the morphism

𝜋−𝑐 𝜄 (�̄�) ,𝑐 → 𝐻0(Gr𝒢,ℒ𝑐)∨

sends 𝑤−𝑐 𝜄 (�̄�) to a nonzero vector.
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By Theorem 3.8, we may define a Plücker embedding

𝜙 : Gr𝒢 → P(ℋ𝑐)

given by 𝑔𝑒0 ↦→ [𝜌𝑔 (𝑣0)] for any 𝑔𝑒0 ∈ Gr𝒢, where 𝜌𝑔 is defined in Lemma 3.6, and [𝜌𝑔 (𝑣0)] represents
the line in ℋ𝑐 that contains 𝜌𝑔 (𝑣0), where 𝑣0 is the highest weight vector in ℋ𝑐 . Then we may pick a
linear form 𝑓�̄� on ℋ𝑐 which is nonzero on the line [𝑣�̄�] containing the extremal weight vector 𝑣�̄�, and
which is 0 on other weight vectors, where 𝑣�̄� is defined in (3.15). The restriction 𝑓�̄� |𝜙 (Gr𝒢) produces a
nontrivial element in 𝐻0(Gr𝒢,ℒ), since 𝜙(𝑒�̄�) = 𝑣�̄�.

Observe that the map 𝜋−𝑐 𝜄 (�̄�) ,𝑐 → 𝐻0(Gr𝒢,ℒ𝑐)∨ sends 𝑤−𝑐 𝜄 (�̄�) to a nonzero scalar of 𝑣�̄�. Thus, the
map 𝜋−𝑐 𝜄 (�̄�) ,𝑐 → 𝐻0(Gr𝒢,ℒ𝑐)∨ is nontrivial and thus injective. �

By Lemma 4.7, we obtain the following short exact sequence:

0→ 𝐻0(Gr�̄�𝒢,ℐ�̄� ⊗ℒ) → 𝐻0 (Gr�̄�𝒢,ℒ)
𝑟−→ 𝐻0 (Gr�̄�𝒢,ℒ ⊗ 𝒪(Gr�̄�𝒢)

) → 0.

Thus, the obstruction to the map r being an isomorphism is the vanishing of the first term
𝐻0 (Gr�̄�𝒢,ℐ�̄� ⊗ℒ).

Let I𝜆 denote the ideal sheaf of the T-fixed subscheme on Gr𝜆𝐺 . We will show that the vanishing of
the first term can be deduced from the vanishing of 𝐻0 (Gr𝜆𝐺 , I𝜆 ⊗ L).

Recall that Gr𝜆G,𝐶 is a global Schubert variety defined in Section 2.5. The constant group scheme
𝑇𝜎 × 𝐶 over C is naturally a closed subgroup scheme of T . Hence, 𝑇𝜎 acts on Gr𝜆G,𝐶 naturally. Let
(Gr𝜆G,𝐶 )𝑇

𝜎 be the 𝑇𝜎-fixed subscheme of Gr𝜆G,𝐶 , and let I𝜆 be the ideal sheaf of (Gr𝜆G,𝐶 )𝑇
𝜎 . Then,

I𝜆 |𝑝 is the ideal sheaf of (Gr𝜆G,𝐶 |𝑝)𝑇
𝜎 . Recall that

Gr
𝜆
G,𝑜 = Gr

�̄�
𝒢, Gr

𝜆
G,∞ � Gr

�̄�
𝒢, Gr

𝜆
G, 𝑝≠𝑜,∞ � Gr

𝜆
𝐺 .

In particular, we have

I𝜆 |𝑜 = ℐ𝜆, I𝜆 |∞ � ℐ𝜆, I𝜆 |𝑝≠𝑜,∞ � I𝜆.

Lemma 4.8. The ideal I𝜆 is flat over C.

Proof. Consider Gr𝜆G,𝐶\{𝑜,∞} and the 𝑇𝜎-fixed subscheme (Gr𝜆G,𝐶\{𝑜,∞})𝑇
𝜎 . We denote by 𝑍𝜆 the flat

closure of (Gr𝜆G,𝐶\{𝑜,∞})𝑇
𝜎 in GrG,𝐶 . Since Z is the closure of a 𝑇𝜎-fixed subscheme, we see that

𝑍𝜆 |𝑜 ⊂ Gr
𝜆
G,𝐶 |𝑜, and 𝑍𝜆 |∞ ⊂ Gr

𝜆
G,𝐶 |∞.

To show I𝜆 is flat over C, it is sufficient to show that (Gr𝜆G,𝐶 )𝑇
𝜎 is flat over C. This is equivalent

to showing 𝑍𝜆 = (Gr𝜆G,𝐶 )𝑇
𝜎 . In particular, it suffices to show the fibers 𝑍𝜆 |𝑜 and 𝑍𝜆 |∞ are isomorphic

to (Gr�̄�𝒢)𝑇
𝜎 . Since the fiber 𝑍𝜆 |∞ at ∞ is similar to the fiber 𝑍𝜆 |𝑜 at o, it suffices to show that

𝑍𝜆 |𝑜 = (Gr�̄�𝒢)𝑇
𝜎 . Note that both of these are finite schemes; we can compare the dimensions of their

structure sheaves as follows:

dim𝒪
(Gr�̄�𝒢)𝑇

𝜎 ≥ dim𝒪𝑍𝜆 |𝑜 = dim𝒪(Gr𝜆G, 𝑝≠𝑜,∞)𝑇
𝜎

= dim𝒪(Gr𝜆G, 𝑝≠𝑜,∞)𝑇
= dim 𝐻0(Gr𝜆G ,L|𝑝≠𝑜,∞)

= dim 𝐻0 (Gr�̄�𝒢,ℒ) ≥ dim𝒪
(Gr�̄�𝒢)𝑇

𝜎 ,
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where the first equality follows from the flatness of 𝑍𝜆 over C, the third equality follows from
Theorem 4.4 and Theorem 5.1, the fourth equality follows since Gr𝜆G,𝐶 is flat over C (cf. Theo-
rem 2.4), and the last inequality follows from Proposition 4.6. From this comparison, it follows that
dim𝒪𝑍𝜆 |𝑜 = dim𝒪(Gr𝜆G, 𝑝≠𝑜)𝑇

𝜎 . Hence,𝒪𝑍𝜆 |𝑜 = 𝒪(Gr𝜆G, 𝑝≠0)𝑇
𝜎 . This concludes the proof of the lemma. �

Proof of Theorem 4.5. By Lemma 4.8 and the properness of Gr𝜆G,𝐶 over C, we have∑
𝑖≥0
(−1)𝑖 dim 𝐻𝑖 (Gr𝜆𝐺 , I𝜆 ⊗ L) =

∑
𝑖≥0
(−1)𝑖 dim 𝐻𝑖 (Gr�̄�𝒢,ℐ�̄� ⊗ℒ). (4.12)

By [PR, 9.h.] and [Ku, Theorem 8.2.2], we have 𝐻𝑖 (Gr𝜆𝐺 ,L) = 0 and 𝐻𝑖 (Gr�̄�𝒢,ℒ) = 0 for any 𝑖 > 0.
From [Zh1, Section 2.2] when G is of type A and D and from Section 5 when G is of type 𝐸6, we have
the following vanishing 𝐻𝑖 (Gr𝜆𝐺 , I𝜆 ⊗ L) = 0 for any 𝜆 ∈ 𝑋∗(𝑇)+, by considering the exact sequence
(4.5) in the untwisted case. From Lemma 4.7 and the long exact sequence (4.5), we can see easily that
𝐻𝑖 (Gr�̄�𝒢,ℐ�̄� ⊗ℒ) = 0 for any 𝑖 ≥ 1. Hence, the equality (4.12) implies that 𝐻0 (Gr�̄�𝒢,ℐ�̄� ⊗ℒ) = 0 for
any �̄� ∈ 𝑋∗(𝑇)+𝜎 . Therefore, the theorem finally follows from the long exact sequence (4.5). �

As an application of Theorem 4.5, we get a geometric Frenkel-Kac isomorphism for twisted affine
algebras.

Theorem 4.9. For any special parahoric group scheme 𝒢 induced from a standard automorphism 𝜎,
the restriction map

𝐻0 (Gr𝒢,ℒ) → 𝐻0 (Gr𝒯 ,ℒ |Gr𝒯 )

is an isomoprhism, via the embedding Gr𝒯 → Gr𝒢.

Proof. By Theorem 4.2, it suffices to show that the restriction map 𝑟 : 𝐻0 (Gr𝒢,ℒ) →
𝐻0 (Gr𝒯 ,ℒ |(Gr𝒢)𝑇 𝜎 ) is an isomorphism. In view of (4.7) and (4.8) and as a consequence of Theo-
rem 4.5, the restriction map r is an isomorphism. �

4.3. Application: smooth locus of twisted affine Schubert varieties

We now wish to investigate the smooth locus of the Schubert variety Gr�̄�𝒢.

Theorem 4.10. Assume that 𝒢 is not of type 𝐴(2)2ℓ . For any 𝜆 ∈ 𝑋∗(𝑇)+𝜎 , the smooth locus of Gr�̄�𝒢 is
precisely the open Schubert cell Gr�̄�

𝒢
.

