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VERTICES OF IDEALS OF A p-ADIC NUMBER FIELD II
YOSHIMASA MIYATA

Let k be a p-adic number field with the ring o of all integers in &,
and K be a finite normal extension with Galois group G. II denotes a
prime element of the ring £ of all integers in K. Then, an ideal (I1%) of
€ is an 0G-module. E. Noether [5] showed that if K/k is tamely ramified,
£ is a free 0G-module. A. Frohlich [2] generalized E. Noether’s theorem
as follows: £ is relatively projective with respect to a subgroup S of G
if and only if S22 G,, where G, is the first ramification group of K/k. Now
we define the vertex V(II%) of (II*) as the minimal normal subgroup S of
G such that (/1¢) is relatively projective with respect to a subgroup S of
G (cf. [7] §1). Then, the above generalization by A. Frohlich implies
V(Q) = G,. In the previous paper [7], we proved G,> V(II*) D G,, where
G, is the second ramification group of K/k (cf. [7] Theorem 5). Further,
we dealt with the case where G = G, is of order p* and proved that if
V(I%) x G,, then ¢ = 1(p®) and ¢, = 1(p®) for the second ramification num-
ber ¢, of K/k (cf. [7] Theorems 15 and 21). The purpose of this paper is
to prove the similar theorem for the wildly ramified p-extension of degree
p" (Theorem 7).

Throughout this paper, we assume that p is an odd prime and the
p-extension K/k is wildly ramified. In the first section §1, we shall
prove that (I7*) is an indecomposable 0G-module under the assumption
relating to the ramification numbers of subextension of K/k (Theorem 2),
which is a generalization of S.V. Vostokov’s theorem concerning to the
indecomposablity of ideals (I7¢) of abelian p-extensions ([10] Theorem 5).
In the second section § 2, we shall deal with the case where G, is of order
p, and we shall prove that if e %1 (|G,)), then V(I*) = G,, where |G|
denotes the order of G, (Theorem 6). In the last section § 3, we shall prove
that if V(II®) % G, and ¢, = 1, then a =1 (|G,)) and ¢, =1 (G,/G,,,)) for
1<i<r where t,t, - -,t are ramification numbers of K/k and G, is
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the ¢;-th ramification group of K/k (Theorem 7).

§1.

Let K/k be a wildly ramified p-extension of degree p*, and ¢, ¢, ---, ¢,
be ramification numbers of K/k with ¢ <¢ < ... <¢. In this section,
we shall prove that (/7%) is 0G-indecomposable. First we observe that if
a=a (p), then (/%) is 0oG-isomorphic to (/7*). Therefore, without loss
of generality, we assume

0 a <pr.
We define a function m(f) by

m(t) =t — [¢/p],

where [x] denotes an integer such that [x] < x <[x] + 1. Denote by e,
the absolute ramification index of K. For 1 <i < r, let G, be the t,-th
ramification group of K/k and K, be the subfield corresponding to G,.
Clearly,

k=K CcK,cCc.-.-CK,CK.

We state now S.V. Vostokov’s results which are used in the following.
First, from [9] Proposition 1, we have

ProposiTioN 1. Let K|k and t, be as in the above. Let e, be the
absolute ramification index of K, Then, m(t,) = ex/p if and only if K[k
is cyclic and m(t,)) = e, for 1 <i<r.

From [10] Theorem 5, we have

TueorReEM 1. Let K|k be an abelian p-extension. Then, if m(t,) < ex/p,
(I1%) is 0G-indecomposable.

Then, from Proposition 1 and Theorem 1, we can prove

CororrarY 1. If K[k is a non-cyclic abelian p-extension, then (II%) is
0G-indecomposable.

In this section, we assume
(1) m(t,) < ex/p .

