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ISOMORPHISM CLASSES OF AUTHENTICATION CODES

RONGQUAN FENG, JIN HO KWAK AND E. KEITH LLOYD

In this paper, we give several kinds of characterisations of isomorphic authentication
codes by examining a correspondence between optimal authentication codes and some
combinatorial designs. The isomorphism classes of some kinds of authentication codes
are also enumerated.

1. INTRODUCTION

Let <S, £ and M be three non-empty sets and let / : <S x £ —i M be a map. The
four tuple (S,£,M;f) is called an authentication code ([13]) if

(1) the map / : 5 x £ -> M is surjective, and

(2) for each e € £, the map /(-, e) : 5 ->• M defined by s i-» f(s, e) is injective.

For an authentication code (S,£,M;f), we say that the sets 5, £ and M are the
set of source states, the set of encoding rules, and the set of messages, respectively, and
the map / is the encoding map. If m = f(s,e) for s € S, e £ £ and m € M, then we
say that the source state s is encoded into the message m using the encoding rule e, and
that for convenience, the message m is valid under the encoding rule e. The cardinals
\S\, \£\, \M\ are called the size parameters of the code. An authentication code with the
size parameters |<S| = k, \£\ = b and \M\ — v is denoted by AC(k, b, v).

An AC(k, b, v) can be represented by a b x k matrix, called the encoding matrix,
where the rows are indexed by encoding rules, the columns are indexed by source states,
and the entry in row e and column s is }{s,e). It is clear from the definition that the
k entries in a row are all distinct, and every m e M appears in the encoding matrix at
least once. Conversely, if a matrix satisfies the above conditions, then it is the encoding
matrix of an authentication code. Clearly, an authentication code is uniquely determined
by its encoding matrix.

Authentication codes are used in communication channels where, besides the trans-
mitter and the receiver, there may be individuals who want to deceive the receiver by
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either impersonating or substituting messages. By impersonate we mean that the de-
ceiver sends a message through the channel to the receiver and hopes the receiver will
accept it as authentic, that is, as a message sent by the transmitter. By substitute we
mean that after the deceiver intercepts a message sent by the transmitter to the receiver,
he/she sends another message instead and hopes the receiver will accept it as authen-
tic. To protect against these deceits, the transmitter-receiver may use an authentication
code which is publicly known and choose a fixed encoding rule e which is known only
by the transmitter and the receiver. The set of information which the transmitter would
like to transmit to the receiver should be identified with the set of source states of the
code. Suppose that the transmitter wants to send a source state s to the receiver. To
do this, the transmitter first encodes s into a message m using the encoding rule e, that
is, m = / ( s , e ) , and then sends m to the receiver. After receiving a message m', the
receiver first has to judge whether m! is authentic, that is, whether m! is valid under the
fixed encoding rule e. If m! is valid under e, then m' is regarded as authentic and can
be decoded by e to get a source state s', where m' = / ( s ' , e ) . If ml is not valid under e
then m' is regarded as a false message. The object of the deceiver is to choose a message
and send it to the receiver so that the probability of deceiving the receiver, that is, of
causing the receiver to accept a message not sent by the transmitter as authentic, is as
large as possible. We denote by Pj and Ps, respectively, the largest probabilities that the
deceiver could deceive the receiver by impersonating and by substituting a message. We
call them the probabilities of a successful impersonation and of a successful substitution,
respectively. Throughout this paper, we assume that the source states and the encoding
rules are chosen according to a uniform probability distribution.

For any s G <S, let M(s) = {/(s, e) | e G £} and for any e G £, let M{e) = {/(s, e) |
s G S}. That is, M(e) is the set of messages which are valid under e. Furthermore for
any m G M, let £(m) = {e G £ \ m € M(e)}. The following lemma is elementary
(see [14]).

LEMMA 1. For an authentication code (<S,£,M; / ) , we have

\£{m)\ _, „ \£{m)n£{m')\
P, = max i-f-^ and Ps = max ' v ' . ".

The following well-known results ([9, 12, 16]) give conditions under which the de-

ceiver can do no better.

