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Abstract. We discuss the theory of quasi-static coronal loops, introduc-
ing a phase plane representation to study loop solutions independently of 
specific boundary conditions. Emphasis is put on the effects of loop expan-
sion, heat input and gravitational stratification on the differential emission 
measure, and on the intrinsic limitations of spectroscopic observations for 
deriving loop parameters. We show that certain classes of published loop 
solutions cannot actually exist. For expanding loops new classes of loop 
solutions, with rather special properties, are presented. Special attention is 
paid to loops in binary systems and on rapidly rotating stars. 

1. Introduction 

Solar-like magnetic activity can be found in all stars possessing convective 
envelopes and rotating relatively rapidly. The study of individual coronal 
loops on stars is hampered by the lack of spatial resolution, but indirect 
means exist to derive some information. The observed decay of stellar flares 
permits estimates for the typical dimensions of the flaring loop (van den 
Oord and Mewe 1989). X-ray observations of eclipsing binary systems such 
as Algol (White et al. 1986, van den Oord and Mewe 1989, Stern et al. 
1992), AR Lac (Walter et al. 1983, White et al. 1990, Siarkowski 1992), 
ER Vul (White et al. 1987) and TY Pix (Pres et al. 1995) indicate that 
hot stellar-sized coronal loops exist in these systems, next to more compact 
solar-like active regions. This is substantiated by VLBI observations of RS 
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CVn systems (Lestrade et al. 1984, Mutel et al. 1984) and Algol (Clark et 
al. 1975, 1976) which indicate the presence of gyro-synchrotron emission 
from halo-like structures for which the upper limit of the source size is 
comparable to the overall size of the binary. 

The most direct means for obtaining information about the source struc-
ture is by applying a differential emission measure (DEM) analysis to an 
observed spectrum. The next step is then to interpret the recovered DEM 
in terms of coronal loop models. Due to lack of sufficient spectral resolution 
in the EUV/X-ray range it was until recently not possible to derive DEMs 
with sufficient resolution in temperature. The only exception are the anal-
yses of the spectra of Capella and σ 2 CrB by Schrijver et al. (1989) using 
the EXOSAT transmission grating spectrometer. These authors were able 
to show that the observed DEMs cannot be reconciled with the 'standard' 
loop models of Rosner et al. (1978, hereafter RTV) but require expanding 
loop geometries as have been discussed by Vesecky et al. (1979, hereafter 
VAU). 

Recently, the EUVE has produced spectra which do permit a DEM 
analysis and in the near future this will be possible with AXAF and XMM. 
An issue which will become increasingly important concerns the relation 
between coronal loop models and the actually Observed' DEM, in other 
words: how well does the DEM distinguish between different coronal loop 
models? The extensive literature on coronal loops cannot be adequately 
summarized in this brief review but is extensively reviewed in the book by 
Bray et al. (1991). Even for simple loop models one often has to rely on 
numerical techniques. This makes it difficult to obtain physical insight into 
why a solution shows a specific behaviour. We therefore use in this paper 
a so-called diagnostic diagram as well as a phase plane representation to 
discuss and predict the behaviour of loop solutions. We restrict ourselves to 
quasi-static loops because these are simple to model and permit a compar-
ison with observations. Dynamical models, involving plasma flows, require 
a spectral resolution at X-ray wavelengths which cannot be achieved with 
the present instrumentation. A more extensive discussion of previously pub-
lished loop solutions will be given in van den Oord and Zuccarello (1996, 
hereafter VDOZ). 

The contents of this review is as follows. In Sect. 2 we discuss the basic 
equations, in Sect. 3 constant pressure loops, in Sect. 4 loops in hydrostatic 
equilibrium, in Sect. 5 the effect of loop expansion and in Sect. 6 the effect 
of gravity reversals in loops. Our conclusions are presented in Sect. 7. 
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2. Basic equations 

The thermodynamical structure of a loop in quasi-static equilibrium is de-
termined by the equation for conservation of energy 

= A(s) ( W ) - Erad(s)) , (1) 

the equation for hydrostatic equilibrium 

dp(s) 

ds 
= mnn(s)g(s) , (2) 

and an equation of state. In these expressions s is the coordinate along 
the magnetic field, A(s) is the cross-section of the loop , p(s) is the pres-
sure, n(s) the electron density, ran is the hydrogen mass, and g(s) is 
the gravitational acceleration. The classical conductive flux through the 
cross-section of a loop is given by Fc(s) = —A(s) KQ T 5 / 2 (dT/ds) with 
κ,ο — 8.8 10~ 7 erg c m - 1 s - 1 K~ 7 / 2 and Τ the temperature. The optically 
thin radiative losses are given by i5 r ad(s) = η 2 Φ(Τ) (erg c m - 3 s" 1 ) , with 
Φ(Τ) the emissivity, and the heat input is given by I?heat- Eq. (1) shows 
that the difference between heating and radiative losses at a given position 
in the loop is balanced by the conductive energy. The equations given above 
require three 'external' functions to be specified. These are the variation of 
the cross-section of the loop A(s), the gravitational acceleration along the 
loop g(s) and the heat input in the loop ü?heat(s)- We assume the presence 
of a fully ionized hydrogen plasma, except for the emissivity Φ(Τ), taken 
from van den Oord and Barstow (1988), which includes both line and con-
tinuum emission from a plasma with solar abundances. Above 0.1 MK a 
useful approximation is Φ(Τ) = 10~ 1 8 · 8 / \ /Γ. 