Further, we need some lemmas. Let ¢ be an element of G, with ¢ 3¢ 1.
Then, it is well known that ¢? = 1 and ¢ belongs to the center of G (for
example, see [8] p.77). Denote by Z and K, the subgroup generated by
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o and the subfield corresponding to Z, respectively. Clearly, the ramifica-
tion number ¢ of K/K, is t,. Let f =t — p[¢/p] and so % 0 since (¢, p)
=1by (1). For 0<i <p"'and 0 <j<p, we define integers a(i, j) and
b(i, j) as follows:

a(i,j) = [(pi +jt + & —a)p"] and b(,j) =pi+jt+t — a, jp".
Obviously, ¢ < b(,j) < e + p* and
(2) a(l,O)_—é_—a(l3]-)—_<—_§a(lyp_1)'

LeEmMA 1. Suppose m(t) < ex[p. Then, b(i’,j’) = b(i, j)(p") if and only
ifi! =i and j =].

Proof. Suppose b(i’,j) = b(, j)(p™). Then, b@,j) = b(,j)p) and so
Jj' =] because (t,p) =1 as remarked above. Thus i’ =i. The proof of
the converse is obvious.

Next, we define submodules L, of (I/%) for 0 < i <p™'. For 0<i <
p" ' and 0 < j <p, elements A, ; of K are defined by

A, = I/,

where x =¢ — 1, and I/, and = are prime elements of K, and k, respec-
tively. Let L, be

L,=0A, +0A, + - +04,,.,.

We shall prove that L, is an 0G-module.

LEMMA 2. Let val; denote the valuation of K. Then,

val, (A,,) = b(,Jj).
Proof. From (j,p) =1 for 1 < j <p, it follows
val, (X/(IT%)) = jt + t.

Thus, valx (A,,) = pi + jt + f — p a(i,j) and hence valy (A4, ;) = b(,J).

By Lemma 1 and Lemma 2, we have

(1) =L®L® - ®Lyu-r_, -
Clearly, for 0 <j<p —1,

(3) (A, = gt @ITDTCRDA L
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Since (x + 1)? =0? =1, x? = —> ?21(?)x’. Then, we have
(4) HAyy) = — Tp Qe g,
LemMmAa 3. For 0 <i<p"!, L, is an 0Z-module.

Proof. By (2), n*®i*h-e®h e, Then, by (3), (A, ,)eL, for 0 <j <
p — 1. Define integers b, by

by=pi+(p—Dt+f—a—pa@p—1).

By the definition of a(i,p — 1), we have 0< b, <p*. Since pm(f) =
(p—Dt+t<ex by (1),

pi+ex —a=pra(i,p — 1) + b,.
Then,
ex —pa(l,p —1) = b, +a —pi > —p".

Therefore, we obtain ex — p*a(i,p —1) = 0. By (4), x(4,,.,) €L, which
completes the proof of Lemma 3.

Now, let 6 be a primitive p-th root of 1 and &, = k(f). For 0<j <
p, E denotes a central idempotent (3 22} 67“6*)/p of k,Z. According to the
arguments used in [6], we can prove

LEmmA 4. Let E be a central idempotent of kZ and « be an element
of O such that valg («) = t(p). Then,

valy (pEa) < valx (20 0%)a) .

LEmMMA 5. Let e be the absolute ramification index of k and suppose that
m(t) <p"‘e —p" '+ 1. Then, for 0 < i <p", L, is 0Z-indecomposable.

Proof. By the definition of A,, we have
valy (A,,) = Kp) .
Let E be an idempotent of kZ. Then, from Lemma 4, it follows
valy (pEA,,) < valy (3" 0%)A,) =pi + (p — Dt +  — pa(i, 0).
Since (p — 1)t + & = pm(t) < p"e — p" + p by the assumption, we have
(8) pi+(p—Dt+1t—pai0) <p'e—p"+p+ pi—pa,0).

We distinguish two cases: (1) pi + t = a, (i) pi + { < a. In case (i), pi +
t=>a, we have a(i,0) =0 because 0 < a < p". Therefore, by (5),
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val,(EA,;,) <0 and so
val, (EA,) < a,

which implies that L, is oZ-indecomposable. In case (ii) pi + < a, we
have a(i,0) = —1 because 0 < a < p". From (5), it follows

pi + pmft) —pe <pi +p.
Since p divides (pi + pm(t) — p~e),

pi + pm(t) — p"e < pi.
As pi + t < a, we have
val, (EA, ) < a.

