On a System of Equations

By H. Sircar

(Received 21st March, 1947. Read 2nd May, 1947.)

1. I propose to prove the following theorem.

With $n>2$, the ($n+2$) equations derived from the matrix
$\left.\|\Delta\|=\begin{aligned} & \mathbf{a}_{1} \ldots \ldots \mathbf{a}_{n} \mathbf{u} \mathbf{1} \\ & l_{1} \ldots \ldots l_{n}\end{aligned}| | \right\rvert\,$ with $D=\left|\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right|=0$, and $S=\left|\begin{array}{l}\mathbf{a}_{1} \ldots \mathbf{a}_{n} \mathbf{u} \\ u_{1} \ldots u_{n}\end{array}\right| \neq 0$,
where

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right], \mathbf{l}=\left[\begin{array}{c}
l_{1} \\
\vdots \\
l_{n}
\end{array}\right] \text { and } \mathbf{a}_{k}=\left[\begin{array}{c}
a_{1 k} \\
\vdots \\
a_{n k}
\end{array}\right], k=1,2, \ldots, n
$$

by equating to zero all $(n+1)$-rowed determinants from the matrix $\|\Delta\|$ are equivalent to only two, one of which is linear in $l_{i}(i=1,2, \ldots, n)$ and the other is homogeneous and quadratic in a certain $n-1$ of $l_{i}(i=1,2, \ldots, n)$; the elements of the matrix are real; $a_{r 8}=a_{s_{r}}$ $(r, s=1,2, \ldots, n)$ and d is arbitrary.
2. The following notations and symbols will be used. $\|M\|$ will mean a matrix ; $A_{i j}$ will denote the algebraic complement of $a_{i j}$ in D; D^{\prime}, the adjoint determinant of D; and

$$
S_{0}=\left|\begin{array}{cccc}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{n} \mathbf{1} \\
l_{1} & \ldots & l_{n} \mathbf{0}
\end{array}\right| \text { and } S_{0}^{\prime}=\left|\begin{array}{cccc}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{n} & \mathbf{u} \\
l_{1} & \ldots & l_{n} & l_{1}
\end{array}\right|
$$

3. The following generalities may be noted.
3.1 The matrix of the adjoint determinant of a vanishing determinant has the rank one or zero.
3.2 In a symmetric determinant of rank r, there is a nonvanishing r-rowed principal minor.
3.3^{1} If, in a matrix with $n+1$ rows and n columns (or with

[^0]n rows and $n+1$ columns), two of the determinants of the matrix vanish, then the rank of the given matrix is $n-1$, provided that the matrix common to the two determinants is of rank $n-1$.
4. From the symmetry of D follows that of D^{\prime}; and as $D=0$, $\left\|D^{\prime}\right\|$ has, according to 3.1 , the rank zero or one. \| $D^{\prime} \|$ cannot, however, have the rank zero, for, developing S according to the theory of bordered determinants, we have
$$
D \neq S=-\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} u_{i} u_{j}
$$
which would vanish, thereby giving rise to a contradiction, if $\left\|D^{\prime}\right\|$ had the rank zero.
$\left\|D^{\prime}\right\|$ must have, therefore, the rank one.
As D^{\prime} is symmetric and $\left\|D^{\prime}\right\|$ has the rank one, one of its principal elements say $A_{i i}$, is, according to 3.2 , not equal to zero. We definitely choose i for our future discussion.

From

$$
\begin{equation*}
0 \neq S=-\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} u_{i} u_{j}=-\left(\sum_{j=1}^{n} A_{i j} u_{j}\right)^{2} / A_{i i} \tag{2}
\end{equation*}
$$

in which we have made use of the equations

$$
A_{r q} A_{i i}=A_{i q} A_{r i}, \quad r, q=1,2, \ldots, n
$$

(which are derived from the consideration that \|| $D^{\prime} \|$ has the rank one), follows

$$
\begin{equation*}
\sum_{j=1}^{n} A_{i j} u_{j} \neq 0 \tag{3}
\end{equation*}
$$

4.1 Consideration of the equation

$$
0=S_{0}=-\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} l_{i} l_{j}=-\left(\sum_{=}^{n} A_{i j} l_{j}\right)^{2} / A_{i j}
$$

from the matrix $\|\Delta\|$, leads to the equation

$$
\begin{equation*}
\sum_{j=1}^{n} A_{i j} l_{j}=0 \tag{4}
\end{equation*}
$$

We note that

$$
D=0, \text { with } A_{i i} \neq 0 \text { and } \sum_{j=1}^{n} A_{i j} l_{j}=0
$$

consequently the rank of the matrix

$$
\begin{equation*}
\left\|\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{n} \mathbf{l}\right\| \tag{5}
\end{equation*}
$$

is, according to $3.3, n-1$.