By using the equation of state for a hydrogen plasma (p = 2nkT) 
Eqs. (1) and (2) can be written as a system of coupled nonlinear ordinary 
differential equations 

dT = Fc 

ds A * 0 T
5 / 2 

^ £ - 4 - 2 reheat Φ(Γ) ^ 
p 

(3) 

3Γ - < 4 ) 

dp ρ 
Ts = ™ Η 2 * Τ 5 · ( 5 ) 

These equations can be integrated given the three boundary conditions at 
the base of the loop for the temperature (T = Tb), the conductive flux 
(Fc = FC jb) and the pressure (p = pb)-
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The differential emission measure (DEM) is the weighting function for 
the contribution of the plasma at each temperature to the observed spec-
trum. If g(X) is the observed spectrum and / ( λ , Τ ) is the emissivity of the 
plasma at temperature Τ then 

dT 

ds 

- l 

dT g(\) = j f(X,T)n2(T)dV(T) = J f(X,T)n2(T)A(T) 

= J f(X,T) DEM(T) dlogT . (6) 

Using the expression for the conductive flux to eliminate dT/ds gives 

DEM(T) = - ^ p f p r p cm"«, (7) 

where A, ρ and Fc depend (implicitly) on temperature T. One faces ba-
sically two problems when working with a DEM: 1) it depends in a non-
trivial way on the loop parameters, and 2) the DEM must be recovered 
from a Fredholm equation of the first kind (Eq. (6)) which has no unique 
solution. Loops with different (thermodynamieal) structures can result in 
almost identical DEMs. Ideally one would like to know the DEM with an 
as good temperature resolution as possible. Apart from the problems which 
noise causes in recovering a DEM from an observed spectrum, there is an 
intrinsic limit to the temperature resolution which can be achieved. Spec-
tral lines provide the most accurate temperature diagnostics but lines form 
over a finite temperature range, typically a factor two in temperature or 
Δ log Τ = 0.3, determined by the ionization balance and the excitation 
function. When a spectrum contains sufficient lines at slightly different for-
mation temperatures one may achieve a resolution of Δ log Τ = 0.1. This 
intrinsic limit to the temperature resolution at which a DEM can be recov-
ered is independent of the spectral resolution of the instrument. 

3. Constant pressure loops 

The simplest loop models are those for which the pressure is taken constant 
implying that g = 0 in Eq. (5) and that the pressure scale height is infinite. 
This leaves Eqs. (3) and (4) to be solved. These equations form a system of 
coupled nonlinear differential equations. When £"heat

 a n d A are functions 
of the loop coordinate s the system is called non-autonomous because the 
right-hand side depends explicitly on s. Such systems have to be solved 
numerically. Let us for the moment assume the £7neat and A are constant 
so that the system becomes autonomous. The appropriate way to study 
the properties of such a system is by investigating how the solutions run in 
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Figure 1. (a) Diagnostic diagram showing the two terms which determine the 
run of dFc/ds: J^heat/p 2 and W(T)/(2kT)2. The dashed line is for the approximation 
Φ(Γ) = 1 0 " 1 8 8 Τ " 0 5 . The thick solid line indicates Ehe&t/p

2, in this case taken con-
stant, (b) Corresponding phase plane (T,F C ) showing some phase space trajectories of 
the solutions. Physically meaningful solutions start at the thick vertical line. 

the (T,F C) phase plane. Essential ingredients are the critical points, that is, 
those values of Τ and Fc for which dT/ds = dFc/ds = 0. With the above 
assumptions the critical point, labeled with index T, is given by FC)i = 0 
and by temperature 7] which is the solution of £ h e a t / p 2 = Φ(Τΐ)/(4&27}2). 
In Fig. la we show a diagnostic diagram depicting the functions E^t/p2 

