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Abstract. We construct an example of a C°° diffeomorphism of an annulus into
itself which has an attracting invariant circle such that the map restricted to this
circle has no periodic points and no dense orbits. By studying two parameter families
of maps of the plane which undergo Hopf bifurcation, particularly the set of
parameter values for which the rotation number is irrational, we see that the above
example can be considered as a 'worst case' of the loss of smoothness of an attracting
invariant circle without periodic orbits.

1. Introduction
Let/n: R2 -* R2 be a family of C°° functions which depend smoothly on the parameter
H e C. Suppose for all /A e C, /M(0, 0) = (0, 0) and Df^iO, 0) has eigenvalues /J. and
fi. When U|< 1 the origin is asymptotically stable while when |/A| > 1 the origin is
a repeller. Provided the higher order terms of /M satisfy some conditions and fin is
bounded away from one for n = 1, 2, 3,4, the Hopf bifurcation theorem implies
that, as /x passes from the inside to the outside of the circle |/u. | = 1, a stable invariant
circle bifurcates from the origin ([18], [21], [8], [20], [16]). As |/i| increases, the
radius of the invariant circle increases, and examples show that the invariant circle
can eventually bifurcate into what is called by some a 'strange attractor' exhibiting
'chaotic' behaviour ([5], [2]). The process by which the attracting invariant circle
loses smoothness when its rotation number is rational was studied numerically in
[2]. In this case the invariant circle loses smoothness gradually. Of particular interest
were the mechanisms by which the invariant circle could stop being C1. One of
these mechanisms is the development of a heteroclinic tangency for the lift of the
map to the projective bundle over U2, [2]. This mechanism will be seen to be
important when the rotation number is irrational where otherwise the situation is
quite different.

The main result of this paper is the construction of an example of a C°°
diffeomorphism of an annulus which has an attracting Lipschitz invariant circle
such that the map restricted to this circle is a Denjoy map, i.e. a homeomorphism
of the circle with no periodic points and no dense orbits. Similar examples have
been constructed by Knill [15], Harrison [10,11] and Herman [13]. Knill constructs
a C°° diffeomorphism of an annulus with an invariant circle on which the map is
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88 G. R. Hall

a Denjoy map. However, the map he constructs is hyperbolic on the invariant circle
and so the structure of the map near the invariant circle is very complicated. In
particular, the invariant circle is not isolated. Harrison's example is of a C2

diffeomorphism with the restriction to an invariant circle being a Denjoy map and
this invariant circle is semi-stable. Herman's example is a C3~c diffeomorphism of
the annulus which is area preserving and which contains an invariant circle on
which the map is a Denjoy map. See also [9].

The construction we give can be accomplished C1-close to certain maps of the
annulus which arise after Hopf bifurcation in even simple (polynomial) maps of
the plane. However, since the construction uses a degenerate connection between
invariant manifolds in the projective bundle over the annulus, we obtain no other
information concerning how often these maps occur. Also, it is unknown whether
or not an analytic map of this type exists.

§ 2 will be used to fix notation used throughout. In § 3 we review the Hopf
bifurcation theorem for two parameter families of maps of the plane, particularly
when the rotation number is irrational. In particular, we show that the set of
parameter values on which a fixed irrational rotation number is assumed is a
Lipschitz curve. § 4 considers the smoothness of invariant circles with irrational
rotation number and in § 5 we construct the example discussed above. § 5 is
independent of §§ 3, 4.

2. Notation and definitions
Let 2TTZ = {lirn: n e Z}, and let T = U/2nZ be the circle with circumference equal
to 2TT. Let A = [0,1] x T. Note that the maps

TJ:[O, l]xR-»A; (r,d)-*(r,6+2irZ)

are smooth (natural) covering maps which can be thought of as coordinate systems
on T and A respectively. We will deal with these coordinates extensively and hence
we will allow the context to determine whether we are speaking of a map from T
to T (A to A) or its lift from R to R ([0, l ]xR to [0, l]xR). If / is a map from a
space to itself then we will let f" denote the n'th iterate of/, i.e. / " =/°/"~1.

Definition. A continuous map h: T -» T is called degree one if

for any lift H of h and any x eU.

Definition. If /t:T-»T is a degree one homeomorphism then the rotation number
of h, denoted rot (h), is defined to be

1 .. H"(x)
-— lim
2TT «-°° n

where H is a lift of h satisfying H(0) e [0, 2ir) and x € R.

Remark. This limit exists and is independent of the choice of x ([19]).
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A Denjoy attractor 89

Definition. Let h:A->A be a continuous map. We say h is degree one if

for any lift H of h and any (r,x)e [0, l]xR.

Notation. Let

and

A2:[0, l]xR-*R: (r, 0)-»0

be the natural projections.
Definition. If h: A -> A is a continuous, degree one map and z e A then we define
the rotation number of h at 2, denoted rot (h, z) to be

1 ,. \2{H"(z))
— hm
2TT n-°° n

where H is a lift of h with i /( | , 0) e [0,1] x [0, 2TT) and ze[0, l ]xR satisfies
77(2) = z. If the limit does not exist we say rot (h, z) does not exist.

Definition. Suppose for some integer n >0, the degree one maps h, g:T-»T are
n-times continuously differentiable. Then define

ll«» gllc0 = sup \H(6) - G(d)\
fleR

||A, g||C" = sup \H{8) -G(8)\ + sup ^P-^p-
l<i<n

where / / and G are lifts of n, g respectively with //(0), G(0)e [0, 2n). Similarly,
if h, g: A -* A are n-times continuously differentiable maps then

||A,g||c°= sup \\H(r,6)-G(r,6)\\
(r,9)€[0,l]xH

||A,g||c-= sup \\H(r,6)-G(r,e)\\
(r,9)s[0.1]xR

+ sup ||D'(/f)(r,«)-i?'(G)(r,«)||
(r,0)e[O, l]xR

lsisn

where || • || denotes the usual vector and matrix norms, and H, G are lifts of h, g
respectively satisfying H{\, 0), G(|, 0) e [0,1] x [0, 2TT).

Remark. From now on, when we use the coordinates induced by 171 and TJ on T
and A respectively we will not distinguish between the maps h:T-*T, h:A-+A
and their lifts to R and [0, l]xR respectively. For example, in the above, if
h, g: A -* A are continuous degree one maps then we will write

Definition. If / :¥->¥ (or/:R -»R) and 0i<02 are such that/(0i) = 02 then [6U 62]
is called a fundamental interval of /.
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90 G. R. Hall

We will use the following terminology from [4]:

Definition. If X is a metric space, C a compact subset of X and f:X-*X a
continuous map then we call C an attractor block for / if

f(C) c interior C.

The set

which is the largest invariant set in C, is called the attractor for the attractor
block C.

Notation. If U is a subset of R", f:U -*U a C°° diffeomorphism and x e interior U
such that /(*) = x then we let

Ws{x,f) = {z<=U:f'(z)->x asj-xx>}

Wu(x,f) = {zeU:f{z)^x asi-»-oo}.