Proof. For any �̄� ∈ 𝑋∗(𝑇)+𝜎 , if 𝑒 �̄� = 𝑛𝜇𝑒0 is a smooth point in Gr�̄�𝒢, then by [Zh1, Lemma 2.3.3],
dim𝒪

(Gr�̄�𝒢)𝑇
𝜎
,𝑒�̄�

= 1.

By Theorem 3.11, we have 𝐻0(Gr�̄�𝒢,ℒ)∨ � 𝐷 (1, �̄�), where 𝐷 (1, �̄�) is the Demazure module defined
in Definition 3.10. Then by Theorem 4.5, we have

dim 𝐷 (1, �̄�)− 𝜄 ( �̄�) = length
(
𝒪
(Gr�̄�𝒢)𝑇

𝜎
,𝑒�̄�

)
,

where 𝐷 (1, �̄�)− 𝜄 ( �̄�) is the −𝜄( �̄�)-weight space in 𝐷 (1, �̄�). We will prove that for any �̄� � �̄�,
dim 𝐷 (1, �̄�)− 𝜄 ( �̄�) ≥ 2, which would imply that 𝑒 �̄� is not a smooth point in Gr�̄�𝒢. From the surjectivity
of (4.6), we have an embedding 𝐷 (1, �̄�) ↩→ 𝐷 (1, �̄�). However, 𝑉 (−𝜄(�̄�)) ↩→ 𝐷 (1, �̄�), where 𝑉 (−𝜄(�̄�))
is the irreducible representation of 𝔤𝜎 of lowest weight −𝜄(�̄�). In view of Lemma 2.2, Lemma 3.3
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and Lemma 3.4, when G is not of type 𝐴2ℓ , the relation �̄� � �̄� implies that 𝜄( �̄�) � 𝜄(�̄�). Hence,
𝑉 (−𝜄(�̄�))− 𝜄 ( �̄�) ≠ 0. Furthermore, as subspaces in 𝐷 (1, �̄�),

𝐷 (1, �̄�) ∩𝑉 (−𝜄(�̄�)) = 0.

It follows that dim 𝐷 (1, �̄�)− 𝜄 ( �̄�) ≥ 2. This concludes the proof of the theorem. �

Now we will deal with the case of 𝐴(2)2ℓ . Recall the group 𝐻 = (�̌�)𝜏 mentioned in Section 2.3. By
the ramified geometric Satake, (𝑋∗(𝑇)𝜎 , 𝑋∗(𝑇)+𝜎 , 𝛾 𝑗 , 𝑗 ∈ 𝐼𝜎) can be regarded as the weight lattice, the
set of dominant weights, and simple roots of H. When (𝐺, 𝑚) = (𝐴2ℓ , 4), H is 𝐵ℓ of adjoint type. Let
𝜛1, 𝜛2, · · · , 𝜛ℓ be the set of fundamental dominant weights of H.

Theorem 4.11. Let 𝒢 be of type 𝐴(2)2ℓ . For any 𝜆 ∈ 𝑋∗(𝑇)+𝜎 , the smooth locus of Gr�̄�𝒢 is exactly the
union of Gr�̄�

𝒢
and those Gr�̄�

𝒢
such that �̄� − �̄� =

∑ℓ
𝑗=𝑖 𝛾 𝑗 and 𝜇 =

∑𝑖−1
𝑘=1 𝑎𝑘𝜛𝑘 with all 𝑎𝑘 ∈ Z≥0, for some

1 ≤ 𝑖 ≤ ℓ.

Proof. We first prove the following result: for any �̄�, �̄� ∈ 𝑋∗(𝑇)+𝜎 with �̄� � �̄�, the Schubert cell Gr�̄�
𝒢

is

contained in the singular locus of Gr�̄�𝒢, except when �̄� ≺ �̄� is a cover relation and the simple short root
𝛾ℓ appears in �̄� − �̄�. We will prove this fact by several steps. Let 𝑐ℓ be the coefficient of 𝛾ℓ in �̄� − �̄�.

Step 1. Observe that using Lemma 3.3 and by the same proof of Theorem 4.10, when the coefficient
𝑐ℓ is even, we have dim 𝐷 (1, �̄�)− 𝜄 ( �̄�) ≥ 2. Thus, 𝑒 �̄� is singular in Gr�̄�𝒢.

Step 2. Assume that the coefficient 𝑐ℓ > 1 and 𝑐ℓ is odd. There exists sequence of dominant elements
in 𝑋∗(𝑇)+𝜎 ,

�̄� = �̄�𝑘 ≺ �̄�𝑘−1 ≺ · · · ≺ �̄�1 ≺ �̄�0 = �̄�, (4.13)

such that each ≺ is a cover relation. Then, by a theorem of Stembridge [St, Theorem 2.8], for each i,
�̄�𝑖 − �̄�𝑖+1 is a positive root of H, for any 0 ≤ 𝑖 ≤ 𝑘 − 1, and the coefficient of 𝛾ℓ in each �̄�𝑖 − �̄�𝑖+1 is
either 0 or 1. Let j be the least integer such that the coefficient of 𝛾ℓ in �̄� 𝑗−1 − �̄� 𝑗 is 1. Such j exists,
since 𝑐ℓ ≠ 1. Then the coefficient of 𝛾ℓ in �̄� 𝑗 − �̄� is even. By Step 1, we have dim 𝐷 (1, �̄� 𝑗 )− 𝜄 ( �̄�) ≥ 2.
However, we have the inclusion 𝐷 (1, �̄� 𝑗 ) ⊂ 𝐷 (1, �̄�). It follows that dim 𝐷 (1, �̄�)− 𝜄 ( �̄�) ≥ 2. Hence, the
variety Gr�̄�𝒢 is singular at the point 𝑒 �̄�.

Step 3. We now assume that the coefficient 𝑐ℓ = 1. By assumption, �̄� ≺ �̄� is not a cover relation. Then,
in the sequence of cover relations in (4.13), either the coefficient of 𝛾ℓ in �̄�𝑘−1− �̄�𝑘 is 0 or the coefficient
of 𝛾ℓ in �̄�0 − �̄�1 is 0. If the coefficient of 𝛾ℓ in �̄�𝑘−1 − �̄�𝑘 is 0, by Step 1, dim 𝐷 (1, �̄�𝑘−1)− 𝜄 ( �̄�) ≥ 2,
implying that dim 𝐷 (1, �̄�)− 𝜄 ( �̄�) ≥ 2. Hence, 𝑒 �̄� is singular in Gr�̄�𝒢. If the coefficient of 𝛾ℓ in �̄�0 − �̄�1 is 0,
then by Step 1 again, 𝑒�̄�1 is a singular point in Gr�̄�𝒢. Since the singular locus of Gr�̄�𝒢 is closed, the point

𝑒 �̄� is also singular in Gr�̄�𝒢.
We now explicitly describe the cover relation �̄� ≺ �̄� such that 𝛾ℓ appears in �̄�− �̄�. Note that 𝑋∗(𝑇)𝜎 is

a root lattice of 𝐻 � SO2𝑛+1. In fact, the lattice 𝑋∗(𝑇)𝜎 is spanned by 𝜛1, 𝜛2, · · · , 𝜛ℓ−1, 2𝜛ℓ . Reading
more carefully from [St, Theorem 2.8], we can see that �̄� ≺ �̄� is a cover relation and 𝛾ℓ appears in �̄�− �̄�,
if and only if one of the followings holds:

1. �̄� − �̄� = 𝛾ℓ and 〈�̄�, �̌�ℓ〉 ≠ 0, where �̌�ℓ is the coroot of 𝛾ℓ .
2. �̄� − �̄� =

∑ℓ
𝑗=𝑖 𝛾 𝑗 and 𝜇 =

∑𝑖−1
𝑘=1 𝑎𝑘𝜛𝑘 , for some 1 ≤ 𝑖 ≤ ℓ.

Let G be the simply-connected simple group of type 𝐴2ℓ with the standard automorphism 𝜎 consid-
ered in this paper. Let 𝛼1, 𝛼2, · · · , 𝛼2ℓ is a set of simple roots of G. Let L be the Levi subgroup of G
generated by the simple roots

𝛼𝑖 , 𝛼𝑖+1, · · · , 𝛼ℓ , 𝛼ℓ+1, · · · , 𝛼ℓ+𝑖 , 𝛼ℓ+𝑖+1.
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Let M be the derived group [𝐿, 𝐿] of L. Then M is simply-connected simple group of type 𝐴2(ℓ−𝑖+1) and
𝜎 still acts on M as a standard automorphism. Let ℳ be the parahoric group scheme ResO/Ō (𝑀O)𝜎 ,
which is of type 𝐴(2)2(ℓ−𝑖+1) . Let 𝑇 ′ = 𝑇 ∩ 𝑀 be the maximal torus of M. We have the inclusion
𝑋∗(𝑇 ′) → 𝑋∗(𝑇), and this induces an inclusion 𝑋∗(𝑇 ′)𝜎 → 𝑋∗(𝑇)𝜎 and 𝑋∗(𝑇 ′)+𝜎 → 𝑋∗(𝑇)+𝜎 . We write
�̄� =

∑ℓ
𝑘=1 𝑏𝑘𝜛𝑘 and �̄� =

∑ℓ
𝑘=1 𝑐𝑘𝜛𝑘 with 𝑏𝑘 ≥ 0, 𝑐𝑘 ≥ 0 for any 𝑘 = 1, · · · , ℓ. Set

�̄�′ =
ℓ∑

𝑘=𝑖

𝑏𝑘𝜛𝑘 , �̄�′ =
ℓ∑

𝑘=𝑖

𝑐𝑘𝜛𝑘 .

