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By using quasi-optical tools, it is possible to approximate microwave radiation to Gaussian beams, which enables the study of
its propagation and coupling to different components. Hence, their usefulness for wireless power transfer and rapid system
design. In this paper, a system composed of two reflectors is analyzed both theoretically and by discussing two cases where
quasi-optical tools were applied. The near- and far-field regimes were considered and corresponding frequencies of operation,
beam radius, and radius of curvature were computed.
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I . I N T R O D U C T I O N

Microwave’s high directionality along with a high transmis-
sion efficiency in the atmosphere made this type of radiation
interesting for long distance transmissions.

These features made the millimeter and sub-millimeter
waves also convenient for power transmission in the air [1].
However, the divergence effects are significant and have to
be considered. The common theory of optics has then been
adapted to contexts with high diffraction (such as microwave
propagation), being referred to as “quasi-optics” [2, 3]. There
is vast literature on this subject with comprehensive treat-
ment, both on electromagnetics [4] and optics [5], which dedi-
cate sections to the diffraction effect.

Wireless power transfer (WPT) using radio frequencies
(RF) can be traced back to the XIX century, with the work
of Heinrich Hertz [6]. His experiments demonstrated the
propagation of electromagnetic waves and their reflection on
parabolic mirrors at the receiver and transmitter ends. Later
on, Nikola Tesla pioneered a different concept of WPT by
using low-frequency standing waves along the surface of the
Earth which would power strategically located antennas.
There was no focusing and the radiation would propagate in
every direction [7, 8].

Since then, many efforts and important contributions have
been done. For a summary of the state-of-the-art on WPT,
refer to [9, 10]. WPT has immense potential for numerous
applications, ranging from distances of a few centimeters
(with inductive and capacitive fields) all the way to kilometers
using microwaves [11]. Long distance WPT remains a field of

interest since there is still much to be done in order to improve
the overall efficiency.

A review of the general applications for RF and, specifically,
microwave power transfer can be found in [12]. Microwaves
have been used to power drones [6, 13] by using rectennas
(rectifying antennas) as receivers [14, 15]. The use of micro-
waves and rectennas form the basis of a space solar system
for power harvesting where the Sun energy would be con-
verted to electricity in space via solar panels, and transferred
to Earth by microwaves [16, 17].

In general, emitting antennas can have any form but the
use of planar arrays is very interesting in various situations
due to their relatively small size and low manufacturing
costs. Their use in WPT has been contemplated [18] and
interesting studies developed, namely on the maximization
of the power transfer efficiency [19] or the possibility of focus-
ing multiple targets [20].

That brings us to another important aspect in electromag-
netic waves which is the focusing of the radiation. It is
common to use reflectors or lenses to create systems that
focus the beam, thus reducing the spillover losses. On one
hand, parabolic reflectors are advantageous to avoid spherical
aberration and are common in the industry [21, 22]. Off-set
parabolic reflectors are crucial to avoid blockage from the
feed [23] at the price of some undesired beam aberrations
[24]. On the other hand, depending on the application, lenses
can eventually be more advantageous [25, 26] with dielectric
lenses receiving a lot of attention [27, 28], due to their simpli-
city. Fresnel zone plate lens [29, 30] and electronically reconfig-
urable Luneburg lenses [31] are also worth interesting. Several
studies make use of both reflectors and lenses [32, 33].

An interesting application of the quasi-optical theory applied
to WPT that considers a metasurface aperture to dynamically
focus a radiation beam to specific points is discussed in [34].

The present study applies the quasi-optical theory in the
study of a double-reflector WPT system, using the reciprocity
principle to simplify the analysis.
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A) Gaussian beams
The wave front of a light beam can be approximated to plane
waves in most applications if the wavelength is much smaller
than the size of the components involved (e.g. reflectors,
lenses, etc.). That is not the case for microwaves since gener-
ally the wavelength (l) is about the same size as the antennas’
components (at 5.8 GHz, l = 51.7 mm in air). In such a case,
a better approximation is to consider that the waves are
Gaussian beams.

Let us assume that these beams propagate in the ẑ direc-
tion, with z0 being the point at which the power is most con-
centrated and the diffraction less evident – the beam wave
front can correctly be approximated by a plane wave at the
surroundings of this point; we will assume z0 ¼ 0 throughout
the discussion. As z increases (i.e. as the beam propagates), the
beam spreads and the wave front, i.e. the surface of equal
phase of the electric field, assumes a curved shape.

