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NILPOTENTS IN SEMIGROUPS OF
PARTIAL TRANSFORMATIONS

R.P. SULLIVAN

In 1987, Sullivan determined when a partial transformation a of an infinite set X
can be written as a product of nilpotent transformations of the same set: he showed
that when this is possible and the cardinal of X is regular then a is a product of
3 or fewer nilpotents with index at most 3. Here, we show that 3 is best possible
on both counts, consider the corresponding question when the cardinal of X is
singular, and investigate the role of nilpotents with index 2. We also prove that
the nilpotent-generated semigroup is idempotent-generated but not conversely.

1. INTRODUCTION

Throughout this paper X will denote an infinite set with cardinal m, and if n is
any cardinal then n' will denote the successor of n (that is, the least cardinal greater
than n). All notation and terminology will be from [1] and [3] unless specified otherwise.
In particular, T{X) denotes the full transformation semigroup on X. If a € T{X),
we let r{a) denote the rank of a (that is, \Xa\) and put

D{a) = X\Xa, d(a) = \D(a)\,

S(a) = {xeX:xa^x}, s{a) = \S{a)\,

C(a) = \Jiya-1: lya'1] 2 2}, c(o) = \C(a)\.

The cardinal numbers d(a), s(a) and c(a) are called, respectively, the defect,
the shift and the collapse of a and were originally used by Howie [2] to characterise
the elements of T(X) that can be written as a product of idempotents in T(X). In
particular, he later showed [4] that the set

Qm = {a € T(X): d(a) = s(a) = c(a) = m}

is an idempotent-generated subsemigroup of T(X). Later still, in [6] Marques consid-
ered the Rees quotient semigroup Pm = Qm/Im where Im = {a € Qm: r(a) < m}, an
ideal of Qm.
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454 R.P. Sullivan [2]

Among other things, she proved that for any infinite m, every element of Pm is a
product of 4 or fewer idempotents and that 4 is best possible. Then in [5] the authors
showed that if m is a regular cardinal, the set

Km = {a G Pm: \ya~x\ = m for some y £ X} U {0}

equals the subsemigroup of Pm generated by the nilpotents in Pm. And in [7] the
authors proved that if m is singular (that is, non-regular) then the subsemigroup of
Pm generated by its nilpotents equals the set

Lm = {a £ Pm '• for each p < m, there exists y £ X such that \yct~11 > p] U {0}.

Moreover, from [5] and [7] we know that each element of Km and of Lm is a product
of 3 or fewer nilpotents with index 2 (that is, A ^ 0 and A2 = 0) and that 3 is best
possible.

Let V(X) denote the semigroup of all partial transformations of X and if a £

V(X), write g(a) = | X \ d o m a | and call this the gap in a. In [9, Corollary 3], I
proved that if m is regular then the set

C(X) = {a£ V{X): d{a) = m, g(a) > 1,

and \yat~1 U (X\doma) | = m for some y £ X}

is the subsemigroup of V{X) generated by the nilpotents in V{X). Moreover, in this
case, C{X) is regular and each of its elements equals a product of 3 or fewer nilpotents
with index at most 3. In this paper, we show that C(X) is idempotent-generated;
and provide bounds on the number of nilpotents (and their indices) required to express
each element of C(X) as a product of nilpotents: we show, for example, that both
the product 3 and the index 3 just mentioned are best possible. We also investigate
analogous questions when m is singular.

2. NILPOTENTS AS GENERATORS: THE REGULAR CARDINAL CASE

We extend the convention introduced in [1, vol.2, p.241]: namely, if a G V{X) is

non-zero then we write

and take as understood that the subscript i belongs to some (unmentioned) index set

/ , that the abbreviation {x{} denotes {XJ: i G / } , and that Xa = ran a = {zi},

Ai = Xjtt"1 and dom a — |J Ai.

To compare the results in [9, Section 3] with those in [5] and [7], we let 4> £ X,

put I * - I U ^ and
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[3] Nilpotents in semigroups of partial transformations 455

and define 6: V{X) -> FA,, a -> ad, where x(aO) = xa if x G d o m a and x(a#) = 0
otherwise. Clearly, 6 is an isomorphism and, when m is regular, the image of C{X)

under 6 is the semigroup

I ^ j a e f f d(a) = TO, tya'1] ̂  2, and Is/a"1! = m for some y G X*}.

Note that LA, contains the ideal IA, — {a € LA,: r(a) < m} and the Rees quotient
semigroup LA,/1A, can be identified with {a € LA,: r(a) = rri) UO, where 0 represents
the zero of LA,/IA, . In this way, LA,/IA, can be regarded as the semigroup

Km(<j>) = {ae Km(X*) :<}>a = <t> and \4KX~X\ ^ 2} U 0.