LEMMA 2 . In an AC(k, b, v), we have

k k — 1
P / £ - and Ps> - .

v v - 1

Furthermore,
(i) Pi = k/v if and only if \£{m)\ — bk/v for any m € M;
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(ii) P, = k/v and Ps = (k - l)/(v - 1) if and only if \S(m)\ = bk/v for any
m € M and \£(m) n £{m')\ = (bk{k - l))/(v{v - 1)) for any distinct
m, m' € M-

If Pi = k/v, we say that Pj is optimal, and if Ps = (k - l)/(v - 1), we say that Ps

is optimal.
Constructions of authentication codes from some kinds of combinatorial designs have

been obtained by Jimbo and Fuji-Hara (see [7]), Stinson (see [14, 15, 16]), and Rees
and Stinson (see [10]). In [14], it was shown that the existence of optimal authenti-
cation codes is equivalent to the existence of some combinatorial designs. This will be
reproved in Section 2 by a different description. In Section 3, isomorphic authentication
codes are characterised and the relations of isomorphic authentication codes and corre-
sponding isomorphic combinatorial designs are described. In Section 4, we enumerate
the isomorphism classes of some special kinds of authentication codes.

2. OPTIMAL AUTHENTICATION CODES AND COMBINATORIAL DESIGNS

Godlewski and Mitchell [4] gave the definition of several cryptosystems with secrecy
(such as {/(L)-secrecy, S(L)-secrecy, O(L)-secrecy, or M(L)-secrecy) and the character-
isation of such systems with minimum number of encoding rules. In the following, the
definition and some results on t/(L)-secrecy are reviewed.

A subset M! of M is allowable if there exists an encoding rule e such that M'
Q M(e). Given L ^ 1, an AC(k,b, v) is said to provide unordered perfect L-fold secrecy
(U(L)-secrecy) if, for every allowable L-subset M' of M and for every L-subset S' of 5,

THEOREM 1. [4] If an AC(k,b,v) provides U(L)-secrecy, then b ^ (v/k) • ( r ).
(k\ Vv

Moreover, if 6 = (v/k) • I I and L ^ 2, then for any two encoding rules e\ and e<i either
M{e\) = M(ez) or M(e\) and Mfa) are disjoint.

It is easy to prove that if an AC(k, b, v) provides f/(L)-secrecy and b = (v/k) • ( I

then Pj achieves its lower bound k/v. But if L ^ 2 in addition then Ps — I. Therefore,
in order to protect from the substitution attack, we are interested in AC(k, b, v)'s which
provide [/(l)-secrecy. Note that when L = 1 then all cryptosystems with secrecy defined
in [4] coincide and in fact equate to Shannon's notion of perfect secrecy [11]. So we call
an AC(k, b, v) which provides [/(l)-secrecy an authentication code with perfect secrecy.

An important consideration in a construction of an authentication code is the number
of its encoding rules. If there are b encoding rules, then Iog2& bits must be communicated
in order to specify the encoding rule to be used. Hence, the number 6 is expected to be as
small as possible. It is known from Theorem 1 that b ^ v for any AC(k, b, v) with perfect
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secrecy. It is said to be (key-)minimal if b achieves its lower bound v. The following
theorem (Lemma 4.1 in [4]) gives a characterisation of a minimal authentication code
with perfect secrecy.

THEOREM 2 . [4] Let (S, £, M; f) be an authentication code. Then it is minimal
with perfect secrecy if and only if \£\ = \M\ and for any s e S and any m G M, there
is an e G £ such that m = f(s, e). In fact, such e exists uniquely.

We say that an AC(k, v, v) with perfect secrecy is optimal if both Pr and Ps are
optimal. Such an authentication code can be characterised by a symmetric balanced
incomplete block design, which is denned in the following.

A balanced incomplete block design, or a 2-(v,k, A) design, is a pair (X, B) which
satisfies the following conditions:

(1) X is a set of points of cardinality v;

(2) B is a collection of fc-subsets of X, called blocks;

(3) any two distinct points are contained in exactly A blocks.

A balanced incomplete block design is called symmetric if the number of its points is equal
to the number of its blocks. The following theorem can be found in [14]. For application
of its structure information in Section 3, we reprove it by a different description.