If Df(x) has eigenvalues with modulus one then we call the invariant manifold
corresponding to the eigenvalues with modulus less than one the strong-stable
manifold and we denote it by Wss(x,f).

We will let TA denote the tangent bundle to A, and TZA the tangent space to
A at z. The (r, 6) coordinates on A induce coordinates on TZA. We let d/dr denote
the unit vector in the /--direction and d/dd the unit vector in the ^-direction.

We will find it convenient to deal with the projective (or line) bundle over A.
At each point z € A, each line through the origin of TZA intersects the circle

at the origin and at one other point (except the y axis, see figure 1). Hence we can
identify the set of lines through the origin with the circle

FIGURE 1
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A Denjoy attractor 91

In particular, we can put coordinates on this set of lines by taking twice the
arctangent of the slope. This is precisely the angle of intersection between the ray
{x(d/dr): x >2} and the segment connecting (hd/dr) with the point of intersection
away from the origin (or the origin for the y-axis). Hence, letting P denote the
projective bundle over A, then P = AxJ and we will denote the coordinates just
described by (r, 6, 0). Again, when using these coordinates we will let the context
determine whether weare speaking of a map to P or its covering space [0, l j x i x R .

If f:A->A is a diffeomorphism then Df(z):TzA-*TfizyA preserves the set of
lines through the origin and hence / induces a map from P to itself which we will
denote by /*. Similarly, if y: T -» A, then the derivative of y induces a map y*: T -» P.

We will let Q denote the projective bundle over R2~{(0, 0)}. Note that polar
coordinates (r, 0) on R2~{(0, 0)} induce coordinates on Q exactly as above and
we will also use (r, 6, ©) to denote these coordinates.

3. Review of Hopf bifurcation
In this section we review the Hopf bifurcation theorem for diffeomorphisms of the
plane following the proof of Ruelle and Takens [20]. By making some of the
required estimates more precise we will obtain information about the set of para-
meter values at which particular rotation numbers are assumed on the invariant
circle.

For n e C, let /„,: R2 -* R2 be as in the introduction, that is, it satisfies
(a) /M is jointly C°° on C and R2;
(b)forallMeC,/ ( i (0,0) = (0,0);
(c) for all (i e C, the eigenvalues of Df^ (0, 0) are /x and ji.

Since we are following Ruelle and Takens [20], we begin by fixing C\ > 0, small,
and let

C = { M e C : | M
n - l | > 6 , « = 1,2,3,4,5}.

From now on we assume /x G C, avoiding points of 'low order resonance'. The
possible behaviour near these parameter values has been discussed in [1], In
particular, the Hopf bifurcation theorem itself is valid about fj, such that fis = 1.

If we write n. = s exp (icf>) then by a /u.-dependent change of coordinates we may
write fa in the polar coordinate 'normal form' as

Lir, 0) = (sr-h{tJL)r\e+<t>+f2{n)r2) + (€{r\ €(r4)), (3.1)

where /i,/2:C->R are C°° functions. We assume there exists £2>0 such that

Let

/ > , 6) = (sr-ftMr*. 6+4, +f2(n)r2). (3.2)

When s > 1 the circle

is invariant under f^.
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92 G. R. Hall

LEMMA 1. There exists 5 i>0 such that for fi = s exp (icf>)e C with l < s < l + S i
the set

is an attractor block for /M.

Next we point out that there is a corresponding attractor block for (f^)*, the lift
of /M to the projective bundle over the annulus £/M.

LEMMA 2. 77iere cx/sfs 53>0 wifft 83^81 such that if /LL =S exp (i^)eC »VI//I

1< s < 1 + S3 then the sets

satisfy

whenever {a,b)e W» and (r, 6) € U». (See figure 2.)
The proofs of lemmas 1 and 2 are elementary and are essentially contained in the
proof of [20, theorem 7.2], so we omit them.

V»={(a,b):\a\<(s-l)\b\}

FIGURE 2
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A Denjoy attractor 93

Now by the linearity of Df^ it follows that for n e C and 1< \n \ < 1 + S3 we have

whenever (r, 6) e U^.. In fact, the above suffices to show that there exists a constant
c3 > 0 such that the set

K={(r,d,@)eQ:(r,d)eU»,-c3(s-l)<®<c3(s-l)}

is an attractor block for (/,J* when ju. is as above.
Using inequalities such as these lemmas, Ruelle and Takens [20] proceed to

show that when |/x | is sufficiently close to one there is a Lipschitz invariant circle
for/M. By using the invariant manifold theorems of [14] they obtain some differentia-
bility properties for this circle. Specifically they show the following:

HOPF BIFURCATION THEOREM. For f^ as above and for n a positive integer there
exists an > 0 such that if ii.eC and 1 < \n | < 1 + an, then there exists a C" attracting
invariant circle which surrounds the origin and whose domain of attraction includes
every point in its interior except the origin.

Having shown that f^ has an invariant circle we may ask for which parameter values
/^ restricted to its invariant circle has a given rotation number. Arnol'd [1] has
shown that given a rational p/qe[0,1] with q>4 the set fj.eC for which the
rotation number of /„. on its invariant circle is p/q is contained in (and is generically)
a horn shaped region with tip at exp {2irip/q) (see figure 3). He also gives a formula

FIGURE 3. Shaded region contains all values of ̂  for which /„ has a point with rotation number p/q.

for the degree of contact between the edges of the horn. We can obtain information
about the set of parameter values where an irrational rotation number is assumed
by considering more carefully how the invariant circle changes with ft eC.

Fix <54 > 0 such that a2 a 54 and S3 > 54 and such that when ft e C, 1 < |/t | < 1 + S4;
the invariant circle of f^ given by the Hopf bifurcation theorem may be represented
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94 G. R. Hall

as the graph of a function g^: [0, 2TT) -> (0, oo), i.e. the invariant circle for f^ is

where g^ is C2. The rest of this section will be devoted to the discussion and proof
of the following theorem.

THEOREM 1. Fix an open set E c [0,1] such that

£c{oe[0,l]: exp (2iria)eC}.

Then there exist constants L and S5 > 0 such that S5 < 54 and for any irrational (3 e E
there is a Lipschitz curve

with Lipschitz constant L such that, if /J. e C and 1< |/ut | < 1+S5, then f^ restricted
to its invariant circle {(g^iO), 6)} has rotation number (3 if and only if n =s exp (iye(s))
for some s.

Remarks. (1) The fact that the regions of the (U. plane where a particular rotation
number is assumed extend a uniform distance from the |/u. | = 1 circle away from
low order resonance was shown (in the setting of flows on the torus) in [3].

(2) The edges of the regions where a given rational rotation number is assumed
are given by the implicit function theorem and hence will be at least piecewise C00.
The proof below shows that the edges of these horns are Lipschitz where the
Lipschitz constant is independent of the rational p/q eE (see figure 4).