In [5] the authors showed that every non-zero a € Km[X^ equals a product
of nilpotents in Km{X^ with index 2. This is also true of Km{4>). For, if a, /? €
K^X*) and (pa/3 = <j> then there exist a' G Km{X^) and f3' G irm((£) such that
a/3 = a'/3', kera = kera' and 0a ' = 0. To see this, suppose <j>a = a, (j>P = b and
consider two cases. If <j> ^ X a , we let xa' = <j> for x € a a " 1 and xa ' = x a otherwise,
and let x/3' = <j> for x G # ? - 1 U 0 and x/3' = x/3 otherwise. On the other hand, if
</> G Xa \ a, we choose d ^ X a and let xa ' = <f> for x G a a " 1 , xa ' = a for x G 0 a " 1

and xa ' = xa otherwise, and let xff — <j> for x G {<t>(i~l \a) U </> U d, x/7' = 6 for
x € (6/3-1 \ 0) Uo and x/?' = x/3 otherwise. It is now easy to check that, in both cases,
a' and /?' possess the required properties. Moreover, since there is little difference
between the ranges of a and a ' (and the kernels of (3 and ft') it is clear that a' is
nilpotent in Km{X^ if and only if a is (likewise for f3 and /?'). Consequently, if
a G Km(<j>) then a is a product of nilpotents with index 2 in Km{X^ and, by the
foregoing remark, these can be assumed to lie in Km{4>).

Having said all this, it will transpire from what follows that LA, , the inverse image
of Km(<j>) under the natural map LA, -> LA,/I A,, is not generated by its nilpotents

with index 2 (that is, A G LA, such that A2 = 4> but A ̂  <j> where, in this context,
(j> denotes the constant transformation in L^). In particular, it will be clear that if
X = {a-i} U {&i} U x then

{ft,} {x,

cannot be written as a product of nilpotents in LA, with index 2 but, as already shown,
as an element of Km{(j>) it does equal a product of nilpotents in Km{<j)) with index 2.
In addition, whereas Km(<j>) is 0-bisimple (compare [7, Theorem 2.1]) the same is not
true of LA, . That is, very little information about LA, can be obtained directly from [5]
and [7], so we continue to work within C(X) itself.

The cofinality of TO, cf (TO), plays a fundamental role in what follows: since it
is difficult to find an elementary account of the relevant facts in the literature, we
summarise them in the following way, using [10, Theorem A.3.9] as our authority.
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456 R.P. Sullivan [4]

THEOREM 2 . 1 . Suppose m is an arbitrary infinite cardinal. Then cf (m) is the
least cardinal n such that m can be expressed as a sum of n cardinals each less than
m. Hence, cf (m) ^ m where equality occurs if and only if m is regular. In particular,
both cf (m) and m' are regular cardinals. If m is singular then cf (m) is infinite and
m can be expressed as the sum of a strictly increasing sequence of cf (m) cardinals each
less than m.

For convenience, we recall the following result from [9, Theorem 3, p.336 and
p.341].

THEOREM 2 . 2 . If m is a regular cardinal then the semigroup C(X) is regular
and each a € C(X) equals a product of 3 or fewer nilpotents with index at most 3.
Moreover, C(X) contains the ideal / ^ = {a € V(X): r{a) < m].

The proof of Theorem 2.2 involves two cases: namely whether g(a) = m or g(a) <
m, and in the first case a can be written as a product of 3 or fewer nilpotents with
index 2. We begin by characterising precisely when a is a product of nilpotents with
index 2: besides its intrinsic interest, the next result shows that the index 3 in Theorem
2.2 is best possible.

THEOREM 2 . 3 . Suppose m is an arbitrary infinite cardinal and a G V(X) is
non-zero. Then a is a product of nilpotents with index 2 if and only if d(a) = m and
g(a) ^ r (a) . Moreover, when this occurs, a is a product of 3 or fewer nilpotents with
index 2.