This also implies that L, is 0Z-indecomposable, and the proof is completed.

We finally request the next proposition.

ProrositioN 2. Let K|k be a wildly ramified p-extension of degree p®,
and let Z, L, (0 < i <p"') be as above. Suppose that (II°) N K, is an
indecomposable 0[G/Z]-module and vZ-modules L, are indecomposable. Then,
(I1*) is an indecomposable oG-module.

Proof. Let f be an 0G-endomorphism of (/7%) such that f* = f. Then,
f is a kG-endomorphism of K. Let E; = (3 6“¢“)/p as before. Since Z
is contained in the center of G, E, is a kG-endomorphism of K. Let
fo = E\f and so f, is an kG-endomorphism of K. Clearly, for a« € K, f(«)
= f(a) and f(a)ec K,. Therefore, by the assumption that (I*) N K, is
indecomposable, we have f, = E,. Since f((II%) is an oZ-module, f(({I%)
can be expressed as a direct sum of indecomposable 0Z-modules M, for
1 u<Lu:

Since L, is vZ-indecomposable by the assumption, it follows from Krull-
Schmidt Theorem that for some i(z) with 0 < i(x) < p*~!, M, is isomorphic
to L,,,. We note that kL, = kZ and hence kM, = kZ. Thus

KF(1%) = kZD --- D RZ.

Since f, = E, as verified above, kf(ZI*))2 K, and so v =p"~'. This im-
plies f = 1 and hence (/7%) is 0G-indecomposable.
We are ready to prove the following theorem, which is one of the
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main results of this paper.

TueoreM 2. Let K/k be a wildly ramified p-extension of degree p”.
Let L|F be a subextension of degree p in the extension K|k, and t be the
ramification number of L|F. Suppose m(t) < e, — ([F: k] — 1) for each ex-
tension L|F, where [F:Ek] denotes the degree of F/k. Then, (II®) is oG-
indecomposable for each a = 0.

Proof. We use induction on n. For n =1, the result follows from
Theorem 1. Let Z be as above. Then, by the induction hypothesis, we
have (I1*) N K, is o[G/Z]-indecomposable. By Lemma 5, L, is 0Z-indecom-
posable for 0 < i < p"'. Hence, the result follows from Proposition 2,
and the proof of Theorem 2 is completed.

§2.

Let K/k be a wildly ramified p-extension of degree p* as before. In
the rest of this paper, we deal with investigating the vertex V(II*) of
(I1%). Let us begin with recalling the results of the previous paper [7].

THEOREM 3 ([7] Theorem 5). Let K|k be a wildly ramified extension.
Let G, and G, be the first and second ramification groups of K|k, respec-
tively. Then, G,2 V(II*) 2 G,.

THEOREM 4 ([7] Theorem 6). Let K|k, G, and G, be as in Theorem 3.
Suppose G, = {1}.

(1) If a=1(G,)), then V(II*) = G,.

1) If a =1 (G,), then V(II*) = {1}.

By the definition of the vertex of the ideal and [7] Lemma 7, we can
prove

Lemma 6. Let K/k be as above and V be the vertex of (II°). Let L/F
be a subextension of K|k such that K, S F<LZ K. Then,

(1) VIYyNL)ycV.

(i) Vltrg,((II*) N L)) S V, where tr,,, is the trace map from L to F.

Proof. (i) By the definition of the vertex of (II%), there exists an
oV-endomorphism f of (/I*) such that 1= 3, gfg™!, where the sum is
taken over a set of coset representatives of left cosets of V in G. Since
the Galois group S of K/L is contained in V, we have f((/I*) N L) < (II%)
N L, which implies that (I7%) N L is relatively projective with respect to
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VIS of G/S. Thus V(({I*) N L)Z V and the proof of (i) is completed.