THEOREM 3 . [14] The existence of an AC(k,v,v) with optimal Pj and optimal
Ps is equivalent to the existence of a symmetric 2-(v,k,X) design, where A = (k(k

PROOF: Suppose that (S,£,M;f) is an AC(k, v, v) with optimal Pr and optimal
Ps. Let

X = M and B = {M(e) | e G £}.

It is clear that |A4(e)| = k for each e G £, and that for any message m, m G M(e) if
and only if e G £(m). From Lemma 2, (X, B) is a symmetric 2-(v, k, A) design, where
A = (k(k — l)) /(u — 1). We call such a design the symmetric balanced incomplete block
design induced from an AC(k, v, v) with optimal P/ and optimal Ps.

Conversely, suppose (X, B) is a symmetric 2-(v, k, A) design with A = (k(k — l))/(v

— 1). It is clear that \B\ = v. Let S be any set with k elements, £ = B = {B\,B2, • • •, Bv},

and M. — X = {xi,X2, • • • ,xv}. For any Bt G £, B{ is a fc-element subset of M. Since
|<S| = \Bi\ = A:, there are bijections between S and B{. For any 1 < i ^ v, choose
a bijection <& : 5 —> J3< to order the elements of B,. Define / : 5 x £ -> M by
f(s, Bi) = gi(s) for any s G 5 and any Bt G £. Since any two elements xit Xj of X are
contained in the blocks in £(x{) (~\£{XJ), it follows easily that (S,£,M\f) constructed
above has optimal P/ and optimal Ps by Lemma 2. We call such an AC(k,v,v) an
authentication code induced from a symmetric 2-(v, k, A) design. 0

Two authentication codes {Si,£i,Mi,Si) (i — 1,2) are said to be isomorphic [3] if
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there exist bijections

<?s '• <$i —• $2, <Je : £\ -¥ £2 a n d aM : Mi - > M2

such that

for any s € Si and any e € £1. The triple (cr,s,(7£,o>f) is called an isomorphism between
the two authentication codes. It is clear that two isomorphic authentication codes have
the same size parameters and the same probabilities of successful deceit. In particular,
if one of them has optimal Pi and(or) optimal Ps, so does the other.
EXAMPLE. The symmetric balanced incomplete block design induced from an AC(k, v, v)
with optimal Pj and optimal Ps is unique. But we can construct more than one non-
isomorphic AC(k,v,v)'s from a symmetric balanced incomplete block design. As an
example, let X = {xi,x2,x3} and B — {Bi,B2,B3}, where Bi = {xi,x2}, B2 — {x2,x3},
and B3 = {x3, Xi}. Then (X, B) is a 2-(3,2,1) design. Set 5 = {su s2}, £ = {Bu B2, B3},
M = {11,12,0:3}, fi{si,Bi) = /2(si,Bi) = xu fi(s2,Bi) = f2{s2,Bx) = x2, fi(si,B2)
= f2{suB2) = x2, fi(s2,B2) = }2{s2,B2) = x3, fi{si,B3) = f2{s2,B3) = x3 and
fi{s2,B3) = f2(si,B3) - xi. Then (S,£,M;fi) and {S,£,M\f2) are non-isomorphic
AC(2,3,3)'s induced from (X, B), by noting that (5, £, M; fi) is an authentication code
with perfect secrecy, but (S,£,M; f2) is not.

In general, we have the following theorem.

THEOREM 4 . At least one of the authentication codes induced from a symmetric
balanced incomplete block design has perfect secrecy.

PROOF: Let (X, B) be a symmetric 2-(v, k, A) design, where A = (k(k - l))/(v — 1).
First, we construct a bipartite graph G having bipartition (B, X), where {Bi, Xj}, Bt 6 B,
Xj e X, is an edge if and only if Xj £ Bi. It is clear that G is a fc-regular bipartite graph.
By Konig's Theorem [8], the bipartite graph G is A;-edge-colourable. Let G be edge-
coloured by the colours C\,C2,...,Ck and let S = {Ci,C2,...,Ck}- Set £ = B and
M — X. For any e = Bt € £, define a bijection gt : S -¥ Bt as gi(s) = m, where {e,m}
is an edge coloured by s. That is, the encoding map / : 5 x £ -> M is defined by
f(s,e) = m for any s € 5 and e € £, where {e, m) is an edge of the graph G coloured
by s. Then, for any m e M and any s 6 S, there is a unique edge incident with m and
has colour s. The other end of this edge is an encoding rule e satisfying m — f{s, e). By
Lemma 2 and Theorem 2, the constructed code is an optimal one with perfect secrecy. D