PROOF: If A2 = 0 then XX C X\domA: that is, r(X) ^ g(X) and, by [9, Lemmas
11 and 13] (compare Lemma 3.2 below), d(X) — m. Hence, any nilpotent with index 2
satisfies the given conditions. Consequently, if Ai.. . Ar is a product of such nilpotents
then d(Ai... Ar) = m and

r(Ai. . . AP) ^ r(Ai) ^ g(\1) ^ s (Ai . . . Ar)

since d(/3) < d(a0) and r(a0) < min (r(a), r{0)) for all a, P € V(X).
Conversely, suppose a satisfies the given conditions: what follows is essentially the

argument in the first paragraph of the proof of [9, Theorem 3]. Suppose Xa = {xi}
and Ai — a^a"1. If \(X \ r ana ) n (X \doma) | ^ r(a) then we can choose c+ €
(X \ ran a) D (X \ doma) and write

-(?)•©
where each transformation on the right is nilpotent with index 2. Suppose instead
that \(X \ r ana ) fl (X \ doma) | < r (a) . In this event, if r(a) is finite, we choose
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Ci G X \ doma and di G (X \ Xa) \ { c j , and put

where each transformation on the right is again nilpotent with index 2. On the other
hand, if r(a) is infinite then \Xa(l (X \doma) | = r(a), so we can choose Cj € XaC\

(X \ dom a) and di G X \ Xa to ensure that the above decomposition of a remains
valid. D

To show that 3 is best possible in the above result, we need to characterise when
a is a product of 2 nilpotents with index 2, and for this we need to describe Green's
relations on C{X). The following characterisation of Green's relations on V(X) is
well-known: its proof is entirely similar to that given in [1, vol. 1, pp.52-53] for T{X),
and so is omitted.

LEMMA 2 . 4 . If a, 0 € V(X) then

(a) a£/3 if and only ifXa = Xf3,

(b) aiZ/3 if and only if ker a = ker /?,
(c) aV(3 if and only if r(ct) - r((3), and

(d) V = J

The regularity of C(X) when m is regular was established in [9, p.341]. For what
follows, we need a more general result.

LEMMA 2 . 5 . If m is an arbitrary infinite cardinal then £(X) is a regular semi-

group.

PROOF: We suppose m is singular and let a G C(X). Write Xa = {#*} and
A{ = Xia~l. Choose Cj G A{ and define a transformation /? by letting dom/3 = {a*}
and a.iP = Xi for each i G / . Then g((3) = m since d(a) = m, and d(f3) — m whenever
r(a) < m. If r(a) — m then, by [9, Theorem 4], g(a) = m or a is spread over m.
In the former case, d((i) = m; and in the latter case, we know HJ-^pl = m f°r some
P C. I with \P\ — cf (m): that is, X \ X@ contains (J (Ap \ ap), a set with cardinal
m. Hence, by [9, Corollary 4], 0 is a product of nilpotents and clearly, a = a/3a. D

Since C(X) is a regular subsemigroup of V(X), it follows from [3, Proposition
II.4.5] that the C and 11 relations on C(X) can be described just as in Lemma 2.4.
The reason for noting this fact will be apparent after we quote the following result from
[5, Lemma 2.5].

LEMMA 2 . 6 . Let T be a regular semigroup with a zero 0. If a £T and a = xy

for some nilpotents x, y in T with index 2 then a — xij/i for some nilpotents x\, j/i
in T with index 2 such that x\Tln and yiCa.

The next result should be compared with [5, Proposition 2.4] and [7, Lemma 2.2].
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THEOREM 2 . 7 . Suppose m is an arbitrary infinite cardinal and a € V{X)

is non-zero. Then a is a product of 2 nilpotents with index 2 if and only if

| (A" \ r ana )n (X\doma) | > r(a).

PROOF: The second paragraph in the proof of Theorem 2.3 shows that if the
condition holds then a can be written as a product of two nilpotents with index 2.
So, we suppose a — X/J. ^ 0 where A2 = ft2 — 0. By Lemma 2.6, we can also assume
kerA = kera and Xfx = Xa. Let Xa = {a;,}, A{ — a^a"1 and AiX = yt. Since
A2 = 0, we know {?/*} C X \ domA — X \ doma. Suppose, for contradiction, that
| ( X \ r a n a ) n (X\doma) | < r(a). Then {t/j} n Xa ^ 0 where each j/j € dom/x.
Hence, we have X/r2 — (Xa)fi D ({yi} D Xa)/x 7̂  0, contradicting fj,2 = $. D

It remains to note that there exist a € ~P(X) with d(a) = m and g(a) ^ r(a) but
\(X \ ran a) n (X \ doma)| < r(a). To see this, write X - {x{} U {a*} U {6j} U {CJ}
where | / | = m > | J\ and put

Note also that there are a G V{X) which cannot be written as a product of nilpotents
with index 2. For example, if X = {aj} U {6j} U x then

- C {t"
is a nilpotent with index 3 which does not satisfy the conditions of Theorem 2.3 (the
need to consider such nilpotents did not arise in [5] and [7]).

The second case in the proof of Theorem 2.2 leads to a being written as a product
of 3 of fewer nilpotents, the first of which has index 3 and the other two have index
2. We now show this occurs whenever a does not belong to fC(X), the subsemigroup

of C(X) generated by the nilpotents in C(X) with index 2.