The electric field of a Gaussian beam that propagates freely
in the fundamental mode is axially symmetric; its value
depends only on the distance from the axis of propagation
(radius), r, and the position along the axis, z, and can be
written as

E(r, z) =
������

2
p42

√
exp − r2

42
− ikz − ipr2

lR
+ if0

( )
, (1)

where 4 is the beam radius, R is the radius of curvature of the
wave front, f0 is the phase shift, and l is the wavelength. This
field is normalized such that

�
|E|2 · 2pr dr = 1 for conveni-

ence and is represented in Fig. 1.
Although most of the radiation propagates in the funda-

mental mode, there is also some power in higher order
modes. The percentage of each depends mostly on the type
of antenna used. In some cases, the fundamental mode
alone is not a good enough approximation. A more general
definition allows us to define the electric field for higher
order modes [2].

Gaussian beams are therefore described by three important
parameters, 4,R, and f0:

† The beam radius, 4(z), is the distance to the axis at which
the field drops to 1/e of its on-axis value and is generally a
function of the position along the propagation direction. Its
minimum value, which is characteristic of the beam, is
called the beam waist radius (40) and it is located at the
beam waist point, z0, which is defined according to a reference

point (e.g. the aperture of a horn antenna). In (2) it is assumed
that z0 ¼ 0. It can be shown that [2] (Fig. 2),

4 = 40

������������
1 + z

zc

( )2
√

, (2)

where zc = (p42
0)/l is the confocal distance, an important

quantity which will be defined below.

† The radius of curvature, R(z), is the radius of curvature of a
wave front at z, if the wave was plane at z ¼ 0 (Fig. 3),

R = z + z2
c

z
. (3)

Naturally, at the beam waist z ¼ z0 ¼ 0 and R � 1,
typical of a plane surface.

† The beam phase shift, f0, (sometimes called the Guoy phase
shift) is the difference between the on-axis wave front phase
and that of a corresponding plane wave. It generally
changes along z, being (Fig. 4)

f0 = arctan
z
zc

( )
. (4)

† When studying beam transformations, it is particularly con-
venient to define the so-called Gaussian beam parameter, q,

1
q
= 1

R
− i

l

p42
(5)

or (as a function of 40)

q = z + izc. (6)

† The crucial quantity after which all the other parameters
are written is the confocal distance (or Rayleigh range),

zc =
p42

0

l
. (7)

This parameter sets the scale at which a Gaussian beam
remains collimated (i.e. the beam’s rays remain parallel,
with minimum divergence). Therefore, zc parameterizes the
transition between the near-field region, z ≪ zc, and the far-
field region, z ≫ zc.

Fig. 1. Normalized electric field distribution of a Gaussian beam in the
fundamental mode (40 = 1 m): (a) front view and (b) transverse view.

Fig. 2. The normalized beam radius is plotted as a function of the propagation
axis, z.
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It is important to differentiate between the definition of the
field regions of Gaussian beams from that of antennas’. The
antenna’s near-field is the region where non-radiative fields
dominate, while the far-field is associated with the emission
of radiation. On the other hand, since Gaussian beams are a
representation of electromagnetic waves, the field regions
are always related to the beam of radiation and the way it
behaves and propagates. The diffraction is the major differen-
tiator between the near- and far-field of Gaussian beams, with
zc being the transition region.

B) Paraxial approximation
The paraxial approximation refers to near axis wave fronts.
These have wave vectors (rays) that are almost parallel to
the optical axis at any point (i.e. the divergence angle is
u& 10◦). In such an approximation,

sin u ≈ u, tan u ≈ u, and cos u ≈ 1.

and the analysis is linear. Generally, the paraxial approxima-
tion is considered valid as long as

40

l
* 0.9. (8)

However, studies of Gaussian beams beyond the paraxial
limits can be found in [35, 36].

C) Beam transformation
Rays propagating freely in a homogeneous medium can be
ascribed at each point to their distance (R) and slope (u) to
the optical axis. If a ray encounters a quasi-optical component,
it is formally transformed and an output ray will emerge. In
the paraxial approximation, these transformations are linear;
hence, the output ray is linearly related to the input one:

rout

uout

[ ]
= A B

C D

[ ]
· rin

uin

[ ]
.

The ABCD elements form the so-called ray transfer matrix
(M), which is characteristic of the system with its components.
It can be calculated by multiplying the matrices of each com-
ponent that interacts with a ray in reverse order (e.g. if a ray
enters a system and encounters the component A and then
B, the overall matrix is M ¼MB × MA).