(i) It is sufficient to prove that V(tr,,(([I*) N L))< V(({II*) N L).
Therefore, we may assume L = K. Let T be a subgroup of G correspond-
ing to F and tr; = 2 ,cr & By the definition of the vertex of (//%), there
exist an 0G-module M and an oV-module N such that

(IIY®M =oG®, N.
Thus,
tri e (119) @ tr, M = 0G @, try N.

Since try N is an o[V/T]-module, try,,((I1%) is relatively projective with
respect to V/T. The proof is completed.

Now, from Theorem 3, we can conclude that if G, = G,, then V(/[%)
= G,. Therefore, throughout the rest of this paper, we may assume
G, == G,. In this section, we treat the case where G, is of order p. Denote
by p™ the order of the factor group G,/G,. In [7], we treated the case
where m = 1 and proved the following theorem.

TuEOREM 5 ([7] Theorems 15 and 21). Let K/k be a wildly ramified
p-extension of degree p’. Assume G, % G,. Then, V(II*) % G, if and only
ifa=1(pY) and t, =1 (pY).

In this section, we treat the case where m = 2 and prove the next

theorem.

THEOREM 6. Let K/k be o wildly ramified p-extension of degree p*.
Suppose that G, % G, and G, is of order p. Then, if a = 1 (p*), VUI°) = G.

At first, we remark that £, = 1 (p) because f, = 1 by the assumption
G, = G,. Then, from [8] p. 91 Lemma 4, we have

Lemma 7. Let K/L be o wildly ramified extension of degree p with
the remification number t. Suppose t =1 (p). Then, (i) and (i1) hold.

(i) For p = a =2, try, (1I%) = (=), where b = (p — DIt/p] + 2.

(ii) For a = 1, trg,((I])) = (z°), where b = (p — D[t/p] + 1.

As in Section 1, we note that if ¢ = o’ (p"), then (/%) is 0G-isomor-
phic to (II%) and V(I1%) = V(II*). Therefore, there is no loss of generality
in assuming 2 < a <p". Let K, be a subfield corresponding to G, and
denote by I, the prime element of K,. Let (II¢) = (II*) N K,, and so p™
>a,=1bypr>a=2
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PropositioN 3. Let K[k be a wildly ramified extension of degree p™*'
and suppose that G, % G, and G, is of order p. Let a, be as in the above.
Then, if p™ > a, > 1, V(II*) = G..

Proof. By Theorem 4 and the assumption p™ > a, > 1, we have
V(lI¢) = G,. From Lemma 6, it follows that V(II#) C V(I1%), which im-
plies V(I1°) = G,.

We note that @, > 1 if and only if @ > p. Therefore, from Proposition
3, we may assume

(6) p=az2.

Let t = t, for brevity. Define an integer a, by

(1) = try,x ((I1%) .
Then, by Lemma 7 and (6), we have

(7) a, = (p — Dltpl + 2.

LemMA 8. Let K/k be as above and assume m = 2. Then, if V(%)
*G, t=p°+p+1(p)

Proof. By Lemma 6, V(I®) C V(%) and so V(II#) & G,. Then, by
Theorem 4, a, = 1 (p™) and hence by (7), (p — D[t/p] = p™ — 1 (p™). There-
fore, [tpl=p '+ p* 2+ --- +1(p™). Since t=1(p), =1 and so
t=p"+p" 4+ ... +1(p™"). From the assumption m = 2, it follows
t=p'+p+ 1)

Let p° be the order of the maximal abelian normal subgroup of G,.
Then, we have

PropositioN 4. Let K[k be as above. Then, if either m = 3, or G,
is abelian, V(II") = G, for p =z a > 1.

Proof. By [4] p. 302 Theorem 7.3, we have

clce+1)=2m+1).