THEOREM 2 . 8 . If m is regular and a £ fC(X) then a is the product of 3 or
fewer nilpotents, the first of which has index 3 and lies outside K.{X) and the other
two have index 2.

PROOF: If a ^ 1C{X) then #(a) < r(a) and so g(a) < m. Hence, by [9, Corollary
3], some za~x has cardinal m. Then the second paragraph in the proof of [9, Theorem
3], shows that a is a product of 3 nilpotents, the first having index 3 and the other
two having index 2, and clearly the first cannot belong to K.{X). u

It is often possible to do better in the above result and write a ^ IC(X) as a
product of just two nilpotents, the first having index 3 and the second having index
at most 3. The next result characterises when this occurs and at the same time shows
that the product 3 is best possible in Theorem 2.2.

https://doi.org/10.1017/S0004972700034092 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034092


[7] Nilpotents in semigroups of partial transformations 459

THEOREM 2 . 9 . Suppose m is regular and a g K.{X). Then a is a product
of two nilpotents with index at most 3 if and only if there exists z € X such that
\zot~1 D (X \ Xa)\ ^ r(a) and (X \ doma) \ z is non-empty.

PROOF: Suppose a = X/j. where A and \i are nilpotent with index at most 3. If
A has index 2 then g(X) ^ r(X): an argument similar to that in the first paragraph
in the proof of Theorem 2.3 then shows that a must satisfy the same inequality, in
which case a € K,{X). Hence, A must have index 3. Let Xa = {XJ} and Ai = x<a-1.
If r(a) < m then \(X\Xa)nAi\ — m for some i e I since m is regular and, by
supposition, \(X \Xa) n (X \doma) | < m and d(a) — m. Hence, we now assume
r(a) — m.

Let Bi = Xifj,'1 and note this is non-empty since Xa C Xfx. Let ker A = {Dj}
where \J\ = m (since r(A) ̂  r(a) = m). Then each Ai is a union of some Dj and
AiX C Bi for each i € I. Fix some bi € AiX and write 6iA-1 = Dt. Note that {bi} C
dom^t, and fj, maps {bi} in a one-to-one fashion onto {x<}. Now, since a £ K.(X) and
X\domA C X \ d o m a , \{b{} (IX \domA| < m and hence \\J({h} r\Dj)\ = m. If
{bi}C\Dj ^ 0 for m of the Dj then |{6i}A| = m: that is, r(A2) — m, contradicting
the fact that XX2 C X \ domA which has cardinal less than m. Hence, if K — {j e
J: {bi} D Dj ^ 0} then \K\ < m. But then U({^t}n£>fc) has cardinal m and so
\{bi} n Do| = m for some index 0 € K (since m is regular). Note that Do is contained
in some Ai since g{a) < m. Write {6*} nDo = {bp} and suppose, for contradiction,
that \(X\Xa)nAi\ < m for all i € J. Then in particular, \{X \ Xa) D {bp}\ < m
and so Xa C\ {bp} = {bp\} say, has cardinal m. Note that {bpi}fi has cardinal m.
Since {&pi} C {xi}, by the choice of the bi we know there exist Cp e {bi} such that
cpfj, = bp\. We now repeat the foregoing argument with {cp} replacing {bi}. That is,
{cp} must intersect less than m of the Dj and so there is an index 1 6 J such that
\{cp} n D\\ = m. Once again, note that D\ is contained in some Ai and if {cp}r\Di =
{dp} then XaC\{dp} = {bpi} say, has cardinal TO. Then {bP2}^ has cardinal m and
we need only repeat the argument one more time to reach a contradiction (since fi has
index at most 3).

In the last two paragraphs we have shown that \(X \ Xa) D Ao\ ^ r(a) for some
index 0 € / . We now prove that we can assume (X \ dom a) \ xo is non-empty.
For, suppose X \ doma = x0 (recall that g{a) ^ 1 ) . Then 0 # (XX)X C X \
domA = xo imphes that xoA"1 = Y say, contains XX and so its cardinal is at least
r(a). In addition, since ^(a) < r(a), xo must belong to dom/x, xofi — x\ say. If
\XXn(X\Xa)\ ^ r(a) then \Ain(X\Xa)\ ^ r{a) since >li = xia~l contains
Y. Since xi ^ xo (M is nilpotent) and X \ doma = xo by supposition, the set
A\ possesses the desired properties. Thus, we assume \XXn(X\Xa)\ < r(a) and
deduce that XX n Xa = {xp} say, is non-empty (possibly r(a) is finite). But then
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there exist ep £ XX C Y such that ePn = xp and \{ep} n (X \ X a ) | < r(a) implies

{ep} fl Xa = {xq} say, is non-empty. Once again, there exist eq € XX such that

eqn — xq and now {eq}(j,2 = ({ep} H Xa)n is non-empty (since each ep G dom/x).