Combined Theorems 3 and 4, we get that the existence of an AC(k, v, v) with perfect
secrecy is equivalent to the existence of a symmetric 2-{v, k, A) design, where A = (k{k

- ! ) ) / ( « - I ) -
Next, we consider Cartesian authentication codes. An authentication code is called

a Cartesian one if for any message m, there is a source state s € S such that p(s \ m) = 1
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and p(s' | m) = 0 for any s' ^ s, that is, for any message m there is a unique source state
s such that m = / ( s , e) for every encoding rule e under which m is valid. Therefore, a
Cartesian authentication code provides no secrecy. The following lemma can be found
in [15].

LEMMA 3 . For a Cartesian AC(k, b, v) with optimal Pi, we have that k is a divisor
of v, \M.(s)\ — v/k (or any s £ S, and Ps ^ k/v. The equality holds if and only if for
any distinct messages m and m',

{0 ifm, m' G M(s) for an s G S,
bk2

—T- otherwise.
v2

Furthermore, if Pi - Ps = k/v, then b > (v/k)2.

Hence, we say that a Cartesian authentication code is optimal if Pi — Ps = k/v and
b = (v/k)2.

A transversal design [6] TD(k, A, n) is a triple (X, Q, B) which satisfies the following
conditions:

(1) A' is a set of kn elements, called points;

(2) Q is a partition of X into k subsets of n points, called groups;

(3) B is a set of An2 subsets of X, called blocks, such that a group and a block
contain exactly one common point;

(4) every pair of points from distinct groups occurs in exactly A blocks.

THEOREM 5 . [15] The existence of an optimal Cartesian AC(k, b, v) is equivalent
to the existence of a transversal design TD(k, 1, (v/k)).

PROOF: Suppose that (S,£,M;f) is an optimal Cartesian AC(k,b, v). Let

X = M, Q = {M(s) \seS} and B = {M(e) | e G £}.

For any s G 5 and any e € £, if x, ye M(s) D M(e), then x — f(s,e) = y, that is,
\M(s) n M(e)\ = 1. Therefore, (X,Q,B) is a TD(k, 1, (v/k)) by Lemma 3. We call it
the transversal design induced from an optimal Cartesian AC(k,b, v).

Conversely, let (X, Q, B) be a TD(k, \,n) with n = v/k. Set

S = Q, £ = B and M = X.

For any Gt € Q and any Bj G B, let Gi<~\Bj - {x}. Define an encoding map / : SxB -> X
by f(Gi,Bj) — x. It is easy to check from Lemma 3 that the (S,£,M;f) constructed
is an optimal Cartesian AC(k,b, v). We call it the optimal Cartesian AC(k,b, v) induced
from a transversal design. D
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3. CHARACTERISATIONS O F ISOMORPHIC AUTHENTICATION CODES

Feng and Wan [3] proved the following lemma.

LEMMA 4 . Two authentication codes (Si, £t, Mi, fc) (i = 1,2) are isomorphic if
and only if \M\\ — \M2\, and there are bijections as : <Si —>• £2 aa^ °~£ '• £ 1 ~~* £1 such
that h(as{s),a£(e)) = f2(as(s'),a£(e')) whenever / i ( s , e ) = / i (s ' ,e ' ) for any s, s' e Si
and any e, e' £ Si.

This characterisation for isomorphic authentication codes can be expressed in matrix
form.

THEOREM 6 . Let (Si,£i,Mi;fi) and (S2,£2,M2;f2) be two AC(k,b,v)'s with
encoding matrices A and B, respectively. Then (Si,£x,Mi;fi) and (S2,£2,M2;f2) are
isomorphic if and only if there exists abxb permutation matrix P, a k x k permutation
matrix Q and a bijection a from Mi to M2 such that B = Pcr(A)Q, where o(A)
= (<r{<kj)) for A = (aij).