Then, �̄�′, �̄�′ ∈ 𝑋∗(𝑇 ′)+𝜎 . Moreover, �̄�′ − �̄�′ = �̄� − �̄�. We have the following twisted analogue of Levi
lemma,

𝐿−−𝒢 · 𝑒 �̄� ∩ Gr
�̄�
𝒢 � 𝐿−−ℳ · 𝑒 �̄�′ ∩ Gr

�̄�′

ℳ , (4.14)

where 𝐿−−𝒢 and 𝐿−−ℳ are defined as in (4.1). It can be proved by exactly the same argument as in
[MOV, Corollary 3.4], relying on the following main ingredients:

1. 𝐿−−𝒢 · 𝑒0̄ (resp. 𝐿−−ℳ · 𝑒0̄) is open in Gr𝒢 (resp. Grℳ); cf. (4.2).
2. Transversal slice lemma for Gr𝒢 and Grℳ (cf. [MOV, Lemma 2.5], [KLu, Section 1.4]); that is,

𝐿−−𝒢 · 𝑒 �̄� (resp. 𝐿−−ℳ · 𝑒 �̄�′) is a transverse slice to Gr�̄�𝒢 (resp. Gr�̄�
′

ℳ).
3. 𝐿−−𝒢 · 𝑒 �̄� ∩ Gr

�̄�
𝒢 and 𝐿−−ℳ · 𝑒 �̄�′ ∩ Gr

�̄�′

ℳ are reduced, irreducible and normal; cf. [MOV, Lemma
2.6]. Here, the main point is that Gr�̄�𝒢 and Gr�̄�

′

ℳ are normal, cf. [PR, Theorem 0.3].

From the isomorphism (4.14) and the transversal slice lemma, we have the following Levi reduction:
𝑒 �̄�′ is singular in Gr�̄�

′

ℳ if and only if 𝑒 �̄� is singular in Gr�̄�𝒢.
Case (1): �̄� − �̄� = 𝛾ℓ and 〈�̄�, �̌�ℓ〉 ≠ 0. In this case, we are reduced to 𝐴(2)2 . It is known from [HR,

Proposition 7.1] that 𝑒 �̄�′ is singular in Gr�̄�
′

ℳ , as �̄�′ is not quasi-minuscule.
Case (2): �̄�− �̄� =

∑ℓ
𝑗=𝑖 𝛾 𝑗 and 𝜇 =

∑𝑖−1
𝑘=1 𝑎𝑘𝜛𝑘 with all 𝑎𝑘 > 0, for some 1 ≤ 𝑖 ≤ ℓ. In this case, �̄�′ = 0

and �̄�′ =
∑ℓ

𝑗=𝑖 𝛾 𝑗 . Thus, we are reduced to consider the singularity of quasi-minuscule affine Schubert

variety Gr�̄�
′

ℳ . It was observed by Richarz (using [Arz, Prop 4.16]) that the variety Gr�̄�
′

ℳ is smooth.
We give a different argument here. We consider the parahoric group scheme 𝒢 = ResO/Ō (𝐺O)𝜎 , and

let Gr�̄�𝒢 be the quasi-minuscule Schubert variety. Let 𝔤i be the eigenspace of 𝜎 on the Lie algebra 𝔤
of eigenvalue i =

√
−1. The vector space 𝔤i consists of two 𝐺𝜎-orbits, as 𝔤i is actually the standard

representation of 𝐺𝜎 = Sp2ℓ which is of dimension 2ℓ. Thus, any element in 𝔤i is nilpotent. Then we
consider a 𝐺𝜎-equivariant embedding 𝔤i → Gr𝒢 given by 𝑥 ↦→ exp((ad𝑥)𝑡−1) · 𝑒0 ∈ Gr𝒢, where 𝑒0
is the base point in Gr𝒢, and we regard ad𝑥 as an element in 𝐺 = 𝐺𝑎𝑑 . Since 𝑒ℓ + 𝑒ℓ+1 ∈ 𝔤i, and
{𝑒ℓ +𝑒ℓ+1, 𝑓ℓ + 𝑓ℓ+1, ℎℓ +ℎℓ+1} form a 𝑠𝑙2-triple, one may check easily that 𝔤i is mapped into Gr𝛾ℓ𝒢 = Gr

�̄�
𝒢

– in particular, 0 ↦→ 𝑒0. By comparing their dimensions and 𝐺𝜎-equivariance, one may see this is an
open embedding. Thus, Gr�̄�𝒢 is smooth. �

Remark 4.12. When 𝒢 is absolutely special of type 𝐴(2)2ℓ , the smooth locus of twisted affine Schubert

variety Gr�̄�𝒢 is the big cell. This was proved by Richarz in [Ri2]. The idea is to use Levi reduction lemma
of Malkin-Ostrik-Vybornov and Stembridge’s combinatorial result [St, Theorem 2.8] to reduce to split
rank one cases – in particular, the case 𝐴(2)2 (a proof of this case also appears in [HR, Prop.7.1]), and the
quasi-minuscule Schubert variety (a strong result of this case was proved by Zhu [Zh2] that this variety
is not Gorenstein). For the remaining cases, one can use nontriviality of Kazhdan-Lusztig polynomials;
cf. [MOV, Prop.6.4.3].
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Remark 4.13. One can define the affine Grassmannian Gr𝒢 and twisted affine Schubert varieties Gr�̄�𝒢
of the special parahoric group scheme 𝒢 with the base field k of characteristic p. In [HR, Section 6],
when 𝑝 ≠ 𝑟 , Haines and Richarz reduced the question of the smooth locus of the Gr�̄�𝒢 over characteristic
p to characteristic zero case. In fact, by the work of Lourenço [Lo], one may construct a global twisted
affine Schubert variety over Z so that the base change to the field k of characteristic p (including 𝑝 = 𝑟)
is the given twisted affine Schubert variety defined over k.

5. Duality theorem for 𝐸6

In [Zh1, Proposition 2.1.2], Zhu showed that the duality theorem (cf. Theorem 4.4) holds for any
dominant coweight if the theorem holds for all fundamental coweights. For type 𝐸6, Zhu was able to
prove that the theorem holds for the fundamental coweights �̌�1, �̌�2, �̌�3, �̌�5, �̌�6 (Bourbaki labelling).
However, the most difficult case �̌�4 remained open. In this section, we will prove that the theorem holds
for �̌�4. Thereby, we complete the duality theorem for 𝐸6 in general.

5.1. Some reductions

Let G be a simply-laced simple group of adjoint type. Let T be a maximal torus in G. Let L be the level
one line bundle on Gr𝐺 . For any 𝜆 ∈ 𝑋∗(𝑇), a general question is if the following restriction map is an
isomorphism:

𝐻0(Gr𝜆𝐺 ,L) → 𝐻0((Gr𝜆𝐺)𝑇 ,L). (5.1)

Zhu proved that this map is always surjective (cf. [Zh1, Prop.2.1.1]), and he also proved that the map is
an isomorphism for type 𝐴, 𝐷 and many cases of E.

Theorem 5.1. The map (5.1) is an isomorphism for any dominant coweight 𝜆 when G is of type 𝐸6.

Since Zhu has proved this theorem for �̌�1, �̌�2, �̌�3, �̌�5, �̌�6, by [Zh1, Prop.2.1.3], we will only need to
prove that the theorem holds for �̌�4.

For convenience, we assume that 𝜆 is dominant and 𝜆 is in the coroot lattice, and we set

𝐷 (1, 𝜆) := 𝐻0(Gr𝜆𝐺 ,L)∨, 𝐷𝑇 (1, 𝜆) := 𝐻0((Gr𝜆𝐺)𝑇 ,L)∨.

Then, we can identify 𝐷𝑇 (1, 𝜆) as a subspace of the affine Demazure module 𝐷 (1, 𝜆).
Let �̃�(𝔤) = 𝔤((𝑡)) ⊕ C𝐾 ⊕ C𝑑 be the affine Kac-Moody algebra associated to 𝔤 with center K and

scaling element d. Let ℋ(Λ0) denote the integrable highest weight representation of �̃�(𝔤) of highest
weight Λ0. Let 𝑣0 be the highest weight vector of ℋ(Λ0). For any 𝑤 ∈ 𝑊 , set

𝑣𝑤 (𝜆) := 𝑡𝑤 (𝜆) · 𝑣0.

Then 𝑣𝑤 (𝜆) is an extremal vector in ℋ(Λ0), and 𝔥-weight of 𝑣𝑤 (𝜆) is −𝜄(𝑤(𝜆)), where the map
𝜄 : 𝑋∗(𝑇) → 𝔥∨ is induced by the normalized Killing form; cf.(3.2). By the theory of affine Demazure
module (cf. [Ku, Theorem 8.2.2 (a)]), we have

𝐷 (1, 𝜆) = 𝑈 (𝔤[𝑡]) · 𝑣𝑤 (𝜆) , for any 𝑤 ∈ 𝑊.