Clearly, this argument can be repeated once more to find that /x3 ̂  0, a contradiction.

Conversely, suppose Y = za~x and \Y n(X \Xa)\ ^ r(a). Let Xa\z = {xi}
and Ai = XiOt~l. Choose bi 6 Y C\ {X \ Xa) and c € (X\ doma) \ z, and note that

where the first transformation on the right is nilpotent with index 3 and the second is
nilpotent with index at most 3 (one X{ may equal c). D

It remains to note that there exist a ^ fc{X) which do not satisfy the conditions
of Theorem 2.9: for example, the transformation denned in (1).

3 . NlLPOTENTS AS GENERATORS: THE SINGULAR CARDINAL CASE

Throughout this section m will be a singular infinite cardinal. In this context, we
say a € V(X) is spread over its rank if, for each p < r(a), some zoTx has cardinal
greater than p. In [7] the authors showed that, when m is singular, the set

Lm = {a € Pm: a is spread over m} U {0}

equals the subsemigroup of Pm generated by the nilpotents of Pm. Moreover, each
a € Lm is a product of 3 or fewer nilpotents with index 2 in Pm, and 3 is best
possible. This is comparable with the following result from [9, Theorem 4]: note that
the proof in [9, p.340] involves a nilpotent A which is stated to have index 3 but in
fact has index 4.

THEOREM 3 . 1 . Suppose m is singular and a e V(X). Then a e £(X) if and
only if g(a) ^ 1, d(a) = m and either g(a) ^ r(a) or a is spread over its rank.
Moreover, when this occurs, a can be written as a product of 4 or fewer nilpotents
with index at most 4.

In Section 2, we characterised when a £ V{X) is a product of nilpotents with
index 2 and X is an arbitrary infinite set. Since some nilpotents with index 3 lie in
IC(X), we shall determine when a € V{X) equals a product of nilpotents with index
of most 3. In order to do this, it will be important to know that d(X) = m for any
nilpotent A. We therefore begin by giving a proof of this fact that is simpler than the
one in [9, Lemma 13].
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LEMMA 3 . 2 . If m is singular and X is a nilpotent then d(X) — m and hence,

any product of nilpotents has defect m.

PROOF: If r(A) < TO then d(X) — m. So, we assume r(A) = m. Then, by the
first paragraph in the proof of [9, Lemma 13], either g(X) — TO or A is spread over
m. If the former occurs, we follow the third paragraph in the proof of [9, Lemma
11] (with cf(m) replaced by TO throughout) to conclude that d(X) = m. Hence,
we assume A is spread over TO and suppose, for contradiction, that d(X) < m. Let
XX = {xi} and Ai = x<A-1. Since No is regular, we therefore know there exists AQ
with \A0\ > max (Ho, d{X)). Write Ao = B and \B\ = n > No. If \XXnB\ < n then
n = \{X \ XX) n B\ ^ d{X), a contradiction. Hence, \XX D B\ — n and BX ^ 0. Let
J — {i G I: Xi €. B}, so \J\ = n. Choose aj € Aj and suppose |XAn{aj}| < n.
Then n = \(X\Xa) f~l {a_,}| ^ d(X), a contradiction as before. So |XAn{aj}| = n
and {oj}A2 ^ 0. Repeating the argument, we let K — {i G / : Xj € {<ij}}) so \K\ — n.
If Cfc € .Afc then |XAn{afc}| < n provides a contradiction, so |XAn{ajt}| = n and
{aj}A3 ^ 0. Clearly, this cannot stop: that is, Ar ^ 0 for all r ^ 1, contradicting the
fact that A is nilpotent. Hence, d(A) = m as required. u

We can now turn to the proof of the following result.

THEOREM 3 . 3 . Suppose m is singular and a € P(X). Then a is a product of

nilpotents with index at most 3 if and only if g(a) ^ 1, d(a) = m and

(a) g(a)^r(a),or

(b) I201"1] ^ r(a) for some z € X, or
(c) g(a) ^ cf (TO) and a is spread over its rank.

Moreover, when one of (a) - (c) occurs, a can be written as a product of 3 or fewer

nilpotents, the first of which may have index 3 and the others have index 2.

