to each of them along with the point $\mathbf{P}$ will correspond a Wallace line of the 3 rd order,

$$
d_{1231}, d_{233}, \quad d_{311}, d_{412} .
$$

If from the fundamental point $P$ perpendiculars be drawn to these four Wallace lines of the 3rd order, the four points thus obtained are situated on a straight line. This straight line will be a Wallace line of the 4 th order, and will be denoted by $d_{1234}$.

Similarly if five points $1,2,3,4,5$ be taken on a circle 0, the projections of the fundamental point $P$ on the five Wallace lines of the 4 th order will be situated on a straight line. This straight line will be a Wallace line of the 5 th order, and will be denoted by $d_{12945}$.

Hence the following general theorem :
If a points be taken on a circle, and one of them be removed, ( $n$ - 1) points are obtained to. which correspomi a Wiallave line of the $(n-1)^{n}$ corler. Thus there are $n$ Watlace lines of the $(n-1)^{n}$ order. The projections of the fundimental point $P$ on these $n$ lines are situated on one straight line, called a Wallace line of the $\boldsymbol{n}^{\text {th }}$ order, and denoted by $d_{12 \ldots n}$.

## Note on an Equation of Motion.

By A. J. Pressland, M.A.

It can be shown by means of relative motion that if two bodies A and B move with velocities $u$ and $v$ in the same straight line, and a third body C move with velocity $u+v$ also in the same straight line, the space passed over by C is equal to the sum of the spaces passed over by A and by B in the same time.

Let A move with an initial velocity $u$ and an acceleration $f$ for an interval $t$.

Its velocity at the end of the interval will be $u+f l$ which call $v$.
Then

$$
u+f t=v \text { or } u=v-f t .
$$

Now let B move with velocity $v$ and acceleration -f. Its velocity at the end of the interval $t$ will be $v-f t$, that is $u$.

Hence the motion of B is the exact counterpart, or reverse, of that of A. Therefore each passes over the same space 8 .

Hence C passes over a space $2 s$.

But $\mathbf{C}$ moves with uniform velocity $u+v$, for the increase of velocity in $\mathbf{A}$ is neutralised by a corresponding decrease in $\mathbf{B}$.

Therefore C passes over a space $(u+v) t$.
Hence
or

$$
\begin{aligned}
2 s & =(u+v) t \\
& =(2 u+f t) t \\
s & =u t+\frac{1}{2} f t^{2} .
\end{aligned}
$$

Therefore a body moving with initial velocity $u$ and an acceleration $f$ passes over in time $t$ a space denoted by $u t+\frac{1}{2} f t^{2}$.