Given a Levi subgroup L of G, let M be the derived group [𝐿, 𝐿]. Let 𝔪 denote the Lie algebra of
M, and denote the current algebra of 𝔪 by 𝔪[𝑡]. By [Zh1, Corollary 1.3.8, Lemma 2.2.6], we have the
following Levi reduction lemma.

Lemma 5.2. If the map (5.1) is an isomorphism for M, then 𝑈 (𝔪[𝑡]) · 𝑣𝑤 (𝜆) is contained in 𝐷𝑇 (1, 𝜆),
for any element w in the Weyl group W of G.
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Let 𝜇 be a dominant coweight of G such that 𝜇 ≺ 𝜆. The following restriction map is surjective:

𝐻0(Gr𝜆𝐺 ,L) → 𝐻0 (Gr𝜇𝐺 ,L).

Hence, it induces an inclusion 𝐷 (1, 𝜇) ⊂ 𝐷 (1, 𝜆). The following lemma is easy.

Lemma 5.3. If the map (5.1) is an isomorphism for 𝜇, then 𝐷 (1, 𝜇) is contained in 𝐷𝑇 (1, 𝜆).

Let 𝑁𝐺 (𝑇) denote the normalizer group of T in G. Then 𝑁𝐺 (𝑇) acts on (Gr𝜆𝐺)𝑇 and thus on the
vector space 𝐷𝑇 (1, 𝜆). Note that

(Gr𝜆𝐺)𝑇 = (Gr𝐺)𝑇 ∩ Gr
𝜆
𝐺 � Gr𝑇 ∩Gr

𝜆
𝐺 ,

where the second isomorphism follows from Theorem 4.1. Hence, the Lie algebra 𝔥[𝑡] acts on 𝐷𝑇 (1, 𝜆).

Notation 5.4. Let 𝑉 (𝜂, 𝑖) denote the irreducible representation of 𝔤 of highest weight 𝜂 and of degree i
with respect to the action of d, that appears in the affine Demazure module 𝐷 (1, 𝜆). For any 𝔥-weight
𝜈, we write 𝑉 (𝜂, 𝑖)𝜈 for the 𝜈-weight space of this representation.

We now consider the case when G is of type 𝐸6 and 𝜆 = �̌�4. All dominant coweights dominated by
�̌�4 are described as follows:

0 ≺ �̌�2 ≺ �̌�1 + �̌�6 ≺ �̌�4. (5.2)

For convenience, we set

𝑣𝜔4 := 𝑣𝑤0 ( �̌�4) .

Then 𝑣𝜔4 is an extremal weight vector in ℋ(Λ0) whose 𝔥-weight is 𝜔4, since −𝑤0 (𝜔4) = 𝜔4 and
𝜄(�̌�4) = 𝜔4. The Demazure module 𝐷 (1, �̌�4) contains 𝑉 (𝜔4,−3), and 𝑣𝜔4 is the highest weight vector
of 𝑉 (𝜔4,−3). By [Kl, Section 3], we have the following decomposition:

𝐷 (1, �̌�4) = 𝑉 (0, 0) ⊕ 𝑉 (𝜔2,−1) ⊕ 𝑉 (𝜔1 + 𝜔6,−2) ⊕ 𝑉 (𝜔2,−2) ⊕ 𝑉 (𝜔4,−3). (5.3)

Since Zhu has proved that the map (5.1) is an isomorphism for �̌�1 and �̌�6, hence also for �̌�1 + �̌�6 (cf.
[Zh1, Prop.2.1.3]), by Lemma 5.3, we have 𝐷 (1, �̌�1 + �̌�6) ⊂ 𝐷𝑇 (1, �̌�4). Moreover, it is easy to see that

𝐷 (1, �̌�1 + �̌�6) = 𝑉 (0, 0) ⊕ 𝑉 (𝜔2,−1) ⊕ 𝑉 (𝜔1 + 𝜔6,−2).

It follows that 𝑉 (0, 0) ⊕ 𝑉 (𝜔2,−1) ⊕ 𝑉 (𝜔1 + 𝜔6,−2) is contained in 𝐷𝑇 (1, �̌�4). Thus, it suffices to
show that 𝑉 (𝜔2,−2) and 𝑉 (𝜔4,−3) are also contained in 𝐷𝑇 (1, �̌�4). Since 𝐷 (1, �̌�4) is 𝑁𝐺 (𝑇)-stable,
it can be further reduced to show that for any dominant weight 𝜈 of 𝔤, the weight space 𝑉 (𝜔2,−2)𝜈 and
𝑉 (𝜔4,−3)𝜈 are contained in 𝐷𝑇 (1, �̌�4). In the remaining part of this section, we will analyze case by
case and show that it is indeed true.

5.2. The representation 𝑉 (𝜔4,−3)

The dominant character of 𝑉 (𝜔4) is 𝑒𝜔4 + 4𝑒𝜔1+𝜔6 + 15𝑒𝜔2 + 45𝑒0. By Lemma 5.2, we have 𝑣𝑤 ( �̌�4) ∈
𝐷𝑇 (1, �̌�4) for any 𝑤 ∈ 𝑊 . We conclude that 𝑉 (𝜔4,−3)𝜔4 ⊂ 𝐷𝑇 (1, �̌�4).

5.2.1. The weight space 𝑉 (𝜔4,−3)𝜔1+𝜔6

In terms of simple roots, we have 𝜔4 = 2𝛼1 + 3𝛼2 + 4𝛼3 + 6𝛼4 + 4𝛼5 + 2𝛼2 and 𝜔1 + 𝜔6 = 2𝛼1 + 2𝛼2 +
3𝛼3 + 4𝛼4 + 3𝛼5 + 2𝛼6. Thus, the difference 𝜔4 − (𝜔1 + 𝜔6) = 𝛼2 + 𝛼3 + 2𝛼4 + 𝛼5; in other words, this
difference is supported on the Levi of type 𝐷4 with simple roots 𝛼2, 𝛼3, 𝛼4, 𝛼5. By applying Chevalley
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generators 𝑓2, 𝑓3, 𝑓4, 𝑓5 on the highest weight vector 𝑣𝜔4 , we can get a spanning set of the weight space
𝑉 (𝜔4,−3)𝜔1+𝜔6 . By Lemma 5.2, we have

𝑉 (𝜔4,−3)𝜔1+𝜔6 ⊂ 𝐷𝑇 (1, �̌�4).

5.2.2. The weight space 𝑉 (𝜔4,−3)𝜔2

This case requires some brute force. We have the following difference: 𝛽 = 𝜔4 − 𝜔2 = 𝛼1 + 𝛼2 + 2𝛼3 +
3𝛼4 + 2𝛼5 + 𝛼6, whose height is 10.

We actually consider all expressions of the form 𝑓𝑖1 . . . 𝑓𝑖10𝑣𝜔4 such that this vector is of weight 𝜔2;
this provides a spanning set of vectors in 𝑉 (𝜔4,−3)𝜔2 (with many relations!).

Definition 5.5. We say a nonzero vector of the form 𝑓𝑖1 𝑓𝑖2 . . . 𝑓𝑖10𝑣𝜔4 is Levi-extremal, if there exists
1 ≤ 𝑘 ≤ 10, such that

1. 𝑓𝑖1 , 𝑓𝑖2 , · · · , 𝑓𝑖𝑘 are contained in a proper Levi subalgebra of 𝔤;
2. 𝑓𝑖𝑘+1 · · · 𝑓𝑖10𝑣𝜔4 is an extremal vector in 𝑉 (𝜔4,−3).

Observe that any proper Levi subalgebra of 𝐸6 is either of type A (or their product) or of type D, and
the restriction map (5.1) for these types is always an isomorphism, which is due to Zhu. Then, to show
that 𝑉 (𝜔4,−3)𝜔2 ⊂ 𝐷𝑇 (1, �̌�4), by Lemma 5.2, it suffices to prove the following proposition.

Proposition 5.6. Any nonzero vector 𝑓𝑖1 𝑓𝑖2 . . . 𝑓𝑖10𝑣𝜔4 of weight 𝜔2 is Levi-extremal.

Proof. Before we prove this proposition, we first describe a poset of weights 𝜇 with partial order <,
such that 𝜇 < 𝜔4, and 𝜇−𝜔2 is a sum of positive roots. For any two weights 𝜇, 𝜇′ in the poset, we write
𝜇

𝑠𝑖−→ 𝜇′ if 𝜇′ = 𝑠𝑖 (𝜇) and 〈𝜇, �̌�𝑖〉 ≥ 1. The partial order < of this poset is generated by these simple
relations. The weight 𝜇 will be labelled by ∗ once the support of 𝜇 − 𝜔2 (as a linear combination of
simple roots) is contained in a proper sub-diagram of the Dynkin diagram of 𝐸6. We will not describe
those weights below the ∗-labelled weights. In the following two figures, we describe this poset by
representing weights respectively in terms of the coordinates with respect to fundamental weights and
simple roots. We have the following rules.

1. In the first figure, if 𝜇
𝑠𝑖−→ 𝜇′, then the number at vertex i decreases by 2, and the adjacent vertices

increase by 1;
2. In the second figure, if 𝜇

𝑠𝑖−→ 𝜇′, then the number at vertex i decrease by 1, and no changes elsewhere.