PROOF: If A is a nilpotent and r(A) < m then d(X) = TO; and if r(A) = m > cf (TO)
then d(A) = TO by [9, Lemma 13]. Also, if A has index 2 then XX C _X"\domA implies
that (a) is true. Suppose instead that A has index 3 and neither (a) nor (b) hold.
Then r(A) = TO since \X\ ^ r(A) + r(A) by supposition. Hence, by [9, Lemma
13], A is spread over TO. Let kerA = {At} and J — {i E I: XX ("1 Ai / 0}. If
g(X) < cf (TO) then \J\ < cf (TO) since XX2 C X\domA and \J\ < \XX2\. In addition,
|XA n dom A| = TO : that is, |(J (XX D Aj) \ = TO where \J\ < cf (TO) . It follows that not
every XXd Aj can have cardinal less than TO (otherwise we invalidate a property of
cf (TO): see Theorem 2.1) and so some zA"1 has cardinal TO, contradicting our original
supposition. Therefore, g(X) ^ cf (TO) and part (c) holds. That is, nilpotents with
index 2 or 3 satisfy the specified conditions. Now suppose a is a product of such
nilpotents and write a = X/3 where A is one of them. If g(a) < r(ct) then g(X) < r(X),
so A must satisfy (b) or (c). Suppose some |zA-1| ^ r(X) ^ r(a). If z £ dom/3

https://doi.org/10.1017/S0004972700034092 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034092


462 R.P. Sullivan [10]

then r(a) ^ l ^ " 1 ! ^ 9(a) < r(a) is a contradiction. So, z G dom/? and then
[ (z /^a" 1 ! ^ r(a). On the other hand, if g(X) > cf (m) then r(a) > g(a) ^ cf (m) and
so, by [9, Theorem 4], a is spread over its rank.

By Theorem 2.3, the converse certainly holds whenever (a) holds. For the other
two possibilites, let Xa — {x{} and Ai — xia~1. If some \Ao\ ^ r(a), write J = I \ 0
and consider two sub-cases. If \A$ C\X\Xa\ = m, choose distinct yj, Zj, c G AQ\Xa

as well as b £ dom a and note that

Vj

\JZj c\

where the first transformation on the right is nilpotent with index 3 and the other
two are nilpotent with index 2. On the other hand, if \Ao C\ X \ Xa\ < m then
\(X \ AQ) D (X \Xa)\ = m, so we can choose Zj and c, each different from 6, in-
side (X \ Ao) n (X \ Xa). Then, if yj 6 Ao, the above decomposition of a will have
the same features as before.

Now suppose (c) holds. Since m is singular, it is the sum of cf (m) cardinals
kp < m and, for each p, some Ap has cardinal greater than kp. That is, ILMpI = m

and we again consider two sub-cases. Put Q — I \ P. If K U - ^ P ) n (X \ Xa)\ = m,

choose distinct yg, zq, zp € (\JAP) D (X \Xa) as well as yp £ dom a . Then

Ap

yq

\Jyq yP\fzq zp\
) \ z i zv) \ x i XPJ

where the first trasnformation on the right is nilpotent with index 3 and the other two
are nilpotent with index 2. If instead \([JAP) (~)(X\Xa)\ < m then KlJ-Ap) n X a | =
m. So, we can choose yq G ((J Ap) (1 Xa and zq, zp € (X \ Xa) \ {yp} to ensure that
the above decomposition of a remains valid. D

To show the product 3 is best possible in the above result, we consider the trans-
formation a defined in (1). By Theorem 3.3 (b), a certainly belongs O(X), the sub-

semigroup of £(X) generated by all nilpotents with index at most 3 . Suppose a = Xfx

where A, \x are nilpotents with index at most 3. If A has index 2 then r(A) ^ <j(A) and
so m = r(a) ^ g(a) = 1, a contradiction. Hence, A has index 3, X \ d o m A = {x}, and
A acts on {a^} in a one-to-one fashion. Let a<A = c*, {bi}\ = {e,} and CjA"1 = Aj.

Then x £ {CJ} since {cj}fi — x and xp ^ x (/x is nilpotent). Hence, AjX2 ^ 0 but
(A,A2)A = 0: that is, x — c\ for some index 1 G I and Cj = a,\ for each j £ J.

Consequently, \J\ = 1 and ck ^ x for all A; G K = / \ 1. If cfc G {ak} U {h} then
ak\

3 = CfcA2 G ({cfc} U ai)X / 0 is a contradiction. Thus, ck = a\ for all k and this
contradiction finally proves that a cannot be written as a product of just two nilpotents
with index at most 3.
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Before leaving this section, we show that there are a € £(X) which do not satisfy
the conditions of Theorem 3.3. For this, choose Y = {xq} C X with |Q| = cf (m) as
well as some z e X\Y. Then we can write X\(YUz) = BUC where \B\ = \C\ =m.