In case m = 3, we have ¢ == 3. Therefore, there exists an abelian normal
subgroup N of G such that N2 G, and |N/G,| = p’. Hence, from [3]
p. 171 (V), it follows £t =1 ((N/G,)) and so t = 1(p?). Thus, by Lemma 8§,
V(II%) = G, in this case. Next, we treat the remained case where m < 2
and G, is abelian. In case m = 2, applying the same arguments as in
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the above, we have V(/I*) = G,. In case m = 1, Theorem 5 yields the
desired result.

By Proposition 4, we may assume that G, is a non-abelian group of
order p°. Moreover, by Lemma 8, ¢t can be written in the form:

(8) t=pt+p +p+1.

Now, we start to prove lemmas which are used in proving Theorem 6.
LEmMA 9. Let K/k be as stated in the above. Then, m(t) < p’e — p* + 1.
Proof. By (8), m(t) = p*((p — D' + 1). From Proposition 1, it follows

m(t) < pe.

Then, (p — D¢ +1<e —1 and so m(t) < pe — p* < pe —p* + 1.
For 0 < i <p% i can be written in the form:

i = llp + i05
where 0 < i), i, < p.

LEmma 10. Let K/k be as above and t = p°t + p* + p + 1.
1) IfoLi<(p—229p+p—1, then a(i,1) = ¢.
G) Ifi>(p—2p+p —1, then a(i, 1) =t + 1.

Proof. By the definition of a(i, 1),

a@, 1) =[(pY +p*+p+ 1+ 1+ pi — a)p’]
=t + (PG, + 1D +pG+1D+2—a)p].

Since a < p by (6), we have that in the case (ii),
a(i, 1) =t + 1.
In case (i), we have
P+ +p+D+2—-a<pp-—D+pp—-D+2—-0a<p’,
and so a(i, 1) = t.

For 0 < i <p* let L, be the 0Z-module as in Section 1 and let A,
be the matrix representation afforded by the 0Z-module L, Then, by (3)
and (4), we have that for x = ¢ — 1,
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0 0.--0

X, 0---0y,
A =" Yo

’
0.-.-0 Xip-1Yi,p-1
where X, = peD=-aeli-1 gnd Vi, = _(?)ﬂa(id)—a(i,p—l) for 1 é] <p.

Lemma 11. For 0 <i<(p —2p + (p — 1), L, is not isomorphic to
L,.

Proof. Since A, ; = IIix'(II)z*®>? and a < p by (6), we have that §
for i >0, a(i,0) = 0. By Lemma 10 and the definitions of x, ;, x,, = =*.

Since a(0,0) = —1, x,, = z’*". Suppose that for some i, L, is isomorphic
to L,. Then, there exists an invertible matrix A = (a,,) in GL(p, 0) such
that

(9) AA(x) = A(0A.

Then, a;,%,, =0, -+, a,%,,; =0. Therefore, a,=--- =a,, =0. Also,

from the (2, 1) entry of (9),
(10) QoyXy,y = X;31Qyy + Vi10ps -
By the definitions of y,, and a(i,p — 1),
valy (,,) = p'e + p'a(i, 1) — pai,p — 1)
=ple+p'a(i,1) —pi —(p — Dt — L+ blE,p — 1)
= p'e — pm(?) + p'a(i, 1) + b(i,p — 1) — pi.
By Lemma 9 and Lemma 10,
valg (y;,) > p'a(i, 1) + b, p — 1) + p* — p — pi > pt’.

Therefore, by (10), z'’a,; = 0 (z'*') and so a,; € (z). This implies A ¢ GL(p, ),
which is a contradiction. The proof of Lemma 11 is completed.

LemmA 12. Assume i = (p — Dp. Then x,, =", x,, = -+ =«
=7 and y,,;, = .—(?)ﬂ:(j—pﬂ) for 1< <p.

Typ—-1

Proof. By definitions of a(i, j), we have that for i = (p — 1)p + i, and
p>jzl
a@, j) = [(j(p'Y +p*+p+ 1+ 1+ p(p — 1)+ pi, — a)/p']
=jt' + 1+ [((j — Dp* + jp + pi, + 1 — a)[p’]
=jt +1.
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By a<p, a(i,0) =0. By definitions of x,; and y,;, we can conclude
Lemma 12.