We first show that any nonzero vector 𝑓𝑖7 𝑓𝑖8 𝑓𝑖9 𝑓𝑖10𝑣𝜔4 of weight 𝜇 is an extremal weight vector. This
can be easily checked from the first figure, since no integer ≥ 2 appears as a coefficient of 𝜔𝑖 until the
4th step at least. As a result, 𝑓𝑖7 𝑓𝑖8 𝑓𝑖9 𝑓𝑖10𝑣𝜔4 = 𝑠𝑖7 𝑠𝑖8 𝑠𝑖9 𝑠𝑖10𝑣𝜔4 for any nonzero vector 𝑓𝑖7 𝑓𝑖8 𝑓𝑖9 𝑓𝑖10𝑣𝜔4 .
Now it is clear from the second figure that any nonzero vector 𝑓𝑖1 · · · 𝑓𝑖7 𝑓𝑖8 𝑓𝑖9 𝑓𝑖10𝑣𝜔4 is Levi-extremal if

𝑓𝑖6 𝑓𝑖7 𝑓𝑖8 𝑓𝑖9 𝑓𝑖10 ≠ 𝑓4 𝑓3 𝑓5 𝑓4 = 𝑓4 𝑓5 𝑓3 𝑓4.

Thus, the ‘worst possible case’, from the perspective of producing Levi-extremal vectors, has the
first four lowering operators as follows: 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 = 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 . All other nontrivial applications
of four lowering operators will result in a Levi-extremal vector or the 0 vector. We further observe that
both 𝑓1 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 and 𝑓6 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 result in Levi-extremal vectors.

The only remaining vector to consider is 𝑓2 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 . Note that this is the first case where
𝑠2𝑠4𝑠5𝑠3𝑠4𝑣𝜔4 ≠ 𝑓1 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 , since 〈�̌�2, 𝜔4−2𝛼4−𝛼3−𝛼5〉 = 2. Thus, every element 𝑓𝑖1 . . . 𝑓𝑖10𝑣𝜔4

is Levi-extremal, except those of which the first five lowering operators are precisely 𝑓2 𝑓4 𝑓5 𝑓3 𝑓4 (up to
the order of 𝑓3 and 𝑓5); what remains are the lowering operators 𝑓1, 𝑓3, 𝑓4, 𝑓5, 𝑓6. By the same logic,
the next lowering operator must be 𝑓4, since any other lowering operator would commute with 𝑓2,
returning us to the Levi-extremal vectors situation. Thus, we are left with is considering the element
𝑓4 𝑓2 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 .
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Figure 1. In this diagram, the weight 𝜇 is represented by the coordinates of 𝜇with respect to fundamental
weights. When 1 occurs at vertex i, it indicates that we can apply reflection 𝑠𝑖 .

Figure 2. This is the same diagram as in Figure 1. The difference is that the weight 𝜇 is represented by
the coordinates of 𝜇 − 𝜔2 with respect to simple roots. This diagram tells when the support 𝜇 − 𝜔2 is
contained in a proper subdiagram.

Note that 𝑓𝛼2+𝛼4 := 𝑓𝛼4 𝑓𝛼2− 𝑓𝛼2 𝑓𝛼4 is a root vector of root 𝛼2+𝛼4. Since 𝑓4 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 = 0, we have

𝑓4 𝑓2 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 = 𝑓𝛼2+𝛼4 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4 .

This is the extremal vector 𝑠𝛼2+𝛼4 𝑠4𝑠5𝑠3𝑠4𝑣𝜔4 , since the weight of the extremal weight vector
𝑓𝛼4 𝑓𝛼5 𝑓𝛼3 𝑓𝛼4𝑣𝜔4 is 𝜔1 + 2𝜔2 − 𝜔4 + 𝜔6, and the pairing 〈𝜔1 + 2𝜔2 − 𝜔4 + 𝜔6, �̌�2 + �̌�4〉 = 1. Our
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remaining lowering operators are 𝑓1, 𝑓3, 𝑓5, 𝑓6. They are contained in a proper Levi subalgebra. Thus,
any nonzero vector of the form

𝑓𝑖1 𝑓𝑖2 𝑓𝑖3 𝑓𝑖4 𝑓4 𝑓2 𝑓4 𝑓5 𝑓3 𝑓4𝑣𝜔4

is always Levi-extremal. This concludes the proof. �

Remark 5.7. The construction of the above figures comes from the ‘Numbers game’, due to Proctor
(unpublished) and explored in Mozes [Mo] and Proctor [Pro]. When the representation is minuscule,
the action of the simple reflections is described by the algorithm above; adding one to adjacent nodes
and subtracting two from the given node (precisely the action of subtracting a simple root in the simply-
laced types). While the representation𝑉 (𝜔4) is not minuscule or quasi-minuscule, these techniques still
proved useful in this case and could be useful for the study of the remaining fundamental representations
of 𝐸7 and 𝐸8, where the restriction isomorphism is not yet known.

5.2.3. The weight space 𝑉 (𝜔4,−3)0
Let 𝜃 be the highest root of 𝔤, and let 𝛽 = 𝜔4 −𝜔2 = 𝛼1 + 𝛼2 + 2𝛼3 + 3𝛼4 + 2𝛼5 + 𝛼6. 𝛽 is also a positive
root of 𝔤. We consider the element 𝑓𝜃 𝑓𝛽𝑣𝜔4 . The following proposition is verified by Travis Scrimshaw
using SageMath. See Appendix A.

Proposition 5.8. The W-span of 𝑓𝜃 𝑓𝛽𝑣𝜔4 is the weight zero space 𝑉 (𝜔4,−3)0.

One can check that 𝛼1, 𝛼3, 𝛼4, 𝛼5, 𝜃,−𝛽 form a system of simple positive roots of 𝐸6, and 𝜃,−𝛽 form
a subsystem of type 𝐴2. Then by Lemma 5.2, 𝑓𝜃 𝑓𝛽𝑣𝜔4 ∈ 𝐷𝑇 (1, �̌�4). By W-invariance on 𝐷𝑇 (1, �̌�4)
and the above proposition, we can conclude that

𝑉 (𝜔4,−3)0 ⊂ 𝐷𝑇 (1, �̌�4). (5.4)

5.3. The representation 𝑉 (𝜔2,−2)

First, we consider the ‘0-string’ of the full basic representation ℋ(Λ0); this is the direct sum
⊕𝑛≥0ℋ(Λ0)−𝑛𝛿 . The Weyl group W acts on each of these weight spaces, so ℋ(Λ0)−𝑛𝛿 is a direct
sum of irreducible representations of the Weyl group W. We first describe ℋ(Λ0)−𝑛𝛿 for 𝑛 = 0, 1, 2, 3,
as representations of W. By [Ka, Proposition 12.13], we have the following decompositions:

ℋ(Λ0)0 = C𝑣0 � C,
ℋ(Λ0)−𝛿 = 𝔥𝑡−1 · 𝑣0 � 𝔥

ℋ(Λ0)−2𝛿 = 𝔥𝑡−1 · 𝔥𝑡−1 · 𝑣0 ⊕ 𝔥𝑡−2 · 𝑣0 � 𝑆2𝔥 ⊕ 𝔥 (5.5)
ℋ(Λ0)−3𝛿 = 𝔥𝑡−1 · 𝔥𝑡−1 · 𝔥𝑡−1 · 𝑣0 ⊕ 𝔥𝑡−1 · 𝔥𝑡−2 · 𝑣0 ⊕ 𝔥𝑡−3 · 𝑣0 � 𝑆3𝔥 ⊕ 𝑇2𝔥 ⊕ 𝔥. (5.6)

The weight space 𝑉 (𝜔4,−3)0 is a subrepresentation of ℋ(Λ0)−3𝛿 with respect to the action of W. It
is known that 𝑉 (𝜔4,−3)0 is a direct sum of two irreducible W-representations, one 15-dimensional and
the other is 30-dimensional; cf. [AH, Lable 5,p.24]. We will denote these subrepresentations by Π15 and
Π30 indexed by their dimensions.

Lemma 5.9. The subspace Π15 is the exactly the span of vectors

(ℎ[𝑡−1]ℎ′ [𝑡−2] − ℎ′ [𝑡−1]ℎ[𝑡−2]) · 𝑣0, for all ℎ, ℎ′ ∈ 𝔥.

Proof. First of all, we observe that Π30 is contained in 𝑆3𝔥; this follows from a dimension check since
dim(𝔥) = 6 and 𝑇2𝔥 � 𝑆2𝔥 ⊕ ∧2𝔥. This decomposition is compatible with the W-module structure,
and the dimensions of each summand are both less than 30. Secondly, we will prove that 𝑆3𝔥 does not
contain a 15-dimensional irreducible representation.
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Suppose that it is not the case. From the character table of the Weyl group of 𝐸6 (cf. [Car, p.415]),
we know that the dimensions of irreducible representations of W are 1,6,15,20,24, etc. Then 𝑆3𝔥
must decompose into a 15-dimensional module and then either a 6-dimensional irreducible and five
1-dimensional irreducibles or a 15-dimensional and eleven 1-dimensional irreducibles.