The radius of curvature of the wave front of a beam is R ¼
r/u, and therefore, the Gaussian beam parameter, q, can be
related to the ray parameters. Defining qin as the input
Gaussian beam parameter at the input beam waist, we can
arrive at the output Gaussian beam parameter (at the output
beam waist), qout,

qout =
A · qin + B
C · qin + D

. (9)

By using (5), we can obtain the beam radius (4) and the
radius of curvature (R) of the output beam as a function of z.

A general system matrix, Msys, can be written by taking the
matrices representing the propagation of the incoming and
outgoing rays together with the ray transfer matrix, M. It
enables us to write the input and output parameters for any
system configuration in simple terms:

Msys =
1 dout

0 1

[ ]
·

A B

C D

[ ]
·

1 din

0 1

[ ]

=
A + Cdout Adin + B + dout(Cdin + D)

C Cdin + D

[ ]

=
A′ B′

C′ D′

[ ]
,

(10)

where din, the input distance, is the distance from the input
beam waist to the first element of the system and dout is the
output distance from the last element of the system to the
output beam waist (see Fig. 5).

Since the beam parameter (6) at the beam waist (where z ¼
0) is qin ¼ izc then, by inserting A′B′C′D′ elements of the
overall matrix, Msys, in (9), the output beam parameter qout

Fig. 3. The radius of curvature of the wave front along z.

Fig. 4. Phase shift along z.

Fig. 5. Double-reflector configuration. demitter is the distance from the input
beam waist radiated by the emitter antenna to the first reflector, after which
one can find a beam waist clearly located at z ¼ L/2. dreceptor is the distance
from the final reflector to the output beam waist, at the reception antenna.
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becomes,

qout =
(A + Cdout)izc + [(A + Cdout)din + (B + Ddout)]

Cizc + Cdin + D
,

(11)

and, given that at the output beam waist, zout ¼ 0, qout is
imaginary,

dout = − (Adin + B)(Cdin + D) + ACz2
c

(Cdin + D)2 + C2z2
c

(12)

and finally the output beam waist radius 40out (knowing that
det M = 1),

40out =
40in���������������������

(Cdin + D)2 + C2z2
c

√ . (13)

D) Gaussian coupling efficiency, the beam
waist radius (40) and its location (z0)
The Gaussian coupling efficiency (hG) translates the amount of
power from an antenna which is coupled to the fundamental
Gaussian beam (with a certain 40 and z0) [37]. When design-
ing an antenna as a function of 40, it is important to maxi-
mize hG.

In [2], some antenna types have theirhG discriminated as well
as the correspondent 40 and z0. However, for different types of
antenna, one can still arrive at the Gaussian coupling efficiency
by an algorithm explained in [37]. This is especially relevant
when considering the sub-efficiencies which amount to hG.

The quantities explained in this section are fundamental
when designing a concrete system because only with them
can the antennas be approximated to Gaussian beams.

I I . Q U A S I - O P T I C A L S Y S T E M

The proposed quasi-optical system for this study is a double-
reflector configuration (represented in Fig. 5), somewhat
inspired by the acoustic mirror. The idea is that:

1. A feed antenna radiates on the first reflector;
2. The mirror transforms the radiation in order for it to better

propagate through space, directing the beam at the second
mirror;

3. This last one will in turn transform the beam, so that it can
be better received in the final antenna.

Although represented on-axis, an offset reflector should be
mandatory since most energy flows in the center of the axis.
This set-up was chosen for being the most simple (reflectors
are the only type of components used besides the mandatory
feed antennas) which serves the purpose of theory validation
and preparation for more advanced systems (e.g. adding
lenses will enable increasingly complex and improved solu-
tions). Parabolic reflectors were chosen in order to avoid
spherical aberration.

The separation between reflectors (L) is the quantity that
specially characterizes the system. Our final goal is to under-
stand how to achieve the maximum power transmission effi-
ciency, for the maximum L possible.

It is extremely necessary to make a note here. Every
quasi-optical system analysis is made by considering an inci-
dent beam, with a certain beam waist radius 40in located at a
distance din from the first component of the system, that
suffers transformations by the system. The result is an
output beam with a certain 40out that will be located at a dis-
tance dout from the last component of the system. A represen-
tation of a general quasi-optical system is represented in Fig. 6.

For our double-reflector system, the quasi-optical system is
composed of three components: the first reflector, the distance
between reflectors and the final reflector, where d′

in ¼ demitter,
d′

out ¼ dreceptor (the inverted comas are used for quantities
referring to the total double-reflector system).