FIGURE 4. The invariant circle has rational rotation number under /„ for parameter values in the
shaded regions. The invariant circle has irrational rotation number for values of /* on Lipschitz arcs

between the shaded regions.

Define, for /u. = s exp (i<f>) e C and 1 < s < 1+S4

h{-,<f>,s)\ 0-»A2°/sexp<I<<.)(gSexp<i<«.)(0), B).

This gives a two parameter family of homeomorphisms of the circle. If we can
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show that h is Lipschitz in <f> and s then theorem 1 will follow easily. To obtain
information on how h varies with <f> and s we must establish estimates of how g^
varies with fi. In lemma 3 we fix a narrower attractor block containing g^ than was
done in lemma 1. In lemma 4 we give an estimate of how g^(6) varies with n
particularly near |/x | = 1. This is accomplished by changing coordinates for a par-
ticular /A0 so that in the new coordinates the invariant circle has centre at the origin
and a constant radius. Then the implicit function theorem can be applied to bound

in terms of |AM|. Finally, in lemma 5 we apply the estimates of lemma 4 to obtain
estimates on h (•, c/>, s) from which the theorem follows.

LEMMA 3. There exist constants S6 and c 4 > 0 such that 86<84 and for /* e C ,
1 < |/Lt | < 1 + S6 and n = s exp (i<f>) we have

ls-1

Proof. From equations (3.1) and (3.2) we see that there exists a constant c s > 0
such that for ju. € C, 1 < \/j. | < 1 + S4 we have

<c5r\
dr dr

Hence we may fix S6 > 0 so small that 56 < 54 and for /x e C, 1 < |/A | < 1 + S6 and
(r,0)e f/M we have

0 <
dr

So when

we have

Wi-~^<i.

< r <
/i(M)

If we fix c6 so that |A i % (r, 0) - A i %(/•,

Hence if

then

But (*) holds if and only if

for all /x as above then we see that

(*)

— C 6
2 ( 5 -
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By a similar argument for r<-J(s -l)//i(/ot) we see that there exists a constant
c4 > 0 such that

U* = \(r,6): J^:-c4(s - l)!<r < JL-1 + C4(S - D1)

is an attractor block for /M whenever /x e C, 1 < |/A | < 1 + S6 and the proof of the
lemma is complete. •

LEMMA 4. There exist constants S7 and c7 > 0 such that S7 < S6 and if /A and vsC,
1 < | JU, | < 1 + S7, l<\v\<l+S7 and \n~v\is sufficiently small, then

where (As, A<̂ ) is the difference of n and v in polar coordinates.

Proof. Fix /xo€C with 1 < | / X O | < 1 + 5 6 and fix * i > 0 so small that when c e C ,
|/*o —" |< f i implies v E C ,

With 50 exp (i< ô) = fJ-o, define

Then

whenever it is defined. Let

Moting that

we see that the circle r = V ( 5 O - 1 ) / / I ( M O ) is invariant under fc^,. Letting
p(r, ^, <̂ , 5)=Ai°fcsexp(l<fr)(r, (9) we see that

1 \ / « 1

-f~—-, 8, <po, So I = V ~~7~t—\-
TilMo) / fi(fJ-o)

Moreover, since for /x, = s exp {i<f>)

fdfio)
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where pi is a smooth function, we have

By lemma 2 we may assume |g^0(^)| < (^o~ 1) and if we choose s and <f> so that
\fio~s exp (/<ji)| < K I then

_9_ S Q - 1 10
10 s - 1 9"

Hence there exists a constant c8>0 independent of /x such that for (r, d)e U^
we have

or

+c8(v/so-l)(5o- D§ -1 ) 3 + c8(s0 -1)2-

Hence we may choose S7 > 0 so small that 57 s 56 and when /A0 e C, 1 < |/io| < 1 + 87
and s exp (ic^)eC satisfies |/LIO-J exp (/<^)|<KI, then
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Hence we can apply the implicit function theorem to obtain a map a-(6, <f>, s)
such that

/ J O - 1
cr(6, 4>0, So) =

MHO)

and

whenever |/xo-s exp (i<f>)\<K2 for a fixed K2>0, K2^KI. Moreover

da dp/d<f>

d<j> l-dp/dr

da dp/ds
and — = •

ds l-dp/dr'

Now

^ ( r , 6, <p, s) = - g L (
ds

1(r, 6))) • ^-(
ds

\r, 6)))

+

Hence, as above, when (r, 6) e Um there is a constant c9 > 0 such that

dp,
—(r, 0, <A, s)
ds

-1 ) 1 .So—l + (so~-

A similar argument for dp/d<p shows that, by taking S6 smaller if necessary, there
exist constants c9 and ci0 so that

ds ' ' '

dcf) ' ' ' '

So letting Cn = max (2c9, 2c 10) we have

So;

ds

clo(so-l)
•l-(l-(5o-D/2)

C9V5o-l

Now fix K 3 >0 with /c2^/c3 and such that when |/L* - /
s exp (i(f>) = /a we have

, and (r, 0)e C/M with

and

C,(
Ass \ ! f /SQ-1 2(so-l)<gmax K/—--y——

-V llv/i(/no) v
 /I(MO) /I(/XO)

so-1 2(so-l)
V ! ) •

https://doi.org/10.1017/S0143385700001826 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001826
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where As exp (iA<f>) = At - AI0. Then the set

is an attractor block for &M and hence its image under tf)"1 is an attractor block for
/M, i.e., the set

is an attractor block for /M. Hence

where c7 = 2c n and the proof of the lemma is complete. •

Now define
tH6, <t>, s) = (Ajo/Jte^*), 0)-6-<p,

i.e.

LEMMA 5. 77tere ejc/sf constants Ss and M>0 such that 5 8 < 5 7 and for /n
1 < |/Li| < 1 +<58 and /u. = s exp (/<

(a)

(b)

(c)

where HI = (s + As) exp (/<£) andfi2 = s exp [/(<£ + A< )̂] satisfy (J., e C, 1 < |/x,| < 1+ 58

/or j = 1,2 anrf /x, /ti , /u.2 are m f/te same component of {/i e C: 1 < \/J. \ < 1 + 58}.
Proo/. Recall from equation (3.1) that we may write

(A2%)(r, tf) = « +<f> +f2(n)r2 + C(r4).