Both of these options are impossible for the following reasons. The only two one-dimensional
representations of W are the trivial representation and the sign representation. The trivial representation
cannot appear in 𝑆3𝔥, since this would give a W-invariant degree 3 polynomial on 𝔥 � 𝔥∨. This is
impossible, because the possible degrees of invariant polynomials are 2,5,6,8,9,12; this list is the set of
exponents +1 which can be found in [Bo, p.231].

The other option is that all of these 1-dimensional irreducibles are the sign representation. However,
we have the following decomposition as representation of 𝔤:

ℋ(Λ0)−3 = 𝑉 (𝜔4) ⊕ 𝑘1𝑉 (𝜔1 + 𝜔6) ⊕ 𝑘2𝑉 (𝜔2) ⊕ 𝑘3𝑉 (0)

for certain multiplicities 𝑘1, 𝑘2, 𝑘3, where ℋ(Λ0)−3 denote the degree −3 part of ℋ(Λ0) with respect to
the action of d. From [AH, Lable 5,p.24], one can see that no sign representation appears in the weight
zero space of these irreducible representations. Thus, this option is also impossible.

Therefore, Π15 must be contained in 𝑇2𝔥. Note that 𝑇2𝔥 = 𝑆2𝔥 ⊕ ∧2𝔥. Moreover, 𝑉 (𝜔1 + 𝜔6)0 and
𝑉 (𝜔2)0 are contained in ℋ(Λ)−2𝛿 . From the decomposition (5.5) and [AH, Lable 5,p.24], we know
that 𝑆2𝔥 is decomposed as a direct sum of a 20-dimensional irreducible and a 1-dimensional trivial
representation. Thus, Π15 is exactly the subspace ∧2𝔥. In other words, Π15 is exactly the span of all
vectors (ℎ[𝑡−1]ℎ′ [𝑡−2] − ℎ′ [𝑡−1]ℎ[𝑡−2]) · 𝑣0, ℎ, ℎ′ ∈ 𝔥. �

5.3.1. The weight space 𝑉 (𝜔2,−2)0
We have 𝑉 (𝜔2,−2)0 = 𝔥𝑡−2 · 𝑣0, which is an irreducible representation of dimension 6.

We choose any two nonzero elements ℎ, ℎ′ in 𝔥 such that (ℎ|ℎ) = 1 and (ℎ|ℎ′) = 0, where (·|·) is the
normalized Killing form on 𝔤. Then

ℎ[𝑡] (ℎ[𝑡−1]ℎ′ [𝑡−2] − ℎ′ [𝑡−1]ℎ[𝑡−2]) · 𝑣0 = ℎ′ [𝑡−2] · 𝑣0 ∈ 𝑉 (𝜔2,−2)0. (5.7)

This is a nonzero vector. By the inclusion (5.4) in Section 5.2.3 and Lemma 5.9, (ℎ[𝑡−1]ℎ′ [𝑡−2] −
ℎ′ [𝑡−1]ℎ[𝑡−2]) · 𝑣0 ∈ 𝐷𝑇 (1, �̌�4). Since 𝐷𝑇 (1, �̌�4) is stable under the action of 𝔥[𝑡], by (5.7), we have
ℎ′𝑡−2 · 𝑣0 ∈ 𝐷𝑇 (1, �̌�4). Since 𝑉 (𝜔2,−2)0 is an irreducible representation of W and 𝐷𝑇 (1, �̌�4) is W-
invariant, we get

𝑉 (𝜔2,−2)0 ⊂ 𝐷𝑇 (1, �̌�4).

5.3.2. The weight space 𝑉 (𝜔2,−2)𝜔2

We choose ℎ1 = �̌�1 and ℎ2 = �̌�2 in 𝔥. Then (ℎ1 |ℎ2) = 0 and (ℎ1 |ℎ1) = 2. By Lemma 5.9, we may
consider the following element

(ℎ1 [𝑡−1]ℎ2 [𝑡−2] − ℎ2 [𝑡−1]ℎ1 [𝑡−2]) · 𝑣0

in 𝑉 (𝜔4,−3)0. Set

𝑢 := 𝑒𝜃 (ℎ1 [𝑡−1]ℎ2 [𝑡−2] − ℎ2 [𝑡−1]ℎ1 [𝑡−2]) · 𝑣0.

This is an element in 𝑉 (𝜔4,−3)𝜃 . Note that 𝜃 = 𝜔2. One may compute easily and get

𝑢 = (ℎ1 [𝑡−1]𝑒𝜃 [𝑡−2] − 𝑒𝜃 [𝑡−1]ℎ1 [𝑡−2]) · 𝑣0.
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Then we have the following:

ℎ1 [𝑡] · 𝑢 = 2𝑒𝜃 [𝑡−2] · 𝑣0.

Now, it is easy to see that ℎ1 [𝑡] · 𝑢 is nonzero and is a highest weight vector of 𝔤 of weight 𝜔2. Thus, we
have shown that

𝑉 (𝜔2,−2)𝜔2 ⊂ 𝐷𝑇 (1, �̌�4).

Thus, we may conclude that 𝐷𝑇 (1, �̌�4) = 𝐷 (1, �̌�4). This finishes the proof of Theorem 5.1.

A. Proof of Proposition 5.8, by Travis Scrimshaw

We will prove Proposition 5.8 by using SageMath, which asserts that the W-span of 𝑓𝜃 𝑓𝛽𝑣𝜔4 is the
weight zero space 𝑉 (𝜔4)0 of the fundamental representation 𝑉 (𝜔4) of 𝐸6.

A.1. Lie algebra representations and crystals

We briefly review some basic material on finite dimensional simple Lie algebras and their finite
dimensional highest weight representations. For more information, we refer the reader to [FH91]. Let k
be an algebraically closed field of characteristic 0. In this appendix, we restrict to the case when G is a
simple Lie group, and we typically consider the case k = C.

By looking at the tangent space of the identity, we have a finite dimensional simple Lie algebra 𝔤
over k that is generated by 𝐸𝑖 , 𝐹𝑖 , 𝐻𝑖 for 𝑖 ∈ 𝐼 with the relations

[𝐻𝑖 , 𝐻 𝑗 ] = 0, [𝐸𝑖 , 𝐹𝑗 ] = 𝛿𝑖 𝑗𝐻𝑖 ,
[𝐻𝑖 , 𝐸 𝑗 ] =

〈
𝛼𝑖 , �̌� 𝑗

〉
𝐸 𝑗 , [𝐻𝑖 , 𝐹𝑗 ] = −

〈
𝛼𝑖 , �̌� 𝑗

〉
𝐹𝑗 ,

ad(𝐸𝑖)−〈𝛼𝑖 , �̌�𝑗〉+1𝐸 𝑗 = 0 ad(𝐹𝑖)−〈𝛼𝑖 , �̌�𝑗〉+1𝐹𝑗 = 0 (𝑖 ≠ 𝑗),

where ad(𝑋)𝑌 = [𝑋,𝑌 ] is the adjoint operator. Let 𝔥 = spank{ℎ𝑖}𝑖∈𝐼 denote the Cartan subalgebra
corresponding to T.

A representation of a Lie algebra V is a vector space over k such that [𝑋,𝑌 ]𝑣 = 𝑋 (𝑌𝑣) − 𝑌 (𝑋𝑣) for
all 𝑣 ∈ 𝑉 . For two 𝔤-representations V and W, their tensor product is naturally a 𝔤-representation by

𝑋 (𝑣 ⊗ 𝑤) = 𝑋𝑣 ⊗ 𝑤 + 𝑣 ⊗ 𝑋𝑤

for all 𝑋 ∈ 𝔤 and 𝑣 ⊗ 𝑤 ∈ 𝑉 ⊗ 𝑊 . We restrict to the category of finite dimensional highest weight
representations, and we let 𝑉 (𝜆) denote the irreducible highest weight representation for the dominant
integral weight 𝜆 ∈ 𝑃+. The Weyl group action on V given by

𝑠𝑖 = exp(𝐹𝑖) exp(−𝐸𝑖) exp(𝐹𝑖).

For any nilpotent element 𝑋 ∈ 𝔤 and 𝑣 ∈ 𝑉 , we can implement exp(𝑋)𝑣 by finding 𝐾 = min{𝑘 ∈ Z>0 |
𝑋 𝑘𝑣 ≠ 0} and then computing

exp(𝑋)𝑣 =
𝐾∑
𝑘=0

𝑋 𝑘𝑣

𝑘!
.

We give an explicit realization for a minuscule representation following the construction in [OS, Sec.
3.1.1], where we prove the analog of [OS, Prop. 3.2, Prop. 3.3] for 𝔤-representations. For the remainder
of this section, let 𝑟 ∈ 𝐼 be such that 〈𝜔𝑟 , �̌�〉 ≤ 1 for all 𝛼 ∈ Φ+, which characterizes the minuscule
representations 𝑉 (𝜔𝑟 ).

A crystal for 𝔤 is a set B with crystal operators �̃�𝑖 , �̃�𝑖 : 𝐵→ 𝐵 � {0}, for all 𝑖 ∈ 𝐼, that satisfy certain
properties and encode the action of the Chevalley generators 𝐸𝑖 and 𝐹𝑖 , respectively. Kashiwara showed
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[Kas1, Kas2] that all highest weight representations 𝑉 (𝜆) have corresponding crystals 𝐵(𝜆). We denote
by 𝑢𝜆 the unique highest weight element of 𝐵(𝜆). For more information on crystals, we refer the reader
to [BS].