However, we can begin our analysis by simplifying the
double mirror set-up by making both mirrors and antennas
equal: in optics and quasi-optics, rays respect the reciprocity
principle; therefore, the same laws apply to incoming or out-
going beams – the transformations are simply reversed. One
can then analyze the mirrors’ effect by studying only one of
them. It is important to note that this is not a necessary
step, it only simplifies the analysis (the final results will be
quadratic equations instead of cubic).

By doing so, the quasi-optical system represents only one
reflector and although din ¼ demitter remains exactly the
same, the output beam waist will now be the beam after the
first reflector. By observing Fig. 5, it is clear that dout ¼ L/2.

To summarize, the input beam waist is located at a distance
din ¼ demitter from the first reflector, where the emitting
antenna will be. After the first reflection, the output beam will
converge until it reaches its minimum value of beam radius at
a certain point dout. The beam will then diverge until it arrives
at the second reflector. In order to respect the reciprocity prin-
ciple, it is necessary to guarantee that dout is located at exactly
half the distance between the mirrors, dout ¼ L/2: only then
will the beam diverge to the second reflector in the same way
as it converged from the first one, enabling the transformation
by the second reflector to be reciprocal of that done by the first
one. In that case, demitter ¼ dreceptor.

In that case, the ray transfer matrix is exactly that of a
single mirror with a certain focal length (f),

1 0
−1

f 1

[ ]
. (14)

Fig. 6. General quasi-optical system. din is the distance from the input beam
waist to the first system’s component, whereas dout is the distance from the
final component to the output beam waist. The gray box illustrates the
general system which can be composed of various components.
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To clarify, the feed antenna originates a beam whose
beam waist is at a certain distance din from the reflector.
This beam will diverge until it is transformed by the reflector.
The output beam will converge until it reaches L/2 where the
output beam waist is located by definition (i.e. dout ¼ L/2).
That finalizes the quasi-optical system analysis, but not the
beam propagation, which proceeds until the receptor.
Because of reciprocity, the beam is expected to diverge until
it reaches L, the position where the second mirror is, with
the same characteristics (parameters’ values) it had in the
first mirror. Then the beam will be transformed by the
mirror and focused at the receiving antenna, which, recipro-
cally, is at a distance of din from the last reflector. In this
case demitter ¼ dreceptor ¼ din.

In the end, the incoming beam at the receiving antenna
should have the same characteristics of the outgoing beam
at the transmitting antenna,

40final = 40initial .

At this point, the wave front is approximately a plane wave,
which might be advantageous for conversion efficiency (at the
receptor).

By substituting the parameters of (14): A ¼ 1, B ¼ 0,
C ¼ 21/f, and D ¼ 1 into (11) and (12), and solving as a func-
tion of the mirror’s focal length (f) we arrive at

af 2 + bf + c = 0, (15)

with

a = L
2
+ din, b = − Ldin + d2

in + z2
c

( )
, and c = L

2
d2

in + z2
c

( )
.

This is a quadratic polynomial equation, which has two solu-
tions. In order for the focal length to be a real quantity

b2 − 4ac ≥ 0. (16)

Therefore,

− Ldin + d2
in + z2

c

( )[ ]2 − 4
L
2
+ din

[ ]
L
2

d2
in + z2

c

( )[ ]
≥ 0,

which can be solved for L, yielding the condition,

L ≤ zc +
d2

in

zc
. (17)

I I I . R E S U L T S

A) Maximum distance between mirrors
We have arrived at an interval of possible values for L, ranging
from zero up to Lmax(din, zc) = zc + d2

in/zc.
For the sake of simplicity, L will always refer to its

maximum value.
In order to maximize the distance between mirrors, it is

necessary to optimize on zc and din. Hence,

∂L
∂zc

= 1 − d2
in

z2
c

= 0 ⇒ z2
c = d2

in ⇒ zc = +din

∂L
∂din

= 2din

zc
= 0 ⇒ din = 0

⎧⎪⎪⎨
⎪⎪⎩ .

The only critical point is therefore zc ¼ din ¼ 0, which is
obviously of no interest since we look forward to quantities
that have positive non-zero values. Hence, it should be
assumed that din is a controllable parameter and optimize
for zc.

In doing so we find that L is minimum at zc ¼ din, given
that

d2L
dz2

c
= 2d2

in

z3
c

= 2
zccrit

. 0.

The function L(zc) is represented in Fig. 7 for different
values of din.