Now fix /u, = s exp (i<t>) and s > 1 sufficiently small that if tti and ii2 differ in polar
coordinates from /x by (As, 0), (0, A<£) respectively then by lemma 4

<c|As

where c > 0 is independent of /x when l < | t t | < l + 5 7 . Hence choosing 5 8 > 0
sufficiently small, with Ss < 57 we obtain for ti e C, 1 < |ti | < 1 + Ss,

\t(e, 4> +A<t>, s)-i(f(e, <t>, s)\ < |A<*|/2
and

|«A(6>, <f>, s + As)-ilf(e, <f>, s ) | < c | A s |

when A<t> and As are sufficiently small, i.e., iff is pointwise Lipschitz at each
point. But since the Lipschitz constants are independent of fi the function i/r sat-
isfies the above inequalities for any AH and AI2 in the same component of { c e C :
l < | i / | < l + 58}as AI.
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Also for some constant c > 0

for ix e{f e C : 1 <|i>|< 1 +58}. Taking M = max {c,c}, the proof of the lemma
is complete. •

LEMMA 6. (Herman, [12].) Suppose hi,h2:J-*J are degree one homeomorphisms
with

Hi(x)> H2(x) for every xeR,
where Hi is a lift of hi satisfying

Then if either rot (hi) or rot (h2) is irrational then

rot(hi)>rot(h2).

Proof. See [12, proposition III 4.1.1].

Proof of theorem 1. For ixe{i>eC: K\v\<l+Ss} the rotation number of f^ restric-
ted to {(gM(0), d)} is the same as rot (h(•, <f>, s)) where n = s exp (icf>), so it suffices
to consider only the maps h( •, <f>, s): T-» T.

Fix an irrational (3 e E and suppose

rot (A(•,<£<>, so)) = /3

where s0 exp (/< 0̂) e C and l < s o < l + 5g. Suppose A<£, As are chosen so that

0<|As|<|A<£|/4Af. Then

\h(0, cf> + A<t>, s + A s ) - h ( d , <(>, s)\ = \A<f> +4/(6, <f> + A< ,̂ s + \s)-ifi{0, <f>, s)\

| - \<p(6, <t> + A<£, s + As) — (A(6>, <f>, s + As)|

Af|As|>

Hence rot (/t (•, <t> + A(f>, s + As)) # /3.
Next we fix 55 > 0 so small that <55 < S8 and for any a € E and each s with

1 <s < 1+ SS there exist <̂ i and <f>2 such that s exp (i<f>i) and s exp ( i ^ e C , and
s exp (/<£ i), s exp (/<£2) and exp (2rria) are in the same component of {/u, € C: 1 < |/t | <
l+55}, and

This is possible since by lemma 5,(^-»0ass-»l.
Hence, for a fixed irrational fi eE and s satisfying 1 < \s | < 1 + <55 there exists

precisely one 4>s such that

rot (M-, <*„«)) = 0.
Defining ye(s) = <̂ s and letting 7/3(1) = 2TT/3, the above shows that y0 is a Lipschitz
curve on [1,1+S5) with Lipschitz constant L = 4M which completes the proof of
the theorem. •
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4. Smoothness
In this section we consider the smoothness of attracting invariant circles of maps
of the annulus, particularly when the rotation number is irrational. The tools we
use are the invariant manifold theorems of [7] and [14] and the ideas of [22] and
[17]. The aim of this section is to gain more information about the smoothness of
the invariant circle near Hopf bifurcation and to point out explicitly the effect of
the structure of a lift of an annulus map to the projective bundle. The example in
§ 5 occurs just when this stucture breaks down.

Notation. For S > 0 we let Cs, WS^U2 denote the sets

= {(x,y):\x\>S\y\}.

(See figure 5.) If (r, 0)e A then we let

Cs(r, 0) = f*7-+y^
I dr dd

^+y^
or at)

: (x, X
i

FIGURE 5. The shaded region (including the boundary) is Q, the complement is Ws.

The Cs(r, 6) and Ws(r, 6) are called sector bundles over A. Let

Cs(r, d) = {(/•, 0, 0) e P: the line represented by (r, 0, 0) is in Cs(r, 0)}.

Definition. Let if be the set of f:A -> A such that:
(1) / is a C°° diffeomorphism of A into A of degree one,
(2) A is an attractor block for /,
(3) there exists S > 0 such that for all z e A

£>/(z)(C5(z))~{(0,0)}c interior Q(/(z))

(or/*(Q(z))c interior C«(/(z)»,
(4) there exist constants a and K with 0 < a < 1 and K > 0 such that for each

n >0 and z e A if w e Ws(z) and D(fn)(z)(w)e Ws(f"(z)) then

\\D(r)(z)(w)\\<Kan\\w\\.
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THEOREM 2. If fe 3? then the attractor associated with the attractor block A is the
graph of a C1 map g:T-»[0,1]. If the rotation number of f on the invariant circle
is irrational then the circle is a C°° curve and for each integer n>0 there exists *„ > 0
such thatifh:A-*A with \\h,f\\c1<Kn then h has a C invariant circle.

Remark. Referring back to § 3 we see that the above theorem implies that there
exists S > 0 such that if fi e C, 1 < |/u. | < S and /^ has irrational rotation number on
its invariant circle then the invariant circle is C°°.

We break the proof of the theorem into several lemmas, first showing in lemma 7
that / e if implies / has a Lipschitz invariant circle. In lemma 8 we show that this
invariant circle is C1 using ideas of [22] and [17]. These first two lemmas also
follow from the graph transform techniques of [14], since condition (4) above is
the 'hyperbolicity' needed for those techniques. However, we will include a proof
of lemma 8 which uses only condition (3) of the definition of if on the topological
structure of the map on the projective bundle over A. The example of the next
section occurs precisely when this topological stucture breaks down. Finally, after
recalling a fact about homeomorphisms of the circle with irrational rotation number,
we can apply the invariant manifold theorems of [7] and [14] to complete the proof.

LEMMA 7. If ft S£ then the attractor U^A associated with the attractor block A is
the graph of a Lipschitz function g:T-»[0, 1], i.e.,

u={(g(e), ey.ee j)}.

Proof. The proof of this lemma is standard and the details are essentially the same
as those in [20, proof of theorem 7.2], so we omit it.

LEMMA 8. Suppose / e i f with invariant circle the graph of the Lipschitz function
g:T-»[0,1]. Then g is actually a C1 function.

Proof. Let Pg ={(r, e, @)eP:r = g(e)}. Then f*{Ps) = Pg and condition (4) of the
definition of if implies that the set

V = {(r, 0, 0) e Q0-, 0): r =

is an attractor block for /*|pg. Let S s V denote the attractor associated with the
attractor block V. For each e e T, let

Teg = I (r, 0, t h e r e e x i s t sequences {0n}"=i, {#i}*=i in T

with 0nand#i->0 asn-»oo

g{en)-g{e\)\/ e \ ,. g{en)-g{e\)\
and t an ( - )=hm_ ^ _^ j .

Then to show that g is C1 it suffices to show that Teg is a single point for each
e € T. But UeeT Teg £ V and is invariant under /#|Pg. Hence U » 6 T Teg £ S and it
suffices to show that for each e e T the set

se = {(g(e),e,&)es}
is a singleton.
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Suppose for some fixed del the set Se is not a singleton. Then the sets

In={Q:(g(6),d,®)<=V and f*((g(d), 6, 0 ) e V f o r / = 1 , . . . , « }

form a nested sequence of intervals with Se = PC=i In- Let *„ and yn be the end
points of /„ and let v and w be the end points of Se, chosen so that xn -* v and
yn-*w as n ->oo, i.e.