For a minuscule node r, let 𝐽 := 𝐼 \ {𝑟}, and let 𝑊𝐽 := 〈𝑠𝑖 | 𝑖 ∈ 𝐽〉 denote the corresponding
subgroup. Denote by 𝑊 𝐽 the set of minimal length coset representatives of 𝑊/𝑊𝐽 . Define crystal
operators �̃�𝑖 , �̃�𝑖 : 𝑊 𝐽 → 𝑊 𝐽 � {0} by

�̃�𝑖𝑤 =

{
𝑠𝑖𝑤 if ℓ(𝑠𝑖𝑤) < ℓ(𝑤)
0 otherwise,

�̃�𝑖𝑤 =

{
𝑠𝑖𝑤 if ℓ(𝑠𝑖𝑤) > ℓ(𝑤) and 𝑠𝑖𝑤 ∈ 𝑊 𝐽

0 otherwise,

and weight function wt(𝑤) = 𝜔𝑟 −𝛼𝑖1 −· · ·−𝛼𝑖ℓ , where 𝑠𝑖1 · · · 𝑠𝑖ℓ is any reduced expression for 𝑤 ∈ 𝑊 𝐽 .
By Stembridge [St2], this is well defined, and this gives 𝑊 𝐽 the structure of a crystal associated to the
minuscule representation 𝑉 (𝜔𝑟 ) [Scr].

Now we give an explicit construction of the minuscule representation.1

Proposition A.1. Consider the vector space

V(𝜔𝑟 ) := spank{𝑣𝑤 | 𝑤 ∈ 𝑊 𝐽 }.

Then V(𝜔𝑟 ) is made into a 𝔤-representation by

𝑒𝑖𝑣𝑤 = 𝑣�̃�𝑖𝑤 , 𝑓𝑖𝑣𝑤 = 𝑣 𝑓𝑖𝑤
, ℎ𝑖𝑣𝑤 = 〈wt(𝑤), ℎ𝑖〉𝑣𝑤 ,

where 𝑣0 = 0, and extended by linearity. Furthermore, V(𝜔𝑟 ) � 𝑉 (𝜔𝑟 ) as 𝔤-representations.

A.2. Implementation

We now give our implementation using SageMath. For our crystals, we will use the realization using
rigged configurations [Sch, SS].

We build the minuscule representation 𝑉 (𝜔1) in type 𝐸6, which is constructed as V(𝜔1):

Let v denote the highest weight vector of 𝑉 (𝜔1). There exists a highest weight vector 𝑣𝜔4 of weight
𝜔4 in 𝑉 (𝜔1)⊗3. Explicitly, it is given as

𝑣𝜔4 = 𝑣 ⊗ 𝑓1𝑣 ⊗ 𝑓3 𝑓1𝑣 − 𝑓1𝑣 ⊗ 𝑣 ⊗ 𝑓3 𝑓1𝑣 − 𝑣 ⊗ 𝑓3 𝑓1𝑣 ⊗ 𝑓1𝑣

+ 𝑓1𝑣 ⊗ 𝑓3 𝑓1𝑣 ⊗ 𝑣 + 𝑓3 𝑓1𝑣 ⊗ 𝑣 ⊗ 𝑓1𝑣 − 𝑓3 𝑓1𝑣 ⊗ 𝑓1𝑣 ⊗ 𝑣.

It is a finite computation to show this is a highest weight vector. We also perform this computation in
SageMath:

1A different construction was also recently given [DDW], which appeared while writing this appendix.
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Thus, we can build a 𝔤-representation by V(𝜔4) := 〈𝑣𝜔4〉 ⊆ 𝑉 (𝜔1)⊗3, and since the decomposition
of tensor products of finite dimensional 𝔤-representations is determined by computing highest weight
vectors, we have V(𝜔4) � 𝑉 (𝜔4). In order to do computations, we need to construct a weight basis for
V(𝜔4). We do so by using the crystal 𝐵(𝜔4). Let 𝑏 ∈ 𝐵(𝜔4), and then define 𝑣𝑏 = 𝑓𝑖1 · · · 𝑓𝑖ℓ 𝑣𝜔4 , where
𝑏 = �̃�𝑖1 · · · �̃�𝑖ℓ𝑢𝜔4 for some fixed path (𝑖1, . . . , 𝑖ℓ). Define B := {𝑣𝑏 | 𝑏 ∈ 𝐵(𝜔4)}. Clearly, this may
depend on the choice of path from 𝑢𝜔4 → 𝑏, but regardless of this choice, we have 𝑣𝑏 ∈ 𝑉 (𝜔4)wt(𝑏) .

Below, we construct V(𝜔4) in SageMath by using B as follows. For each 𝑏 ∈ 𝐵(𝜔4), we take the
path recursively constructed by taking the minimal 𝑖𝑘 such that we have a path to b from 𝑓𝑖𝑘 · · · 𝑓𝑖ℓ𝑢𝜔4

(although any such path could do). This gives us a set of elements B, and we need to show that B
are linearly independent. We verify this by seeing the rank of the matrix of these vectors is 2925 =
dim𝑉 (𝜔4) = |𝐵(𝜔4) |. Furthermore, we verify that this does give us a 𝔤-representation by checking all
of the relations are satisfied on each basis element:

Next, consider the positive roots

𝛽 = 𝛼1 + 𝛼2 + 2𝛼3 + 3𝛼4 + 2𝛼5 + 𝛼6 =
1

12321 ,

𝜃 = 𝛼1 + 2𝛼2 + 2𝛼3 + 3𝛼4 + 2𝛼5 + 𝛼6 =
2

12321 .

Since all of the root spaces in 𝔤 are 1-dimensional (that is, dim𝔤𝛼 = 1 for all 𝛼 ∈ Φ), we construct
the basis element 𝑓𝛾 of 𝔤𝛾 (which forms the unique basis up to scalar) by finding some sequence
(𝑖1, 𝑖2, . . . , 𝑖ℓ) such that

𝑘∑
𝑗=1

𝛼𝑖 𝑗 ∈ Φ+,
ℓ∑
𝑗=1

𝛼𝑖 𝑗 = 𝛾,

for all 1 ≤ 𝑘 ≤ ℓ. In particular, we can take any path from 𝛼𝑖1 to 𝛾 in Figure 3. Then we have

𝑓𝛾 = [· · · [[ 𝑓𝑖1 , 𝑓𝑖2], 𝑓𝑖3] · · · 𝑓𝑖ℓ ] .

We write 𝑓𝛾 in the free algebra generated by 〈 𝑓𝑖〉𝑖∈𝐼 using the commutator property [𝑋,𝑌 ] = 𝑋𝑌 −𝑌𝑋
and apply the result to any vector in the 𝔤-representation. In other words, we compute

𝑓𝛾 =
∑

a
± 𝑓𝑎1 · · · 𝑓𝑎ℓ−1 𝑓𝑎ℓ , 𝑓𝛾𝑣 =

∑
a
±( 𝑓𝑎1 · · · ( 𝑓𝑎ℓ−1 ( 𝑓𝑎ℓ 𝑣)) · · · ).

Using this process, we construct the vector 𝑣 = 𝑓𝜃 𝑓𝛽𝑣𝜔4 :
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Figure 3. The root poset Φ+ in type 𝐸6.

https://doi.org/10.1017/fms.2025.10057 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10057


34 M. Besson and J. Hong

Lastly, we construct the orbit up to sign and show that it spans a 45-dimensional vector space:

Remark A.1. The SageMath code for the implementation in this appendix is included as an ancillary
file on arXiv:2010.11357.

Acknowledgements. M. Besson and J. Hong would like to thank the hospitality of Max Planck Institute for Mathematics at Bonn
during our visits in November and December of 2019, where part of the work was done. They also would like to thank Thomas
Haines, Timo Richarz, Michael Strayer and Xinwen Zhu for helpful conversations and valuable comments.

Competing interest. The authors have no competing interests to declare.

Funding statement. J. Hong is partially supported by the Simons collaboration Grant 524406 and NSF grant DMS-2001365.

References

[AH] P. Achar and A. Henderson, ‘Geometric Satake, Springer correspondence and small representations’, Selecta Math.
(N.S.) 19(4) (2013), 949–986.

[Arz] K. Arzdorf, ‘On local models with special parahoric level structure’, Michigan Math. J. 58(3) (2009), 683–710.
[BD] A. Beilinson and V. Drinfeld, ‘Quantization of Hitchin’s integrable system and Hecke eigensheaves’,

http://math.uchicago.edu/~drinfeld/langlands.html.
[BH] M. Besson and J. Hong, ‘A combinatorial study of affine Schubert varieties in affine Grassmannian’, Transform.

Groups 27 (2022), 1189–1221.
[BT] D. Bernard and J. Thierry-Mieg, ‘Level one representations of the simple affine Kac-Moody algebras in their

homogeneous gradation’, Comm. Math. Phys. 111(2) (1987), 181–246.
[BrT] F. Bruhat and J. Tits, Groupes réductifs sur un corps local: II. Schémas en groupes. Existence d’une donnée radicielle

valuée’, Publ. Math. Inst. Hautes Études 60 (1984), 5–184.
[Bo] N. Bourbaki, Lie Groups and Lie Algebras (Elements of Mathematics) (Springer-Verlag, Berlin, 2002), chapters 4–6.