Since m is singular, there is a a partition {Aq} of C where each \Aq\ < m. Finally,
let {Ap} be a partition for B, choose xp € C and put

(2)
a M P Aq YX

V Xp Xq Z )

Clearly this is a nilpotent with index 4 that does not satisfy the conditions of Theorem
3.3; so, the index 4 in Theorem 3.1 is best possible.

4. NILPOTENTS AS PRODUCTS OF IDEMPOTENTS

We now turn to the question of whether C(X) is idempotent-generated. In [8,
Section 4], the authors characterised when a € V(X) is a product of idempotents in
V(X) by extending the notion of collapse and shift as follows.

C*(a) = C{a) UX\doma c*(a) = \C*(a)|

S*(a) = S(a)UX\doma s*{a) = \S*{a)\

If m is regular and a S C{X) then d(a) — m and either g{a) — m or some za~x

has cardinal m: that is, c*(a) = m and it follows that s*(a) — m. Hence, by [8,
Theorem 8], every element of C(X) is a product of idempotents in V(X): the problem
is whether these idempotents can be chosen from C(X) itself. Note, for example, that
if X = { a j U {bi} and

then 6 is an idempotent which lies outside C(X). As a first step in answering this
problem, we now determine when nilpotents in C(X) with index 2 can be written as a
product of idempotents in C(X).

At the end of [7, Section 2], the authors noted that Km(Y) forms a semigroup for
any infinite cardinal m = jVj. And, with this generality in [7, Proposition 3.4], they
characterised when a nilpotent with index 2 in Km(Y) is a product of two idempotents
in Km{Y). With this in mind, let u> be the composition of the isomorphism 0: C(X) -»
L$ and the natural map L^ —> L^ \ 1$ = Km(<i>) denned in Section 2. If a2 = 0 in
C(X) and a = e\£2 for some idempotents e\, £2 in C(X) then aw is a product of two
idempotents in K"m(X^). In addition, if r(a) — m then aw is a nilpotent with index 2
in Km(^X^). Consequently, by [7, Proposition 3.4], |C(aw) \ X{au))\ — m. But, since
g(a) ^ 1, we always have C(au>) = C*(a) U <j> and clearly X(aw) = Xa U <j>. Hence,
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\C*(a) \Xa\ — m when r(a) — m. On the other hand, if r(a) < m then d(a) = m
and so s*(a) = m. Therefore, by [8, Theorem 8], c*(a) = m since a is a product of
idempotents in V{X), and so \C*(a) \Xa\ = m since r(a) < m. That is, we have
proved half the following result.

THEOREM 4 . 1 . Suppose m is an arbitrary infinite cardinal and a £ V(X) is
nilpotent with index 2. Then a is a product of two idempotents in fC(X) if and only
if\C*(a)\Xa\ = m.

PROOF: It remains to assume the condition holds and deduce that a is a product
ot two idempotents. To do this, write

a=(Bt uq\
\£t Vq /

where each Bt contains at least two elements and {xt} U {vq} C X \ doma. Choose
bt £ Bt and put

= (Bt uq\
\bt uqj

Xt Vq

Then kerex = kera. Also, d{e{) = m — g{£2) if \T\ = m since then \J(Bt\bt) has
cardinal m and is contained in X \ Xe\ as well as X \ dome2. On the other hand, if
\T\ < m then (C*(a) \ Xa) \ {bt} has cardinal m and is contained in the same two
sets. Also, d(e2) = d(a) = m. That is, £i, £2 € K.(X) and clearly, a = £162- D

Note that if X = {en} U {bi} and a is the transformation with doma = {ai} such
that Oja = bi then a is a nilpotent with index 2 which does not satisfy the condition
of Theorem 4.1. Despite this, a is a product of idempotents in K.{X). For, suppose
a is any nilpotent with index 2 and rank m, and write Xa = {xt} and Ai = a^a"1.
Choose ai £ Ai, and write {a*} = {bi} U {CJ} U y and X \ doma = {di} U {ej} U z
(possible since Xa C X \ doma). Then

(Ai a\ (di eA
a = I I o I Jo

\ di z) \bi z) \Xi y

where each transformation on the right is a nilpotent with index 2 that satisfies the
condition of Theorem 4.1. This leads us to the following result.

THEOREM 4 . 2 . If m is an arbitrary infinite cardinal then K.(X) is idempotent-
generated.