(see figure 6). (We suppress the dependence of xn, yn, v and w on d.) We define
the cross-ratios of xn, ym, v, w to be

C(xn,v,w,yn) =

cos (xJ2) cos (v/2)

sin (xn/2) sin (v/2)

cos (w/2) cos (yn/2)
sin (w/2) sin (yn/2)

cos(xn/2) cos(yB/2)
sin (xB/2) sin (yn/2)

cos (w/2) cos (u/2)
sin (w/2) sin (r/2)

FIGURE 6. The projective space P over (g(0), #).

Then C is invariant under /^ ' for each i > 0 in the sense that if

(r'(gV),e),yn)=n!(g(e),e,yn),

and

then

C(xn, v, w, yn) = C(xn, v, w, yn).

(See [22].) Now since xn -> v and yn -*• w, for each e > 0 there exists N so that

C(xn,v,w,yn)<e whenever n >N. (4.1)

Next we note that if

(rn(g(e), $), xn)=fin{g(e), e, Xn)
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then xn = x0 and similarly for yn. By the compactness of V and continuity of
there exists <5i > 0 such that for every n, if vn is such that

(rn(g(e),d),vn)=r*n(gW,e,v)
and wn is such that

then

\xo-vn\>S1 and |yo-vi>n|>5i.

Hence there exists S2 > 0 such that

C(jc0, «„, tv,,, yo)><52

for every n. This contradicts equation (4.1) above which implies that for n sufficiently
large

C(xn,v, w,yn)<82.

Hence, for each 6 e T, Se must be a singleton and the proof of the lemma is
complete. •

Remark. It is interesting to note that in the proof of lemma 8 we did not use
conditions (2) or (4) of the definition of if. Hence a diffeomorphism of the annulus
which has a Lipschitz invariant circle with the tangent cone of the circle an attractor
with attractor block as described in condition (3) of the definition of if, then the
circle is actually C1.

In order to apply Fenichel's theorem we must consider the derivative of the map
restricted to the invariant circle.

LEMMA 9. (Denjoy, [6]; Herman, [12].) If h: T-»T is a C1 diffeomorphism with
irrational rotation number then

lim[D(h")(e)f=\ (4.2)
n-»oo

for every 6 e T.
Proof See [12, proposition VI 1.1].

Proof of theorem 2. That a map fe if has a C1 invariant circle is precisely lemmas
7 and 8. Then condition (4) of the definition of if and equation (4.2) applied to
the restriction of / to its invariant circle are precisely the hypotheses for Fenichel's
theorem, which completes the proof of the theorem. •

5. A Denjoy attractor
In this section we construct an example proving

THEOREM 3. There exists a C°° diffeomorphism h from the annulus A into itself
such that A is an attractor block for h, the attractor associated with A is a Lipschitz
circle given by a function y: T -> A, and h \yiT) has no periodic orbits and no dense orbits.

Remark. The set y(T) will be a Lipschitz circle in the sense that it satisfies a 'cone
condition' so that in properly chosen coordinates the set y(T) is the graph of a
Lipschitz function.
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The desired map h will be the limit of a sequence {hn: A -> A}"=i each hn having
a C°° invariant circle as an attractor, and each hn having a single periodic orbit
with periods increasing with n. We will construct carefully the first map of the
sequence since it serves as a prototype, having the same qualitative features as
each of the /in's.

We begin with a map / : A -* A which may be defined in (r, 0)-coordinates by

where / : T -» T is a degree one, C°° diffeomorphism of T which has a single periodic
orbit. Let pi/qi be the rotation number of / and let 0<d \<• • •<8qi< 1 be the
points on the periodic orbit of f. Since / has only one periodic orbit it must be a
node, i.e.

We assume that D2(fq')(di)>0, i = 1 , . . . , q\. Since the circle r = \ is an attractor
for / with attractor block A, f has only one periodic orbit. This orbit consists of
the points ( i <?i), ( i 82), • • •, (I, 8qi). The eigenvalues of £>(/fll)(i 8t) are 1 in the
^-direction (along the invariant circle), and (i)'1 in the r-direction. We may character-
ize the invariant circle as

i.e. the invariant circle is the union of the unstable components of the centre
manifolds of the points (2, 0.) with respect to the map fl.

Next we consider the map f*:P->P. This map has precisely two periodic orbits
which as sets are given by {(I, 0,, 0): i = 1 , . . . , q\\ and {(|, 6t, TT), / = 1 , . . . , <ji}. The
first corresponds to the periodic orbit of / with tangent direction along the invariant
circle while the second corresponds to the strong stable direction of the periodic
orbit of /. The map /* preserves the set {(§, 6, 0): 6 £ T} since this is the lift to P of
the invariant circle. Also

/*({(r, 6, IT) : (r, 6) e A}) <= {(r, 6, IT): (r, 6) e A}.

This corresponds to the fact that the curves 6 = constant give a smooth, /-invariant
foliation of A with segments connecting the boundary components of A. We note
that the strong stable manifolds

are leaves of this foliation for / = 1, 2 , . . . , qi. Finally

{(r, 6, IT): (r, 6)eA}= 0 Ws((i <?,-, TT),/!1),

i.e. the invariant surface in the projective bundle corresponding to the invariant
foliation is given by the stable components of the centre-stable manifolds of the
periodic orbit {(j, 0,, IT): i = 1, 2 , . . . , qj (see figure 7).

We will set / equal to hi the first map of the sequence {hn:A-*A}^=i which
converges to the desired example. Each of the maps hn will satisfy the description
given above for / and we will describe these properties carefully later.
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• 0 = 0

FIGURE 7. Representation of invariant manifolds for f' in A and f%' in P.

The construction of h2 from f = hi (and of hn+i from hn) takes place in two steps.
First we construct a one parameter family of maps fc, £e[0, 1], such that /o=/,
each fc satisfies the description given above for /, / and fc have precisely the same
periodic orbits and (fi)* has an interval of heteroclinic points between the two
periodic orbits in P. Loosely we can say that a segment of the invariant circle of
/i lies along a leaf of the foliation associated with the strong stable direction of the
periodic orbit of f\. Hence for Co near one, there will be an interval on the invariant
circle whose length decreases at an exponential rate for a large number of iterates.
The next step of the construction is to make a small perturbation of the map f(o

near the periodic orbit without affecting the invariant foliation, which produces a
map with a single periodic orbit with much longer period and which satisfies the
conditions described above for /. Since the interval on the invariant circle near the
leaf of the foliation is small with respect to the fundamental interval which contains
it, we can arrange that the new periodic orbit of the perturbed map misses this
interval. The result will be the next map in our sequence.

We begin by giving an explicit construction of the one parameter family fc. This
provides motivation for the definitions which follow giving the conditions which
each hn must satisfy. Finally we give the induction step described in the paragraph
above in lemma 11.