It is convenient to consider separately the regions below
and above the minimum of L, Lmin ¼ 2din. For each of the
regions, an assumption can be made, which allows for a sim-
plification of L. These regions correspond, respectively, to

zc ≪ din ⇒ L ≈ d2
in/zc (18a)

and

zc ≫ din ⇒ L ≈ zc, (18b)

which means that in the two regions the beam is propagating
in the far- and near-field, respectively. To avoid any possible
ambiguity with near- and far-field antennas, we shall call
the above regions simply regions 1 and 2 or instead small
and big beam regions because, as will be seen in Section IV,
for a certain frequency of operation, the size of the beam
waist radius is much smaller in region 1 than it is in region 2.

Two conclusions are immediately obvious. For a smaller
din, L reaches the two approximations more rapidly. On the
other hand, however, for a fixed zc, a smaller din enables a
smaller distance L.

The equation L = zc + d2
in/zc can also be written as

z2
c − Lzc + d2

in = 0, (19)

and hence

zc =
L +

����������
L2 − 4d2

in

√
2

(20)

Fig. 7. Distance between mirrors, L, for different values of din.
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(meaning that L * 2din as above). These solutions correspond
to the above regions 1 and 2, respectively.

The input distance of din ¼ 1 m has been chosen for con-
venience while remaining a reasonable distance to implement
the feed circuit. All the remaining analyses will be based on
this value. The function will therefore assume the curve in
Fig. 8.

B) Focal length
We can also obtain the focal length of the reflectors from (15).
Since f has a double solution when L = zc + d2

in/zc, then

f (zc, din, L) = Ldin + d2
in + z2

c

L + 2din
. (21)

C) Beam in the far-field (region 1, where
L ≈ d2

in/zc)

Assumption (18a) means that the beam propagates in the far-
field region (region 1). The beam waist radius is, from (7),

40S =
�����
ld2

in

pL

√
, (22)

where “s” stands for “small waist”. In such a case,

40S��
l

√ = din����
pL

√ = const, (23)

which means that the ratio between the beam waist and the
square root of the wavelength is a constant of the system.
Therefore, if n is the frequency and n is the refraction index
of the propagation medium (n ≈ 1 for air), then

n = cd2
in

pnL42
0S

. (24)

This means that the choice of the components’ size will be
balanced with the frequency of operation.

In region 1, the focal length is

fS =
L3din + L2d2

in + d4
in

L3 + 2L2din
. (25)

D) Beam in the near-field (region 2, where
L ≈ zc)
It is apparent from Fig. 8 that the near-field is a good approxi-
mation for zc * 5 m.

In this case, the beam waist radius from (7) is

40B =
���
lL
p

√
, (26)

where the subscript “B” means “big waist”. This also means
that,

40B��
l

√ =
��
L
p

√
= const, n = Lc

pn42
0B

.

Moreover, the focal length is

fB = L2 + Ldin + d2
in

L + 2din
. (27)

E) Paraxial limit
The paraxial approximation sets a limit for both of these
regions. From (8),

zc

40
. 0.9p, (28)

and hence considering the conditions in (18), the paraxial
limits for the regions 1 and 2 are, respectively,

40S L
d2

in
,

1
0.9p

(29a)

and

40B

L
,

1
0.9p

. (29b)

These limits should be respected when designing the
system in the paraxial approximation.

F) Beam radius at the reflector
The beam radius at the position of the reflector, 4R, having
traveled din, is

4R = 40

�������������
1 + din

zc

( )2
√

. (30)

This means that for the regions considered, we arrive at the
same value,

4RS = 4RB =
�������������
l

p

(L2 + d2
in)

L

√
. (31)

Fig. 8. Distance between mirrors for din ¼ 1 m, where the approximations for
each region are visible. In the regions well below and well above the minimum,
for zc & 0.1 m and zc * 5 m, L can be approximated by d2

in/zc and zc,
respectively.

80 ricardo a. m. pereira et al.

https://doi.org/10.1017/wpt.2017.19 Published online by Cambridge University Press

https://doi.org/10.1017/wpt.2017.19


G) Relation between focal lengths
The quotient between (25) and (27) gives

fS

fB
= L3din + L2d2

in + d4
in

L4 + L3din + L2d2
in
, (32)

which is ,1 for din , L, which will always be the case. We
then have

fS , fB. (33)

H) Comparison between beams in the near-
and far-field
In order to best understand the differences between both beam
types, Fig. 9 shows the two different possible scenarios.

It is worth pointing out that the focal length representation
is according to the result in the previous section.