Similarly as in Lemma 12, we have

LemMa 13. x, =7"" X =+ =%,,=7" and y,, = -—(1})717“'””’
for 1 <j<p.

LEMMA 14. Let s be the number of oGy,modules L, such that L, is
isomorphic to L, for 0 < i <p'. Then, s is relatively prime to p.

Proof. By Lemma 12 and Lemma 13, L, is isomorphic to L, for
pp — 1) £i<p’ By Lemma 11, L, is not isomorphic to L, for 0 <i <
p(p —1) — 1. Then, s=p -+ 1 or p+ 2 and hence (s, p) = 1.

We can easily prove the following lemma.

LemMa 15. Let k'[k be a non-ramified extension of k with the ring o’
of all integers in k. Let ' be the ring of all integers in the composite
field K’K. Then, O'II* =o' ®,(II%) and V(O'IT*) = V(II%).

An 0’G-module o’ ®, (I7%) is expressed as a direct sum of indecompos-
able o’ V-modules M,:

VRUIY=MOSMD- - --®DM,,

where V = V(II“). Applying [1] p. 636 (30.31), we can choose o’ such that
M, is absolutely indecomposable for each w.

LEmma 16. Let o’ and &' be as above. Then, there exists an o' V-
module M such that 'I1* is o'G-isomorphic to the o/G-module oG ®, M.

Proof. By [1] p. 467 (19.24), o'G @, M, is also an absolutely indecom-
posable o’G-module. From Corollary 1 of Theorem 1, Lemma 5, Lemma 9
and Proposition 2, it follows that o' ®,(//*) is an indecomposable o’G-
module. Therefore, by the definition of V({7%), v’ ®, (1) is a direct sum-
mand of the o’G-module o'G ®, M, for some u. Since /G &, M, is inde-
composable, o/ ®, ([I*) = o’G ®, M,, which completes the proof of Lemma
16.

We are ready to prove Theorem 6, which is the aim of this section.

Proof of Theorem 6. By the above discussion, we may assume that
p=a =2 and G, is a non-abelian group of order p®. Suppose V(II%) = G..
Let M be the o/V-module as in Lemma 16. Then, M is expressed as a

https://doi.org/10.1017/50027763000002531 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002531

60 YOSHIMASA MIYATA

direct sum of indecomposable o'G,-modules M, :
M=alM1® @avaa

where @, is an integer and for u’ = u, M,. is not o’G,-isomorphic to M,.
Then, we have the decomposition of the o’G,-module o’ ® (I19):

o QUIY) =\|G/V|a,M,® --- @|G,/VIa,M, .

Using Krull-Schmidt Theorem, we have L, is isomorphic to M, for some
u. Let s be the number as in Lemma 14. Then, s =|G,/V]a,. By Lemma
14, (p, |G,/ V) = 1, which implies G, = V. This is a contradiction, and the
proof of Theorem 6 is completed.

§3.

Let K/k be a wildly ramified p-extension. In this section, we shall
prove that if a = 1 (p”), then V(II¢) = G,. Let t,t, - - -, t, be ramification
numbers of K/k and G, be the t,-th ramification group of K/k for 1 <
< r. As in Section 2, we may assume ¢, = 1. Let H be a normal sub-
group of G such that G, S HZ G, and |G,/H| = p, and let II, be a prime
element of K,. Then, the ramification number ¢ of K,/K; is .

LemMA 17. Let H be as above and let (II¥) = (II*) N\ Ky. Then, if
VUII*) % G,a,=1 (G/H)and t, =1 ((G/H)).