To construct the one parameter family fc first fix xi and x2e(0i, 02) such that
Xi<x2 and f"l(x1) = x2, i.e. [xi, x2] is a fundamental interval for /"'. Fix yi<y2

with Xi<yi<y 2
< *2 and

7 1 2 2
Let /i = {5}x[y!, y2] and Jx = {2}x[xi,x2]. We assume x 2 -x i« 2. Let ip:U-*U be
a C°° bump function with support contained in (-(x2-Xi)/2, (x2-xi)/2), 1 ></f >0
and iA(x) = 1 whenever |x|^(y2-yi)/2. For ^e[0, 1] let

\
cos ( ! sin ( |

-sin ( ! cos ( | a, b)\\))
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A Denjoy attractor 107

Now we define, for £ e [0,1],

U-.A + A

Since fc differs from / only on the strip [0, l ] x (jcl5 x2) we see that fc has exactly
one periodic orbit made up of the points (§, d\), (I, d2), • • •, (2, 0qi)- Moreover, for
£ e [0,1] the set

0 wn&tf,),

is the invariant circle for fc and when
{fc)* has precisely two periodic orbits

this circle is C00. Also for £e[0,1],

and

and when ^ < 1 the set

is a C°°, (/f )^-invariant surface in /> which yields a smooth /f-invariant foliation of
A. When £ = 1, the set

is a Lipschitz/i-invariant circle (i.e. it satisfies a cone condition) and the set

{&0,O):y1<0<y2}cJp

is contained in the set

wu((k, 0i, o), (f,)V)nws((i <?2, TT), (/XU-).

This last statement says that the interval {(% 6, 0): y 1 < d < y2} forms an interval of
heteroclinic points between the two periodic orbits of (/1)*. This is a degenerate
heteroclinic tangency between the centre manifold of (5, 0U 0) and the centre-stable
manifold of (2, 62, n) (see figures 8 and 9). Each of the maps {hn:A -»A}"=1 will

FIGURE 8. Representation of the invariant manifolds for (/^"""and
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FIGURE 9. Representation of the invariant manifolds for
1 and (f{.

have a one parameter family of maps associated with it which have many of the
qualitative features of fc described above with respect to periodic orbits of increas-
ingly large period.

In order to make this precise we make the following tedious technical definitions.

Definition. Let «i and a2e(0, TT) with ati<a2. We say a map h:A^A satisfies
conditions (1-8) (for au a2) if h satisfies the following conditions:

(1) h is a C°° diffeomorphism of A into A;
(2) A is an attractor block for h;
(3) h has exactly one periodic orbit; we let p/q denote the rotation number of

this orbit and we let (ru 0i), (r2, 6>2),. • •, (rq, dq) denote the points on the orbit;
(4) the eigenvalues of D(hq)(ru 0t) are 1 and a where 0 < a < 1;
(5) the strong stable manifolds W"((n,0i),hq) are segments connecting the

boundary components of A;
(6) the set U,"=i WuiHrl, 0,), hq) is the image of a continuous, injective map

y.J-*A, and -y(T) is the attractor for the attractor block A;
(7) if (r, 0),{r\ O')ey(J), and (r, 6,@)eP represents the line in the tangent

space Tir,e)A tangent to the segment (r,0),(r',0'), then ©g[ai ,a2] 0-e. this is
the 'cone condition' for the invariant circle);

(8) for each i = l,...,q,

Wss((ri,0i),h
q)f)y(J) = {(ri,0i)}.

Definition. We say a map h: A -» A satisfies conditions (1-12) {for au a2 as above)
if h satisfies conditions (1-8) and h satisfies

(9) y:T->A is a C°° embedding;
(10) if {(r,, 0h ©,): / = 1 , . . . , q}zP are the points on the periodic orbit of h*

corresponding to the eigendirection for the eigenvalue a, then the set

U W((rh $„&,),h%)

is the image of a C°° map a: A -*P which is a section of the natural projection of
P onto A;

(11) the vector field given by o-(A), (by giving the points of a(A) orientation
in a continuous way and unit norm) has solution curves which are segments
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connecting the components of the boundary of A, and each such curve intersects
y(T) in a single point;

(12) <r(A) 0 y#(T) = 0 = <r(A) D {(5, 0, 0): 5 = 0 , 1 , 6> e [0, 2TT)}.

Remarks. Conditions (10) and (11) can be restated in terms of the existence of a
smooth, /i-invariant foliation. In fact, if h:A^A satisfies conditions (1-12) with
invariant circle y: J -* A then we can let $ be the flow associated with the invariant
surface in P given by condition (10) as described in (11) by orienting the vectors
on {(1, 6): 6 e[0, 2v)} pointing into A. Then each solution of <& contains exactly
one point of { 1 } X T C A and one point of -y(T). Hence we can use <t> to give a
coordinate system on A as follows:

If 2 € A then let <&(z, •) be the solution curve containing z and <&(z, 0) = z. Let
r e R be such that $ ( z , - r ) e y ( T ) and let del be such that there exists teU
with 3>(z, t) = (1, 0). Then (r, 6) form a smooth coordinate system on A. In these
coordinates

i.e. the curves 6 = constant make up the /t-invariant foliation. Also, f = 0 is the
invariant circle y(T) for h, and in these coordinates «:¥-»¥ equals h\y{J). We will
name these coordinates by the diffeomorphism which induces them, e.g. (r, 6) above
will be called ft-coordinates.

We still need one more technical definition which makes precise the notion of
a map being C close to a map with an interval of heteroclinic points in P, e.g. fc

is close to /i when C is close to 1. We will need to arrange that the smooth structure
(e.g. the invariant foliation) persists until the heteroclinic points appear as is the
case for f( described above.

Definition. Suppose h:A-*A satisfies conditions (1-12) for some au a2e(0, IT)
with invariant circle given by y: T-> A and rotation number p/q. Suppose / £ y(T)
is an interval which is contained in a fundamental interval of h"\y(T) and IsJ is
an interval which does not contain the end points of/. Suppose U is a neighbourhood
of / in A, UD y(T) is contained in / and U is bounded away from y(T)~/ . Fix
5 and n >0. We say that h is (S, n)-close-to-connection with respect to I, J and U
for a i, a2 if there exists a one parameter family h^.A^A for f e [0,1] such that

(a) /t0 = h, and for all £e [0,1] and all z € A ~ U, h{{z) = h(z);
(b) for all £e[0,1], hc satisfies conditions (1-8) for ai, a2 and for all £e[0,1),

h{ satisfies conditions (1-12) for ai, 02;
(c) if yc:l-*A is the invariant circle for hc, £e[0,1], then y( is continuous in £

in the C° topology and for each integer m, hc is continuous in the Cm topology
for f e [0,1];

(d) for C 6 [0, 1 ], ||ft{, h ||c- < 8 and ||yt, yo||c° < 8;
(e) / s y{(T) for all f € [0,1] and U is bounded away from U{e[o.i] (re(T) ~ / ) ;
(f) let <rc: A -* P denote the smooth invariant surface in P giving the /t^-invariant

foliation, then there exists an open set W containing Ufe[o,i] YcCD such that if
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£ e [ 0 , 1 ) and (r, 0, ®)ecrc(A) with (r, 0)eW then 0 £ [ a 1 ; a2],
(g) each point of the segment

{(r, 0, 0) : (r, 0)el and (r, 0, 0)e y*(T)}

is a heteroclinic point for (/ii)* between the two periodic orbits of (/ii)* in P.