I) Parabolic reflector
The dimensions of a parabolic reflector are related as

4fD = R2
R, (34)

where RR is the reflector’s radius, D its depth, and f is the focal
length.

The size of RR must necessarily take 4R into account, for
obvious reasons. By defining the reflector’s coefficient (cR) as

RR = cR4R ⇒ RR��
l

√ = cR

�����������
(L2 + d2

in)
pL

√
(35)

and by substituting (31) one arrives at

D = c2
R4

2
R

4f
⇒ D

l
= c2

R

4pf
L2 + d2

in

L

( )
. (36)

The coefficient cR should be as large as possible, though a
value of

��
2

√
is enough from a practical point of view (Fig. 1).

It is worth noting that due to (33), DS .DB. A beam in the
far-field demands a larger reflector depth.

J) Elliptic reflector
While at first elliptic reflectors they may not seem very useful
for our study that is not the case.

Ellipses are defined by two foci, F1 and F2, and if the beam
originates at the first focus, the reflecting surface (centered at a
point P) will direct the output beam waist to the second focus
of the ellipse, as can be seen in Fig. 10, disabling the possibility
of a reciprocal system.

The focal length of the elliptic reflecting surface centered in
P is given by

fe =
R1R2

R1 + R2
, (37)

where R1 = F1P and R1 = F2P.
To obtain the optimal performance of an elliptical focusing

surface [2], we need to set the system in a way that the input
beam has a value of radius of curvature such that Rin ¼ R1

and, similarly, the radius of curvature of the output beam
Rout ¼ R2.

Although the use of elliptical reflectors made from surfaces
of the same ellipse is not advantageous, we can use the surface
from two equal ellipses which share one focal point (Fig. 11),
thus arriving at a situation where the reciprocal principle is
again obtainable.

Gaussian beams in that system are represented in Fig. 12. It
is worth noting that, to satisfy the optimal condition for ellip-
tical reflector, the requirement is not for the input beam waist
to be located in the focus point, F1, but for the input beam to
have a value of radius of curvature at the reflector of Rin ¼ R1.

K) Ellipsoidal focal length validity
We will verify if the focal length of an ellipsoidal surface is
equivalent to that of a general quasi-optical component.

As stated before, the focal length of an ellipsoidal reflector
in the optimal quasi-optical condition is given by fe ¼ (Rin

Rout)/(Rin + Rout). From (3), we have that

Rin = din +
(p42

0in
/l)2

din
and

Rout = dout +
(p42

0out
/l)2

dout
.

(38)

Fig. 9. Comparison between beams in the near- and far-field: (a) beam in the
far-field (small) (b) beam in the near-field (big).

Fig. 10. General ellipse representation with its main parameters. P is any point
in the surface distanced away from the foci, F1 and F2, by R1 = F1P and
R2 = F2P.

quasi-optical analysis of a double-reflector microwave antenna system 81

https://doi.org/10.1017/wpt.2017.19 Published online by Cambridge University Press

https://doi.org/10.1017/wpt.2017.19


Now, since the ray transfer matrix of a reflector is generally
given by A ¼ 1, B ¼ 0, C ¼ 21/f, and D ¼ 1, by replacing its
values in (12) and (13), we get

40out =
(z2

c + d2
in/f ) − din

x
(39)

and

40out =
40in��

x
√ , (40)

where x = (f 2 − 2fdin + d2
in + z2

c )/f 2. The elliptical focal
length becomes

din +
z2

c

ddin

( )
dout +

z2
c

ddout

( )

din +
z2

c

ddin
+ dout +

z2
c

ddout

= . . . = 1
dout

z2
cout

+ d2
out

+ din

z2
cin
+ d2

in

.

(41)

At this point, we can use (39) and (40) to arrive at the final
form,

fe = f . (42)

We have proven that the focal length is indeed valid.

L) Theory restraints
For the value of the distance between reflectors, L, we have two
different equations1. One arises immediately from the
quasi-optical formalism as L1 ¼ 2dout, where dout is given by
(12). The other (L2) is calculated from (21). The starting
point is that these should be the same:

L1 = 2f
z2

c + d2
in − fdin

f 2 − 2fdin + z2
c + d2

in
= z2

c + d2
in − 2fdin

f − din
= L2. (43)

After working on the terms as a function of f, we arrive at

f 2(d2
in − z2

c ) − 2fdin(z2
c + d2

in) + (z2
c + d2

in)2 = 0, (44)

which has the solution,

f = z2
c + d2

in

din + zc
. (45)