PROOF: Suppose a is nilpotent with index 2. If r(a) < m then |(doma) \ C(a)| <
m, so c*(a) = m since X = (doma)\C(a)UC*(a). Hence, |C*(a) \ X a | = m. There-
fore, by Theorem 4.1, a is a product of idempotents in K.(X) and, by the above remark,
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the same conclusion holds if r(a) = m. Hence, every element of K.(X) is a product of
idempotents in K,(X). Q

We now proceed to show that C(X) is also idempotent-generated. To do this, we
recall that the proof of Theorem 2.2 (see [9, Theorem 3] shows that when m is regular
any a G C(X) can be written as a product of nilpotents, one of which may have index
3 and take the form:

A - ( * Y)
\a x)

where {CJ} C Y and x £ dom A. Since the other nilpotents in the product have index 2,
by Theorem 4.2 it will suffice to prove that the above A is a product of idempotents in
C(X). So, choose a* G At and fix an index 0 G / . If r(A) < m then \C*(X) \ XX\ = m,
so we can choose di G (C*(A) \ XX) \ ({ai} U {co, x}) since this set has cardinal m.
Now, observe that

A =
o,*}\ Q ({di,*} x\
x ) V Ci x)

where the first transformation on the right has non-zero gap and same kernel as A,
so it belongs to C(X). In addition, the other two transformations on the right have
gap equal to m, so they belong to K.(X). On the other hand, if r(A) = m, we write

— {CJ} U {cfc} where \J\ — \K\ = m and note that

\=(Ai Y\o(ai ^ x ) \ o ({ahcj) °fc x \ o (CJ {<*k,ck} x \
\ai Co) \a{ x ) \ Cj ak x) \Cj ck x)

where, as before, each transformation on the right is idempotent and belongs to £(X).
Note in particular that the above decompositions of A as a product of idempotents are
valid for any infinite m. That is, we have proved part of the following result.

THEOREM 4 . 3 . If m is an arbitrary infinite cardinal then C{X) is idempotent-
generated.

PROOF: It remains to consider the case when m is singular. In this situation, the
proof of Theorem 3.1 (see [9, Theorem 4]) shows that any a € C(X) can be written as
a product of nilpotents, one of which may have index 4 and take the form of (2). But,
with the same notation as in (2), we can choose ap G Ap, aq G Aq, y €Y and put

,Ar A, Y\

\ap aq y)

/aP a, y\
\XP Xq Zj
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Then kerei = kera, and d(ei) — m = g(e2) since (\JAq) \ {aq} has cardinal m. In
addition, d(e2) — d(a) = m b y Lemma 3.2. That is, ex is an idempotent in C(X) and,
since e2 € K,{X) by Theorem 2.3, it is a product of idempotents in K{X) by Theorem
4.2. Since the other nilpotents in the decomposition of a have index at most 3, the
result follows from Theorem 4.2 and the above remark. D

5. FURTHER OBSERVATIONS

A slight modification to the proof of Lemma 2.5 shows that K{X) is regular. For,
with the same notation as used there, if a € ^(-^0 then g{f3) = d(a) = m by [9,
Corollary 3 or Theorem 4]. In addition, d({3) = m by the argument in [9, p.341] when
m is regular, and by that in the proof of Lemma 2.5 when m is singular. Hence, by [9,
Corollary 4], (3 belongs to K(X). The same argument shows that O(X) is also regular.

THEOREM 5 . 1 . If X is infinite then £{X) C O(X) C C(X) are regular sub-

semigroups ofV(X), with the second containment being equality when \X\ is regular.

As a matter of interest,' we remark that there are transformations with rank less
than m at each level in the hierarchy K,(X) C O{X) C C{X). For, if m is singular,
there is a partition {Ai} U {y} of X with |U^«I = TO D u t each \Ai\ < m and | / | =
cf (m). Then, any transformation having {Ai} as its kernel must be spread over its
rank cf (m) and have defect m, in which case it lies in C(X) \ O(X). And, when m is
regular, it is even easier to find transformations belonging to O(X) \ K.(X). In other
words, we cannot write IC(X) or O(X) as the disjoint union of / ^ (see Theorem 2.2)
and another subsemigroup of C{X).

In the previous three sections, we have often used the characterisation of when an
element a of 1{X), the symmetric in inverse semigroup on X, is a product of nilpotents
in T{X) provided in [9, Corollary 4]: namely, it occurs if and only if d(a) = g(a) = m

where \X\ = m is an arbitrary infinite cardinal. And, under these conditions, a is a
product of 3 or fewer nilpotents in I{X) with index 2. An argument identical to that
in Theorem 2.7 establishes our next result: it shows that the 3 just mentioned is best
possible.

THEOREM 5 . 2 . Suppose m is an arbitrary infinite cardinal and a € I(X) is

non-zero. Then a is a product of 2 nilpotents in I(X) with index 2 if and only if

| ( X \ r a n a ) n ( X \ d o m Q ; ) | ^r(a).
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