Remarks and notation. For h:A-*A as in the definition above we may assume
that the points of the periodic orbit {ru 0\), • • •, (rq, 0q) of h are ordered so that for
each z el,

(hqy\z)-*(ru01) as/ ^ -oo

and

(A«)'(z)->(r2,02) asi-*oo.

Then let (ru 0U © i ) , . . . , (rq, 0q, 0q) and (ru 0U 0 1 ) , . . . , (/•„, 0q, 0q) denote the
periodic orbits of h* corresponding to the direction tangent to y(T) and the
direction of the strong stable manifold respectively. Since he equals h near
{(/•„ 0j): i = 1 , . . . , q) we see that the periodic orbits of hc and (h()% are precisely the
same as those of h and h* for any £ e [0,1]. By conditions (a) and (e) we see that

yc(J)nU = y(J)nU forall<Te[0,1]

and that the foliation is independent of £ on a neighbourhood of U " i (A?)'(/)-
Finally note that we can restate condition (g) as

{(r,0,@):(r,e)el and (r, 6, 0 )e y*(T)}

S W"(('i, 0i, ©i), (Ai)J)n IVs((r2, 92, ©2),

and note that since / £yf(T) for each £e[0,1] we know that {(r, 0, 0): (/•,
and (r, 0, 0) 6 y^(T)} is contained in (y()*(T) for each f e [0, 1).

We can now give the induction step of our construction in the following three
lemmas. In lemma 10 we take care of a technical detail, showing that a fundamental
interval doesn't change much when passing near a point which is almost a fixed
point. Lemma 11 is the heart of the construction. Finally in lemma 12 we collect
the details of the construction of the desired sequence {hn: A -> A}"=i.

LEMMA 10. Let v:[-8, S]^U be a C2 map such that v(x)>x, i>Dv{x)>l and
D2v(x)>0 for all x e[-8, 8]. Suppose v(-8)>-8. Then there exists a constant c
which we can take to be ^ such that for every N>0 which satisfies

we have for any b\, b2e\-8, v(-8)]

c~D(vN)(b2)
 C'

Proof. First suppose b\<b2. Since [-8, v(-8)] is a fundamental interval for v and

Since D2v > 0 on [-8,8] we see that
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and

for all /, 0 < / < TV. Now

D(vN)(bj) = "n Dv(v\b,)),
i = 0

so we have

i=0 i=0

Also

Y\ Dv(v'(b2))

Dv(v (
=o

Hence

Dv(vN-\b2))'

so

9 ^D(v ,^L,

16~D(vN)(b2)- "

Similarly, if b\ > b2 we obtain

D(t)JV)(6i) 16
1 ^ K? ^ .

D(v )(b2) 9
Combining these inequalities we complete the proof of the lemma. •
Notation. Suppose h:A-*A,I,J and U are as in the definition of close-to-connec-
tion and in the remark following the definition. Fix intervals / O c / O c / such that
neither Io nor Jo contains either end point of Jo nor /, respectively (see figure 10).
Let W be a neighbourhood of the U^6[o,i] ̂ (T) given in condition (f) of the
definition above.

LEMMA 11. Suppose h:A-*A is (S, m0)-close-to-connection with respect to I, Jand
U for «i, a2. Let p/q be the rotation number of the periodic orbit of h. Then for any
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FIGURE 10

Si,S2>0 and neighbourhood V of I0 with Vc.UnW, V bounded away from
y(T) ~ / 0 , there exists a C°° diffeomorphism g: A -» A such that

\\g,h\\c~o<28

and g is (8\,m0+\)-close-to-connection with respect to Io, Jo and V for au a2.
Moreover, g may be chosen so that the rotation number po/qo of the periodic orbit of
g satisfies

0 < | ^

Proof. Let hc: A -* A, £ 6 [0,1] denote the one parameter family of maps associated
with h. Since h( is continuous in (e[0,1] in the Cm°+1 topology, we may fix

[0,1) sufficiently close to 1 so that hc is (<5i/2, mo+ l)-close-to-connection with
respect to 70, Jo and V for au a2 for any £e [£i, 1).

Let (f, 6) denote the /ifl-coordinate system (e.g. we may consider 6 a function
of (r, 6), 6 = §{r,d)). We assume (by rigidly rotating the (f, 6) coordinates if
necessary) that 6(r2, 02) = 02- In these coordinates h(l may be written

where u:T-»T is a C°° diffeomorphism with a single periodic orbit which contains
the point d2. Fix a neighbourhood Ki of (r2, 62) in A so that

K1nU = 0,

K\ n y (T) is an interval

and

for all 8 such that (r,0)eK1 for some f. We may assume £>2(u")(<?)>0 on
without loss of generality.
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Fix numbers a,, y,, w, and £,, with i = 1, 2 so that

113

and hence <ii < y i < vv: < z \ <z2 < w2<y2<d2< 62 (see figure 10).

Let Kx = {§: (f, 6) e y(T) n ATi for some r}. Fix i0 < 0 so that

The set K\ ~ {62} is disconnected with

in one component and

U (wTPi.

in the other.
By lemma 10 there exists a constant c2>0 such that

C2 vi°-nq(d2)-v
i"-nq(d1)

for all n > 0.
For £ € [£i, 1) let (r, ^) denote the ^f-coordinates (where we suppress the depen-

dence of f and 0 on £), i.e. f = r(f, 6) and ^ = S(f, 8). We assume (9(0, S2) = ^2 and
we let

a,: = 6(0, &,), y,-

for/ = 1,2. Writing

where we suppress the dependence of k\ and u on £, we have, again by lemma 10,

<T2, 1)

(5.1)

\uiq(d2)-u
iq(d1)\

uniformly in / >0 as £ -> 1. Hence there exists £2e [£i, 1) such that for all

|K*(y2)-«*(yi)l c2

|M"'(a2)-M''!(fl1)| 16

for all i > 0.
Fix £3 e [£2, 1) and fix a neighbourhood K of {(r2, ^2)} such that K c j

3f df
\ ~d~r ~dl ^
-< . . <2. onJ
2 a^ a^

and AT n Tf3(T) is an interval. Fix Ni > 0 so large the.

on AT,
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and

whenever n > Ni, where K = {d e T: (f, d) e K for some f}. Then for n > j

| c2

| 4 '
(5.2)

(see figure 11).