PROOF: Let S* = {sf | 1 ^ j ^ *} and £e = {ef] \ 1 ̂  i ^ b} (£ = I, 2). Suppose
that (Si,£i,M\; fi) and (S2,£2, M2; f2) are isomorphic by an isomorphism (as, o£, aM)-
Define two square matrices P = (py) and Q — (g^) by

otherwise 0 otherwise.

Clearly, P and Q are permutation matrices, and B = PoM{A)Q.

Conversely, suppose that there exists abxb permutation matrix P, a k x k per-

mutation matrix Q and a bijection a from M\ to M2 such that B = Pa(A)Q. Let

P = (jpij) and Q = (?„•)• D e f i n e °s • <5i -> S2 by as(s\l)) = sf> if q{j = 1 for any

s,U) e Si. Define a£ : £x -4 £2 by a£{ef]) = e f if py = 1 for any ef € £x. Let

oM - a. Then f2{os(sj),a£(ej)) = crM(fi(sj,ei)) for any s_,- € Si and any e,- € £\. That
is, (51,5!, Ali;/1) and (S2,£2,M2;f2) are isomorphic. D

Two balanced incomplete block designs (Xi,Bi) and (^2,^2) are said to be iso-
morphic [1] if there is a bijection a from Xi onto X2 which induces a bijection from Bi
onto B2, that is, for any B G Bi, a(B) = {a(z) : 1 G B} 6 B2. In this case, we call
a an isomorphism between these two balanced incomplete block designs. Similarly, two
transversal designs (Xi,Gi,Bi) and [X2,Q2,B2) are said to be isomorphic if there is a
bijection a : Xi —> X2 which induces bijections from Qi onto Q2 and from Si onto B2.

THEOREM 7 . Tie two symmetric balanced incomplete block designs induced from
two isomorphic optimal minimal authentication codes with perfect secrecy are isomorphic.

PROOF: Let (Si,£i,Mi,fi) (i — 1, 2) be two isomorphic optimal minimal authen-
tication codes with perfect secrecy and let (OS,O£,OM) be an isomorphism between
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them. Let (Xi,Bi) (i = 1, 2) be the balanced incomplete block designs induced from

{Si,£i,Mi\fi). As in the proof of Theorem 3, Xt = Mi and B{ = {M(e) | e 6 £t}. Let

a — aM- Then a is a bijection from Xi onto X2. Furthermore, for any M(e) € B\ with

ee€u

a(M(e)) = crM(M(e))

Thus, a induces a bijection from B\ onto B2. That is, (A^Bi) and (X2,B2) are isomor-
phic. D

Authentication codes induced from a symmetric balanced incomplete block design
cannot be unique. However, we have the following theorem.

THEOREM 8 . Let {Xi,Bi) (i = 1, 2) be two isomorphic symmetric balanced in-
complete block designs. Then, for any optimal minimal authentication code with perfect
secrecy induced from (Xi,Bi), there is an optimal minimal authentication code with
perfect secrecy induced from (X2, B2) which is isomorphic to it.

PROOF: Let a be an isomorphism between (Xi,B\) and (X2,B2), and let (S\,£u
Mi; fi) be an optimal minimal authentication code with perfect secrecy induced from
(Xi, Si). Then Sx is a set with k elements, Ev = Bx and Mi = Xv For each Bf] € Bi,
let gf] be the bijection chosen from Si onto Bf\ that is, fi(s,B^]) = gf](s). Take
S2 = Si, £2 = B2 and M2 = X2. For any Bf] <E £2, let Bf1 = a-^B^) and define
g^ — otogy. Then gf is a bijection from S2 (= 5i) onto Bf\ Define an encoding map
f2 : S2 x £2 -+ M2 as /2(s, B}2)) = ^2)(s) for any s € 52. It is clear that (S2, £2, M2; f2)
is an optimal minimal authentication code with perfect secrecy induced from (X2,B2).
Let

os = Isi 1 ae-aM-a..

Then, for any s G Si , B^l) € Bu we have

Thus, (52, ̂ 2, A^2; h) is isomorphic to ^ . f i , Mi\ fi). D
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Similarly, for an optimal Cartesian authentication code, we have the following the-
orem.

THEOREM 9 . Two optimal Cartesian authentication codes are isomorphic if and

only if the induced transversal designs are isomorphic.