Proof. By Lemma 6 and the assumption V(/7%) = G,, we have V(II§)
2 Gy/H. Then, by Theorem 6, a;, =1 (G/H|). Also, V(trg, . ({I%?))) =
G,/G, by Lemma 6. Let p™ = |G,/G,| as in Section 2. From Lemma 7, it
follows that trg,,((I1%%) = (IIT**), where II, is a prime element of K,
and o’ = p™[(a; — 1)/p™*']. By Theorem 4, m(t) =1 (p™) and so [¢/p] =0
(p™), which completes the proof of Lemma 17.

ProrosiTioN 5. Let K|k be a wildly ramified extension of degfree p®
Suppose that there exist three ramification numbers t,, t, and t, with ¢, =1
and G,/G, is not cyclic. Then, if a =1 (p%), VUI*) = G,.

Proof. Similarly as in Section 2, we may assume p =a = 2. By
Lemma 7, we have trg, (II%) = (II$), where a, = (p — D[t,/p] + 2. Sup-
pose V(II*) % G,. Then, by Lemma 6, V(II¥) = G,/G; and so by Theorem
5 a, =1 (p?). Thust =p*+ p + 1(p°. Applying the similar arguments
as in Section 2, we can conclude Proposition 5.
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Lemma 18. K[k be a wildly ramified extension which is not the exten-
sion stated in Proposition 5. Then, if V(III*) <G, t,=--- =t =1 (p).

Proof. We use induction on r. For r =2, the result follows from
Lemma 17 and Theorem 5. Without loss of generality, we can assume
|G,| = p. First, we treat the case where |G,/G,| = p®’. As in Section 2,
let p° be the order of the maximal abelian normal subgroup N of G,.
Clearly, N2 G,. As in the proof of Proposition 4, we have

cc+1)=2-4

and so ¢ = 3. Then, from the induction hypothesis #{, = -.- =t¢t_, =1
(pY), it follows that ¢ =1 (p® for a ramification number ¢ of K/K, with
t %xt. By [3] p.171 (V), we have also that ¢t =1¢ (p*) and hence t=1
(p»). Next, we treat the remained case where |G,/G,| = p’. Since r = 3
and |G,| =p® by |G,| = p, we have r = 3. From the assumption that K/k
is not the extension stated in Proposition 5, it follows G,/G, is cyclic.
Hence G, is abelian. Applying [3] p.171 (V) as in the above, we can
conlcude the desired result.

Finally, we prove the following theorem, which is one of the main
results of this paper.

THEOREM 7. Let K|k be a wildly ramified extension of degree p". Let
t, L, -+, t, be ramification numbers of K[k with t, =1 and G, be the t-th
ramification group of G for 1 <i < r. Then,if VUII*) x G, () a=1(G,)
and (ii) t, =1 (G,/G;.,) for 1 £ 1 < r, where G,,, = {1}.

Proof. Let p' be the order of G,. We use induction on /. For [ =1,
the result follows from Lemma 17 and Theorem 6. Let Z be a subgroup
of order p in the center of G,, and ¢ be the ramification number of K/K,,.
By the assumption V(II%) = G, and Lemma 6, we have V((II®) N K,) =
G,/Z. Therefore, we may assume 1 < a < p. Also, V(tr,(II*) < V(II?) and
so V(tr; ((II%)) = G,/Z. Suppose 2 < a <p. By Proposition 5, K/k is
not as stated in Proposition 5. From Lemma 7 and the induction hypo-
thesis, it follows

(p = Dlt/pl + 2 =1 (G,/Z).

Therefore, [t/p] =1 (G,/Z)) and so ¢ = p + 1 (p?), which is contrary to the
fact stated in Lemma 18. Thus, we have ¢ = 1 and conclude (i). Next,
we shall prove (ii). As in the proof of Lemma 17, we have
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(p—Dithp]l +1=1 (G,/Z).

Therefore, [t/p] =0 ((G,/Z)) and so ¢ =1 (|G,)). This implies (ii) and the
proof is completed.

As an immediate consequence of Theorem 7, we have

CoroLLARY 2. Let K[k be as in Theorem 7. Then, if a =1 (G,)),
Vi = G,.
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