By replacing (45) in L1 and L2, we arrive at exactly the same

solution, L1 = L2 = + zc +
d2

in

zc

( )
. Since L .0, the solution of

interest is

f = z2
c + d2

in

zc + din
. (46)

M) din that maximizes L1

In the case that f = (z2
c + d2

in)(zc + din), we must use L1 ¼

2dout ¼ L as the distance between reflectors:

L = 2f
z2

c + d2
in − fdin

f 2 − 2fdin + z2
c + d2

in
. (47)

Fig. 11. Double ellipse system. The second ellipse parameters are denoted by an inverted comma. The ellipses share one focus point, F2 ¼ F′
2, and, to respect

reciprocity, R1 ¼ R′
1 and R2 ¼ R′

2.

Fig. 12. Schematic representation of a double ellipsoidal reflector
quasi-optical system. The distance between mirrors is simply L = PP′ . To
obtain the optimal condition, the input and ouptut beam waist must be
located at a point which makes Rin = R1 = F1P and Rout = R′

1 = F′
1P′ .

1

The subscripts 1 and 2 will be used to differentiate them.
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The distance din which maximizes L is obtained by opti-
mizing (47) as a function of din,

∂L
∂din

= −2f 2(f 2 − 2fdin − z2
c + d2

in)
(f 2 − 2fdin + z2

c + d2
in)2 = 0 ⇒ din = f + zc.

Knowing that
∂2L
∂d2

in
= +

f 2

z3
c
, L is maximum when,

din = f + zc. (48)

N) Summary
Quasi-optical systems made up of two equal components,
positioned in such a way that the reciprocity principle is
respected, can be explained by two simple equations, (17)
and (46), reproduced here:

f = z2
c + d2

in

zc + din
and L = zc +

d2
in

zc
.

The suggested system building procedure is as follows.
In most applications, L is normally the first variable to be

defined. When that is the case, f and 40 must be adjusted to
best fit the parameter requirements. 40 depends heavily on
the feed antenna characteristics, normally being the second
parameter to be settled. Then, it is only a matter of calculating
f and din [from (17), din =

�����������
zc(L − zc)

√
] to obtain all of the

parameter values.

I V . C A S E D I S C U S S I O N

A script has been developed in order to verify the expected
beam radius value as the beam propagates, undergoes a trans-
formation by the reflectors and reaches the final antenna. It
enables the graphical representation of the beam propagating
through the system, by implementing the equations described
in the paper.

A Gaussian beam is started at z0 with a user-defined beam
waist radius (40) and direction of propagation. The position
of the different components as well as their ABCD parameters
must also be defined, prior to the beam propagation through-
out the system, so that if the beam position coincides with that
of a certain component, it will suffer a transformation, as
described in the Introduction section.

Taking an input distance of din ¼ 1 m and a distance
between reflectors of L = 100 m, the paraxial limit dictates that

Region 1 Region 2

40 , 3.537 × 10−3 m 40 , 35.368 m.

which respectively translates into the wavelength limits,

l,3.929 × 1023m l,39.297 m,

Or

n . 76.341GHz n . 7.634 MHz.

In order to arrive at an optimum system, it is necessary to
consider the size of the components and the frequency of

operation. Defining one quantity may lead to undesired
values for the other.

The focal length of the reflectors is given by (25) and (27)
for the regions concerned, yielding

fS = 0.990 m and fB = 99.029m.

A) Beam in the far-field (region 1)
The minimum frequency of operation for working with a
small beam, for an input distance of 1 m and a distance
between mirrors of 100 m, is 76.341 GHz. For easing the cal-
culations, we choose n ¼ 80 GHz, and hence

l = 3.750 × 10−3m, 40S =
�����
ld2

in

pL

√
= 3.455 mm.

We obtain a relatively small beam waist radius, which will
be advantageous in terms of the size of the components, while
needing a high frequency of operation.

B) Beam in the near-field (region 2)
On the other hand, a big beam can have a much smaller fre-
quency, starting at n = 8MHz, giving

l = 37.500m, 40B =
���
lL
p

√
= 34.549 m.

A huge beam waist radius is obtained. However, by choos-
ing n = 80GHz, then

l = 3.750 × 10−3 m, 40 = 0.346 m.

It is worth noting that by properly choosing the frequency,
the size of the beam waist radius will define if the beam is
propagating in the near- or in the far-field.

C) Graphical representation
Several beams have been represented as a function of the fre-
quency of operation (whose values were spread in order to
account for different beam waist radii) from both region 1
(Fig. 13) and region 2 (Fig. 14). A logarithmic scale was
used in the latter, due to the significant difference in the
beam waist radius value between the beam in MHz and the
remaining in GHz.