4. NUMBERS OF SOME KINDS OF AUTHENTICATION CODES

The classification of authentication codes, or the enumeration of the isomorphism
classes of authentication codes is one of the most important problems in the study of
authentication theory. In the following, let n ^ 2.

THEOREM 1 0 . TAere exists one and only one optimal Cartesian AC(2, n2,2ri) for

each n ̂  2.

PROOF: EXISTENCE Let S - {si,s2}, £ = {eue2,...,en2} and M = {{si,j) | 1
^ z < 2, 1 < j < n}. The encoding matrix

| " ( s i , l ) • • • ( « i , l ) ( « i , 2 ) • • • ( « i , 2 ) • • • ( s u n ) ••• ( « i , n )

(1) ( s 2 , 1 ) ••• ( s 2 , n ) ( s 2 j l ) ••• ( s 2 , n ) ••• ( s 2 , 1 ) ••• { s 2 , n )

gives an optimal Cartesian AC(2,n2,2n).

UNIQUENESS. For an optimal Cartesian AC(2, n2,2n), \£{m)\ = n for any m € M

by Lemma 2, |At(s)| = n for any s € S, and any two messages which correspond to
different source states are contained in a unique encoding rule simultaneously by Lemma
3. Suppose that M — {me : 1 ̂  £ ̂  2n}. By interchanging the rows of its encoding
matrix if necessary, we can assume that its first column is of the form

(mi,...,mum2,. ...m^,..., mn,...,mny
r> n n

The subblock in the second column corresponding to subblock (rrij,... ,m,-j (1 ̂  i < n)

n

in the first column is a permutation of mn+i,mn+2,... ,rn,2n- By interchanging the rows
in this encoding matrix again, we can assume that its second column is

(m n + 1 , . . . , m2n, mn+i,..., m 2 n , . . . , m n + i , . . . , m2n) .

Since the authentication code obtained by interchanging the rows of the encoding ma-
trix is isomorphic to the original one, every optimal Cartesian AC(2,n2,2n) is isomor-
phic to one whose encoding matrix is of the form (1). So any two optimal Cartesian

J4C(2,n2,2n)'s are isomorphic. D

Next, we enumerate the isomorphism classes of AC(2, n,n)'s with perfect secrecy.

Clearly, there exists such an AC{2, n, n). Also, we know that P/ = 2/n for any AC(2, n, n)
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with perfect secrecy (see [2]). In the encoding matrix of an AC(2,n,n) with perfect se-
crecy, each column is a permutation of the n messages. For convenience, let the messages
be 1 ,2 , . . . , n. Suppose the first column of its encoding matrix is (ii, Z2, - •., in)

1 and the
second one is (J1J2, • • • JnY- Then the AC(2,n,n) with perfect secrecy can be repre-
sented by the permutation

P = (ix i2 '" in\
\j\ h ••• in) '

We call P the permutation representation of the code AC(2,n, n).

THEOREM 1 1 . Two AC(2, n, n) 's with perfect secrecy are isomorphic if and only
if their permutation representations have the same cycle type.

P R O O F : Suppose that two AC(2, n, n)'s (Si, £it Mu fi) (i = 1,2) with perfect secrecy
are isomorphic by an isomorphism (0-5, o£, GM). Let Si — {s^\ s2''} (i = 1,2) and let the
permutation representation of (Si,£i,A4i\fi) be

If <Js(s\ ) = s\ , then the permutation representation of (S2, £2, M2; f2) is

Q_(aM(ii) oM{i2) ••• oM{in)\

\O-MUI) oM{j2) ••• oM(]n)J'

Since OM is a bijection, P and Q have the same cycle type. If os(s[ ) = s2 , then the

permutation representation of (<S2> £2,-^21/2) is

Q-i=(°M{h) °M{h) ••• o-M(jn)\
\VM(ii) oM(i2) ••• aM(in)J'

Since Q~l and Q have the same cycle type, so do P and Q~l.

Conversely, suppose that the permutation representations P\ and P2 of two
AC(2,n,n)'s with perfect secrecy (Si,£i,Mi, fi) {i = 1,2) have the same cycle type.