Translated from the 1968 French original by Andrew Pressley.
[BS] D. Bump and A. Schilling, Crystal Bases (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017).
[Car] R. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters (Wiley Classics Library) (John

Wiley & Sons, Ltd., Chichester, 1993). Reprint of the 1985 original.
[DDW] R. Donnelly, M. Dunkum and A. White, ‘Explicit constructions of some infinite families of finite-dimensional

irreducible representations of the type E 6 and E 7 simple Lie algebras’, Appl. Algebra Engrg. Comm. Comput. 36
(2025), 387–413.

[EM] S. Evens and I. Mirković, ‘Characteristic cycles for the loop Grassmannian and nilpotent orbits’, Duke Math. J. 97(1)
(1999), 109–126.

[FH91] W. Fulton and J. Harris, Representation Theory (Graduate Texts in Mathematics) vol. 129 (Springer-Verlag, New
York, 1991). A first course, Readings in Mathematics.

[FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster (Pure and Applied Mathematics)
vol. 134 (Academic Press, Inc., Boston, MA, 1988).

[He] J. Heinloth, ‘Uniformization of G-bundles’, Math. Ann. 347(3) (2010), 499–528.
[Ha] T. Haines, ‘Dualities for root systems with automorphisms and applications to non-split groups’, Represent. Theory

22 (2018), 1–26.
[HLR] T. Haines, J. Lourenço and T. Richarz, ‘On the normality of Schubert varieties: Remaining cases in positive

characteristic’, Ann. Sci. Éc. Norm. Super. 57 (2024), 895–959.

https://doi.org/10.1017/fms.2025.10057 Published online by Cambridge University Press

https://arxiv.org/abs/2010.11357
http://math.uchicago.edu/~drinfeld/langlands.html
https://doi.org/10.1017/fms.2025.10057


Forum of Mathematics, Sigma 35

[HR] T. J. Haines and T. Richarz, ‘Smoothness of Schubert varieties in twisted affine Grassmannians’, Duke Math. J.
169(17) (2020), 3223–3260.

[HR2] T. J. Haines and T. Richarz, ‘The test function conjecture for parahoric local models’, J. Amer. Math. Soc. 34 (2021),
135–218.

[HK] J. Hong and S. Kumar, ‘Conformal blocks for Galois covers of algebraic curves’, Compos. Math. 159(2023), 2191–
2259.

[HY] J. Hong and H. Yu, ‘Beilinson-Drinfeld Schubert varieties of parahoric group schemes and twisted global Demazure
modules’, Selecta. Math. (N.S.) 31 (2025), 16.

[Ka] V. Kac, Infinite-Dimensional Lie Algebras, third edn. (Cambridge University Press, Cambridge, 1990).
[Kas1] M. Kashiwara, ‘Crystalizing the q-analogue of universal enveloping algebras’, Comm. Math. Phys. 133(2) (1990),

249–260.
[Kas2] M. Kashiwara, ‘On crystal bases of the q-analogue of universal enveloping algebras’, Duke Math. J. 63(2) (1991),

465–516.
[Kl] M. Kleber, ‘Combinatorial structure of finite-dimensional representations of Yangians: the simply-laced case’, Int.

Math. Res. Not. 1997(4) (1997), 187–201.
[KLu] D. Kazhdan and G. Lusztig, ‘Schubert varieties and Poincaré duality’, in Geometry of the Laplace Operator (Proc.

Sympos. Pure Math., Univ. Hawaii, Honolulu, HI, 1979), 185–203 (Proc. Sympos. Pure Math.) vol. XXXVI (Amer.
Math. Soc., Providence, RI, 1980).

[KTWWY] J. Kamnitzer, P. Tingley, B. Webster, A. Weekes and O. Yacobi, ‘Highest weights for truncated shifted Yangians and
product monomial crystals’, J. Comb. Algebra 3(3) (2019), 237–303.

[Ku] S. Kumar, Kac-Moody Groups, Their Flag Varieties and Representation Theory (Progress in Mathematics) vol. 204
(Birkhäuser Boston, Inc., Boston, MA, 2002).

[Lo] J. N. P. Lourenço, ‘Grassmanniennes affines tordues sur les entiers. Grassmanniennes affines tordues sur les entiers’,
Forum Math. Sigma 11 (2023), e12.

[LS] Y. Laszlo and C. Sorger, ‘The line bundles on the moduli of parabolic G-bundles over curves and their sections’,
Ann. Sci. École Norm. Sup. (4) 30(4) (1997), 499–525.

[Mo] S. Mozes, ‘Reflection processes on graphs and Weyl groups’, J. Combin. Theory Ser. A 53(1) (1990), 128–142.
[MOV] A. Malkin, V. Ostrik and M. Vybornov, ‘The minimal degeneration singularities in the affine Grassmannians’, Duke

Math. J. 126 (2005), 233–249.
[OS] S. Oh and T. Scrimshaw, ‘Categorical relations between Langlands dual quantum affine algebras: Exceptional cases’,

Comm. Math. Phys. 368(1) (2019), 295–367.
[Pro] R. Proctor, ‘Minuscule elements of Weyl groups, the numbers game, and d-complete posets’, J. Algebra 213(1)

(1999), 272–303.
[PR] G. Pappas and M. Rapoport, ‘Twisted loop groups and their flag varieties’, Adv. Math. 219 (2008), 118–198.
[PZ] G. Pappas and R. Zhou, ‘On the smooth locus of affine Schubert varieties’, Math. Ann. 392 (2025), 1483–1501.

[Ri1] T. Richarz, ‘Schubert varieties in twisted affine flag varieties and local models’, J. Algebra 375 (2013), 121–147.
[Ri2] T. Richarz, ‘Local models and Schubert varieteis in twited affine Grassmannians’, Diploma, Bonn university.
[Sag] The Sage Developers, Sage Mathematics Software (Version 9.4), 2021, https://www.sagemath.org.
[Sch] A. Schilling, ‘Crystal structure on rigged configurations’, Int. Math. Res. Not. (2006), Art. ID 97376, 27.
[Scr] T. Scrimshaw, ‘Uniform description of the rigged configuration bijection’, Selecta Math. (N.S.) 26(3) (2020),

article 42.
[So] C. Sorger, ‘On moduli of 𝐺-bundles of a curve for exceptional 𝐺’, Ann. Sci. Éc. Norm. Sup. (4) 32(1) (1999),

127–133.
[SS] B. Salisbury and T. Scrimshaw, ‘Rigged configurations and the *-involution for generalized Kac-Moody algebras’,

J. Algebra 573 (2021), 148–168.
[St] J. Stembridge, ‘The partial order of dominant weights’, Adv. Math. 136(2) (1998), 340–364.

[St2] J. Stembridge, ‘Minuscule elements of Weyl groups’, J. Algebra 235(2) (2001), 722–743.
[Zh1] X. Zhu, ‘Affine Demazure modules and T-fixed point subschemes in the affine Grassmannian’, Adv. Math. 221(2)

(2009), 570–600.
[Zh2] X. Zhu, ‘On the coherence conjecture of Pappas and Rapoport’, Ann. of Math. (2) 180(1) (2014), 1–85.
[Zh3] X. Zhu, ‘The geometric Satake correspondence for ramified groups’, Ann. Sci. Éc. Norm. Supér. (4) 48(2) (2015),

409–451.
[Zh4] X. Zhu, ‘An introduction to affine Grassmannians and the geometric Satake equiv- alence’, in Geometry of Moduli

Spaces and Representation Theory (IAS/Park City Math. Ser.) vol. 24 (Amer. Math. Soc., Providence, RI, 2017),
59–154.

https://doi.org/10.1017/fms.2025.10057 Published online by Cambridge University Press

https://www.sagemath.org
https://doi.org/10.1017/fms.2025.10057

	1 Introduction
	2 Main definitions
	2.1 Standard automorphisms
	2.2 Affine Grassmannian of special parahoric group schemes
	2.3 Twisted affine Schubert varieties
	2.4 Global affine Grassmannian of parahoric Bruhat-Tits group schemes
	2.5 Global Schubert varieties

	3 Construction of level one line bundle on BunG
	3.1 Borel-Weil-Bott theorem on Gr=142 =168 =194 =195 =512   ==71==71 G   
	3.2 Construction of level one line bundles on BunG

	4 Smooth locus of twisted affine Schubert varieties
	4.1 Gr=142 =168 =194 =195 =512   ==84==84 T    as a fixed-point ind-subscheme of Gr=142 =168 =194 =195 =512   ==71==71 G   
	4.2 A duality isomorphism for twisted Schubert varieties
	4.3 Application: smooth locus of twisted affine Schubert varieties

	5 Duality theorem for E6
	5.1 Some reductions
	5.2 The representation V(ω4, -3)
	5.2.1 The weight space V(ω4,-3)ω1+ω6
	5.2.2 The weight space V(ω4,-3)ω2
	5.2.3 The weight space V(ω4,-3)0

	5.3 The representation V(ω2, -2)
	5.3.1 The weight space V(ω2, -2)0
	5.3.2 The weight space V(ω2,-2)ω2


	A Proof of Proposition 5.8, by Travis Scrimshaw
	A.1 Lie algebra representations and crystals
	A.2 Implementation

	References