Fig. 13. Beams propagating in the far-field (region 1). 4 is the beam radius, z
is the position along the propagation direction, n is the characteristic frequency
of operation, and f is the focal distance.
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In order to analyze the difference between the beams
propagating in each of the regimes, another plot in the near-
field was made (Fig. 15), operating at the same frequencies as
that in Fig. 13.

A few observations are in order:

† As the frequency increases, the average size of the beam
radius decreases. Since the size of the antenna (reflector)
is related to that of the beam waist radius (beam radius at
the reflector), beams in the far-field regime appear more
advantageous in this sense;

† The beam radius of the beam between the reflectors is inde-
pendent of the beam type (whether it is a near- or far-field
beam), which originate from the antenna. Beams in the
near-field have beam radius larger than the beam radius
of the beam between reflectors, while beams in the far-field
have a smaller beam radius, as can be seen in Fig. 9. When
implementing this study, the size of various components
may be constrained, forcing us to choose a feed beam in
the near- or far-field.

Regarding beams propagating with the same frequency, for
either of the regimes, the beam radius at the reflector as well as
the output beam waist radius (at L = 50 m) have nearly identical
values. One can conclude that although the initial conditions
have been different (emitting a beam in the near- or far-field),
at the reflector and after the transformation, the beam propagat-
ing the L distance has nearly the same characteristics.

V . C O N C L U S I O N

The theoretical study of a double-reflector quasi-optical
system was presented in the paraxial approximation,

discussing the beam radii of two different beam types, propa-
gating in the near- and far-field, respectively. Different para-
meters have been considered for each of the beam types.

The preliminary results are consistent to what was expected
considering the validity of the reciprocity between the source
and the receptor. This study shows that we can have a frame-
work simple enough in order to access the parameters con-
cerned and to gain insight about their relevance.

We now have a tool to quickly prototype simple systems
(the script enables the implementation of reflectors and
lenses), which serves as a basis for more complex analyses.

Further studies are necessary to analyze the power transfer
efficiency and improve the model, alongside to simulations to
all the process that exhaust the parameter space and allow
proper optimization. A case study of a system with a double
ellipsoidal mirror is also being considered [38, 39], although
some analysis is already presented here.

Upon completion of this work, we plan on making a
double-reflector prototype aimed at measuring the effect of
the various parameters on the power transfer between the
emitting and receptor antennas and access the validity of
the paraxial calculations. Several components have already
been chosen and the main system parameters shall have the
following values:

n l w0 zc f

5.8 GHz 5.172 cm 4.902 cm 14.595 cm 72.675 cm

The goal is to be able to transfer power over the distance of
L = 5 m using two conical smooth surfaced antennas, which
will reflect on two parabolic reflectors with the diameter of 1 m.

We can conclude that the goal of this study was achieved
since preliminary results were obtained for building a
system with reduced spillover losses, important for guarantee-
ing that the maximum beam arrives at the receiver antenna.

R E F E R E N C E S

[1] Brown, W. C.: Adapting Microwave Techniques to Help Solve
Future Energy Problems, 1973 IEEE G-MTT Int. Microwave
Symp., 1973, pp. 189–191.

[2] Goldsmith, P. F.: Quasioptical Systems: Gaussian Beam Quasioptical
Propagation and Applications, IEEE Press, Piscataway, NJ, 1998.

[3] Sherman, J. W.: Properties of focused apertures in the Fresnel region.
IRE Trans. Antennas Propag., 10 (4) (1962), 399–408.

[4] Balanis, C. A.: Advanced Engineering Electromagnetics, John Wiley
& Sons Comp., Hoboken, 2012.

[5] Goodman, J. W.: Introduction to Fourier Optics, Roberts &
Company Publishers, Greenwood Village, 2005.

[6] Brown, W. C.: The history of power transmission by radio waves.
IEEE Trans. Microw. Theory Tech., 32 (9) (1984), 1230–1242.

[7] Marincic, A. S.: Nikola tesla and the wireless transmission of energy.
IEEE Trans. Power Appar. Syst., PAS-101 (10) (1982), 4064–4068.

[8] Lumpkins, W.: Nikola Tesla’s dream realized: wireless power energy
harvesting. IEEE Consum. Electron. Mag., 3 (1) (2014), 39– 42.

[9] Carvalho, N. B.; Costanzo, A.; Collado, A.; Mezzanotte, P.;
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