Let Si - { s j 0 , 4 °} , £i = {e(i°, 4 ° . • • •. $h Mi = {l(0>2(i). • • • . n ( 0 } ' a n d l e t t h e c y c l i c

representations of Pi and P2 be

\ (jW ,0) . . . <M\ ..
J \tt+lh+2 ll )

p _ (,(2) ,(2) . (2)\ / (2) .(2) .(2)\ / .(2) .(2) _ . . -(2)\
"2 — ^Jl J2 Jt ) yJt+lJt+2 Jt ) \Js+lJs+2 J" ) •

Define as, at and aM by

as:s^^sf\ i= 1,2,

a^e^eg5, 1 ̂  r ^ n,
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From Lemma 4, it can be proved that {CTS,V£,0M) is an isomorphism between these two
codes. D

The number of the cycle types of permutations on n elements is the number of
partitions of n into positive parts and is normally denoted by p(n). A recurrence formula
for calculating p(n) and its values up to n = 100 can be found in [5], It is also the

number of non-negative integer solutions (£i, £2, • • •, £n) of the equation S^ i£{ = n. For
t=i

the permutation representation of an AC(2, n, n) with perfect secrecy, l\ = 0. If £2 # 0,
then its encoding matrix has two rows containing i, j and j , i, respectively, and these
two messages i and j do not appear in other rows. So, £(i) = £(j) and then Ps = 1.
If £2 = 0> then each pair of messages appear in at most one row. Therefore, Ps — 1/2.
That is,

f l

Denote, by Nk(n), the number of non-negative integer solutions (£k,£k+l,... ,£n) of the
n

equation ^ i£i = n. So p(n) — Ni(n). Since Nk(n) is the number of partitions of n with
i=k

smallest part at least k and A^t+i(n) is the number of partitions of n with smallest part at
least k +1, it follows that Nk(n) — Nk+i(n) is the number of partitions of n with smallest
part exactly k. By removing one part of size k from each such partition, it can be seen
that there is a one-one correspondence between these partitions and the partitions of
n — k with smallest part at least k. Hence

Nk(n) - Nk+1(n) = Nk(n - k),

so

(2) Nk+1(n) = Nk(n)-Nk(n-k).

By repeated use of (2), we have N2{n) — p(n) — p(n — 1) and N3(n) — p(n) - p(n - 1)
- p(n - 2) -(- p(n — 3). Therefore, we have the following theorem.

THEOREM 1 2 . For n > 3, the number of isomorphism classes of AC(2,n,n)'s

with perfect secrecy is

N2(n - 2) = p(n - 2) - p(n - 3)

N3{n) = p(n) - p(n - 1) - p(n - 2)+p(n - 3) if Ps = -,

0 otherwise,

where p(n) is the number of partitions ofn and p(0) = 1.
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The numbers of isomorphism classes of AC(2, n, n)'s with perfect secrecy for a small
n are listed in the following table.

n

ft'-i

Total

3

0

1

1

4

1

1

2

5

1

1

2

6

C
M

 
C

M

4

7

to
 

to

4

8

4

3

7

9

4

4

8

10

7

5

12

11

8

6

14

12

12

9

21

13

14

10

24

14

21

13

34

15

24

17

41

1 6 •••

34 •••

2 1 •••

55 •••

EXAMPLE. The encoding matrices of the four non-isomorphic AC(2,8,8)'s with perfect
secrecy and Ps = 1 are

' 1

2
3
4

5
6
7

. 8

2 '

1
4
3

6
5
8
7 .

' 1
2
3
4

5
6

•' 7

. 8

2 '
1
4
5

3
7
8
6 .

" 1
2
3
4

5
6
7
. 8

2 '
1
4'
3

6
7
8
5 .

and

' 1
2
3
4

5
6
7
. 8

2 '
1
4
5

6
7
8
3 _

The encoding matrices of the three non-isomorphic AC(2,8,8)'s with perfect secrecy and

Ps = 1/2 are
' 1
2
3
4
5
6
7
8

2 '
3
1
5
6
7
8
4

' 1
2
3
4
5
6
7
8

2 '
3
4
1
6
7
8
5

and

' 1
2
3
4
5
6
7
8

2 '
3
4

in 
to

7
8
1
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