Immediate consequences of (5) are that factorisation is possible, and that the coefficient of p is zero, in the remaining equations from the matrix $\|\Delta\| ; p$ is, therefore, without influence and can be chosen arbitrarily.
4.2 The equation $S_{0}^{\prime}=0$ from the matrix $\|\Delta\|$ leads to

$$
\begin{aligned}
0=S_{0}^{\prime} & =-\sum_{k=1}^{n} l_{k}\left(u_{1} A_{k 1}+u_{2} A_{k 2}+\ldots+u_{n} A_{k n}\right) \\
& =-\left(\sum_{j=1}^{n} A_{i j} l_{j}\right)\left(\sum_{j=1}^{n} A_{i j} u_{j}\right) / A_{i i},
\end{aligned}
$$

in which we have made use of the relations

$$
A_{r q} A_{i i}=A_{i q} A_{r i}, \quad r, q=1,2, \ldots, n ;
$$

whence, in consequence of (3), we get the equation (4) (see 4.1); $S_{0}^{\prime}=0$ is, therefore, not an additional equation.
4.3 Since the quantities $A_{i 1}, A_{i 2}, \ldots, A_{i n}$ are not all zero ($A_{i i} \neq 0$, see (2)), the equation

$$
\sum_{r=1}^{n} A_{i r} x_{r}=0
$$

has $n-1$ linearly independent solutions. Evidently, the vectors $\mathbf{a}_{k}(k=1,2, \ldots, n)$, of which exactly $n-1$ are linearly independent, form a complete, though redundant, set of solutions. On the other hand, we already have the equation (4) in 4.1, viz.,

Hence

$$
\begin{aligned}
& \sum_{r=1}^{n} A_{i r} l_{r}=0 . \\
& 1=\sum_{k=1}^{n} \lambda_{k} \mathbf{a}_{k},
\end{aligned}
$$

where the λ 's are scalars.
${ }^{*}$ Considering one of the remaining n determinants, f_{j} say, from the matrix || Δ ! , we have

$$
\begin{align*}
& f_{j}=\left|\begin{array}{llllll}
\mathbf{a}_{\mathbf{1}} \ldots & \mathbf{a}_{j-1} & \mathbf{a}_{j+1} \ldots & \mathbf{a}_{n} & \mathbf{u} & \mathbf{1} \\
\boldsymbol{l}_{1} \ldots & l_{j-1} & l_{j+1} & \ldots & l_{n} & p
\end{array}\right| \\
& = \pm \lambda_{j}\left|\begin{array}{llll}
\mathbf{a}_{1} \ldots \mathbf{a}_{j} \ldots & \mathbf{a}_{n} \dot{\mathbf{u}} \\
l_{1} \ldots l_{j} & \ldots & l_{n} & p
\end{array}\right| \pm Q\left|\mathbf{a}_{1} \ldots \mathbf{a}_{j-1} \mathbf{a}_{j+1} \mathbf{a}_{n} \mathbf{u}\right|, \\
& \text { where } \\
& Q=\sum_{r=1}^{n} \lambda_{r} l_{r} . \tag{7}
\end{align*}
$$

The first determinant is S_{0}^{\prime}, which vanishes, and the second determinant, viz.,

$$
\left|\mathbf{a}_{1} \ldots \mathbf{a}_{j-1} \mathbf{a}_{j+1} \cdots \mathbf{a}_{n} \mathbf{u}\right|
$$

is different from zero when $j=i$: see (3); and so from the equations

$$
f_{1}=f_{2}=\ldots=f_{n}=0
$$

we must have $Q=0$.
Eliminating from

$$
1=\sum_{r=1}^{n} \lambda_{r} a_{r}
$$

one of the vectors, say a_{i}, where

$$
\mathbf{a}_{i}=\sum_{r=1}^{n} p_{r} \mathbf{a}_{r}
$$

with

$$
\begin{equation*}
a_{k i}=\sum_{r=1}^{n} p_{r} a_{k r}, \quad k=1,2, \ldots, n \tag{8}
\end{equation*}
$$

(the symbol $\sum_{r=1}^{n}$ denoting a summation in which r assumes all values $1,2, \ldots, n$ excepting i; and the p 's are scalars), we have

$$
\mathbf{1}=\sum_{r=1}^{n}\left(\lambda_{r}+\lambda_{i} p_{r}\right) \mathbf{a}_{r}
$$

with

$$
\begin{equation*}
l_{k}=\sum_{r=1}^{n}\left(\lambda_{r}+\lambda_{i} p_{r}\right) a_{r k}, \quad k=1,2 \ldots, i-1, i+1, \ldots, n \tag{9}
\end{equation*}
$$

and

$$
l_{i}=\sum_{r=1}^{n}\left(\lambda_{r}+\lambda_{i} p_{r}\right) a_{r i}
$$

With the help of (8) and (9), it is easy to prove that

In consequence of (10), the equation (7^{\prime}) is reduced to

$$
\begin{equation*}
\sum_{r=1}^{n}\left(\lambda_{r}+\lambda_{i} p_{r}\right) l_{r}=0 \tag{11}
\end{equation*}
$$

Eliminating the $n-1$ constants $\lambda_{r}+\lambda_{i} p_{r}(r=1,2, \ldots ; i-1$, $i+1, \ldots, n$) from the equations (9) and (11), we have finally
where

$$
\mathbf{1}^{\prime}=\left[\begin{array}{c}
l_{1} \\
\vdots \\
l_{i-1} \\
l_{i+1} \\
\vdots \\
l_{n}
\end{array}\right] \text { and } \mathbf{a}^{\prime}{ }_{k}=\left[\begin{array}{c}
a_{1 k} \\
\vdots \\
a_{i-1, k} \\
a_{i+1, k} \\
\vdots \\
a_{n k}
\end{array}\right], k=1,2, \ldots, i-1, i+1, \ldots n .
$$

The equation (12) is homogeneous and quadratic in $l_{1}, \ldots, l_{i-1}, l_{i+1} \ldots, l_{n}$. We have hereby proved that the $n+2$ equations from the matrix $\|\Delta\|$ are equivalent to the equations (4) and (12).

I acknowledge my indebtedness to a referee, who has admirably simplified the proof of the theorem originally advanced by me.
University of Dacca, Bengal.

[^0]: ${ }^{1}$ See Bôcher, Introduction to Higher Alyobru (1938), p. 58.