K

f—H—I »
V

\

\

\

->—I- -+4+-

(w2) <.

FIGURE 11

Next we wish to perturb u to form a new map M : T - » T which has a single
periodic orbit with rotation number po/qo satisfying

0< P_Po
<7 <7o

<<52

and such that Jo is contained in a fundamental interval of u"°.
Let i^:R^RbeaC°° bump function with support in K, 1 > I ^ >

each a > 0 let ua: T-> T be the map given on [0, 2v) by
= l- For

Fix Pi > 0 so tha t whenever 0 < a </3i, wa is a diffeomorphism and ua satisfies (5.1)
for i=Nt, (5.2) for n=Ni and

0 < rot ( « „ ) - - <S2, i>Duq
a>h D2uq

a>0,

on K.
By lemma 10 and the continuity of ua in a, there exists a sequence {an}^=1 such

thatan |0, 0<ai</Si , and for each n there exists Mn >Nx such that torNx<i<Mn,
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Hence wOn has a periodic orbit with some period sn and / 0 is contained in a
fundamental interval of (uanY

n. For each n, let vn denote the smallest positive
number such that

has a single periodic orbit with period sn. Then Jo is contained in a fundamental
interval of

and since an -* 0 as u -* oo it follows that vn -* 0 as n -* oo. Define

gn: (r, 0) -»(fci(f, 0), ««„(<?) + vn).

Note that for each n, gn\v = A{3|v and the invariant circle (as a set) and invariant
foliation of A are the same for gn as for h(3, so gn satisfies conditions (1-12).

Let (hi3)K: A -» A, K e [0,1], be the one-parameter family of maps associated with
hh by which it is (Si, 12, mo+ l)-close-to-connection with respect to /0, Jo and V
for a b a2. Let

Let y.J^A be the invariant circle for (gn)K (we suppress the dependence of f on
/c, n) and note that 7 0 s y(T) for all »c e [0,1]. By choosing n sufficiently large, we
may fix a neighbourhood Wo of

U U ((gJU/o))
KE[0, 1] i>0

such that

WonV=0,
so there is a neighbourhood of UKe[o,i] (Sn)l(Jo) in which the (gn)K-invariant folia-
tion is independent of K. Hence, fixing n sufficiently large, we see that gn = g is
(5i, m0 + l)-close-to-connection with respect to Io, Jo and V for au <*i, and the
proof of the lemma is complete. •
Now to construct the desired sequence {hn:A-*A}^=i of diffeomorphisms we let
hi-f be the map of the first part of this section. Let / i and J\ be the intervals
associated with / also as defined in the first part of this section. Define a sequence
of intervals /„, /„ such that

/i2/i2/22/22' • •

each interval containing neither of the end points of the interval before it in the
sequence and

and / is not a singleton. Fix <5i so that f = h\ is (Si, 2)-close-to-connection with
respect to Iu Ji for some neighbourhood V and constants ai , a2- Choose {5n}"=2
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so that

n=2 I

and every C°° map in an 2e-neighbourhood in the C1 topology of fc, for any
C e [0,1], is a diffeomorphism of A into A.

LEMMA 12. Suppose we have chosen ht:A-+A, i = \,...,n such that for each
i = 1 , . . . , n there exists a neighbourhood Vt, i = 1 , . . . , n such that

(i) hi is (Si, i + \)-close-to-connection with respect to /,, Jt and V{for a h a2;
(ii) ifpi/q, is the rotation number ofhh j = 1 , . . . , n then

0< "' "' X

whenever j <i;
(iii) fef -yi;: T -» A be the invariant circle for h(; then there exists a neighbourhood

Wt of'y,-(T) such that

Wi+1<zhi(Wi) c:\Vi, V(+1cW(+1,

and /or eac/i 2o £ Wi

inf ||2,2o||<5,-;
2ETi(T)

(iv) \\hi,hi+l\\c><28.
Then there exists a map hn+i :A -* A such that (i)-(iv) are satisfied for i = 1 , . . . , n +1.

Proof. The proof is immediate from lemma 11. •

Remark. Condition (ii) above is needed only to ensure that lim,-.oo p,/qr is irrational.
We could replace this estimate by much more severe estimates requiring the
lim^oo pi/qi to be a Louiville number (well-approximable by rationals).

Since the induction step requires us to make small perturbations we can not gain
any information about how poorly-approximable by rationals the rotation number
of our example might be.

Proof of theorem 3. By induction and lemma 12 there exists a sequence {hn:A-*
A}^ = 1 of C°° difleomorphisms satisfying (i)-(iv) of lemma 12. By condition (iv) the
limit h =limn-.oo/in exists and is a C°° diffeomorphism. If yn:T-»A denotes the
invariant circle for hn then by conditions (i) and (iii) there is a curve y: J -» A such
that y = limn-,oo yn and y satisfies condition (7) above (with (a\,a2) replacing
[ai,a2]). By condition (iii) the set y(T) is the attractor for the attractor block A.
Since / = PlTLi & ' s a subset of y, for each / = 1, 2 , . . . , we see that / £ y(T). Let
zn be a point on the periodic orbit of hn. Then

h'n{zn)<£I foral l /X) .

Hence if z0 is the limit of a convergent subsequence of {zn}°Z=i then for any 1^1,
I a non empty, non-singleton interval not containing either end point of / then

h'(zo)ftl foralW>0.
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Hence h\yiT) has orbits which are not dense. Since

h\y<j)= lim hn\yniJ)
n-»oo

we see that the rotation number of AY(T) is

p = lim ^ .

By condition (ii) of lemma 12 we see that p has infinitely many rational approxi-
mates, so p is irrational. Hence h is the required map and the proof of the theorem
is complete. •

Remarks. (1) Again we note that the only control we have on the rotation number
of the example above is to make the rotation number as well-approximable by
rationals as we wish and close to any given rational. We do not know if such
examples exist for arbitrary irrational rotation numbers.

(2) The starting point of the above construction is a map with an interval of
heteroclinic points in the projective bundle, or, in other terms, an interval on the
invariant circle lies on a leaf of an invariant foliation near a periodic orbit. It has
been observed numerically (see [2]) that points of tangency of this type between
an invariant foliation and an invariant circle occur even for two-parameter families
of quadratic maps of the plane. By a C1 perturbation we can turn this point of
tangency into an interval of tangency. Then a C°° small perturbation leads to
examples as in theorem 3. Other than this, we have no information on how common
such maps are in the space of C°° diffeomorphisms of the annulus. In particular
we do not know if 'C°°' can be replaced by 'analytic' in theorem 3.

This paper is the author's Ph.D thesis, written at the University of Minnesota under
the direction of Richard McGehee. Without his patient assistance this work would
hardly have been started, much less completed. The author would also like to thank
R. McGehee and D. G. Aronson for the opportunity of serving as research assistant
in the Dynamical Systems Laboratory in the University of Minnesota.
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