and Φ(Τί)/(4Α:2Τ2) which determine the sign of Eq. (4). Because the curves 
intersect only once, here at T\ = 106 K, there is only one critical point. 
Linearizing the equations around the critical point shows that this point is 
a centre point so that all solutions encircle this point (anti-clockwise). In 
fact, for an autonomous system it is often possible to construct a first inte-
gral by dividing Eqs. (3) and (4) and integrating dFc/dT. The first integral 
gives the phase space trajectories shown in Fig. lb. Physically meaningful 
solutions are determined by choosing appropriate boundary conditions and 
thereby selecting a specific phase space trajectory. There are two impor-
tant constraints for the choice of boundary conditions: 1) the coronal loop 
solution must be able to connect continuously to the chromospheric part 
of the loop and 2) the optical thin approximation for the radiative losses 
must remain valid. Below a temperature of approximately 3 104 Κ radiative 
transfer effects become increasingly important but, on the other hand, this 
temperature is at a chromospheric value so that a choice Tb = 3 ΙΟ4 Κ 
guarantees that both constraints are satisfied. The choice for FC)b depends 
on whether the chromosphere is (partly) energetically fed by the conduc-
tive flux out of the coronal volume, a matter still unresolved. Somewhere 
within the coronal loop the temperature has a maximum, for hot coronal 
loops, or a local minimum, for loops with a temperature inversion, so that 
at the corresponding temperature, labeled 'a', dT/ds = 0 and consequently 
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F c (T a ) = 0. We will refer to this point as the apex of the loop, although 
it does not necessarily have to correspond with the geometrical apex. The 
fact that the optically thin approximation breaks down below 3 ΙΟ4 Κ is 
indicated by the hatched areas in Fig. 1. 

Typical coronal loop solutions (see Fig. lb) start at the right-hand 
boundary of the hatched area, then show an increase of the temperature 
while the conductive flux becomes increasingly negative. At Τ = Ti the con-
ductive flux reaches a minimum and then becomes rapidly zero at Τ = T a 

which corresponds to the apex temperature. In principle one can continue 
to follow the solutions in the upper part of the phase plane and look for 
loops with a temperature inversion at their apex (a second intersection 
with the line Fc = 0). Fig. lb shows however that all solutions which start 
out at a chromospheric temperature do not reach Fc = 0 at temperatures 
below Ti, or do so only in the 'forbidden' hatched region. This implies that 
constant pressure loops cannot have cool apexes. The dashed solution in 
Fig. lb is unphysical because it cannot be connected to the chromosphere. 
In the past various authors have taken the base température Tb at higher 
values (> 105 K) in order to avoid the problems with/the radiative loss curve 
at low temperatures. This approach may result in studying solutions which 
are disconnected from the chromosphere. The solution on which RTV based 
their scaling laws corresponds to the boundary conditions (TD = 0, F C j D = 0) 
(thick line in Fig. lb) . 

Another interesting and very important aspect is that the difference 
between T\ and T a is small, in fact below a factor two, even for loops 
with a large conductive flux at the base. For RTV loops one has T a = 
3.5°'4Ti = 1.65Ti (see Fig. lb) . Below temperature Tj the structure of a 
loop is determined by the balance between conduction and radiation (giv-
ing DEM ~ T 3 / 2 ) and the DEM contains no information on the heating. At 
temperatures T\ < Τ < T a , corresponding geometrically to the largest part 
of a loop, conduction balances heating and, to a lesser extent, radiation. 
This part of the loop, from which in principle something could be learned 
about the heating process, is however mapped into one, or at most a few, 
DEM bin(s) of width Δ log Τ = 0.1. In fact, stronger heating at Τ > T\ re-
sults in T a/Ti approaching unity, making the situation worse. This implies 
that from spectroscopic studies little can be learned about coronal heating, 
within the context of coronal loop models. The insensitivity of the solutions 
to the heating at Τ < T[ and the reduction of T a/Ti for increased heating 
at Τ > Tj is demonstrated in Fig. 2. 

Clearly, the temperature T\ at which the heating and the radiative losses 
balance plays an important role whereas below this temperature heating is 
not important. This was already noted by Craig et al. (1978) which led 
these authors to consider so-called 'esoteric' heating functions which fol-
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diagnostic diagram for T, - 106K phase plane for T. • · 106K 

8 em ' — ' — ' — i " '— '——' 

Figure 2. (a) Diagnostic diagram showing Ψ(Τ) / (2&Τ) 2 and three Ehe&t/p2 curves 
with one corresponding to constant heating (l;thick line). Also indicated are two heating 
functions with increased heating (2;dashed line) and reduced heating (3;dashed-dotted 
line) for Τ < T\. At Γ = Τ· these heat functions intersect the # ( T ) / ( 2 f c T ) 2 curve, 
the dashed-dotted line being discontinuous. At Τ > T\ these heat functions exceed the 
constant heat input by a factor ten (dotted line), (b) Phase plane trajectories for constant 
heat function (l;solid), increased heating below Ti (2;dashed) and reduced heating below 
7] (3;dashed-dotted). The non-constant heating solutions have increased heating above 
Ti. Note that below T\ the solutions are almost independent of the heat input and that 
increased heating above T\ makes T a —• Ti. 

diagnostic diagram for η - Ι Ο 6 2 ™ Κ phase plane for J. - 10 β , 2 β β Κ 

Figure 3. (a) Diagnostic diagram for a heating function that intersects the Φ ( Τ ) / ( 2 / : Τ ) 2 

curve three times. The central intersection is at Τ = Ti = 1 0 6 · 2 8 8 K. (b) Phase plane 
containing two centre and one saddle point. The thick line indicates the separatrix. The 
dotted line indicates a solution outside the separatrix which can never result in a vanishing 
conductive flux at the base. The dashed solutions near the high-temperature centre point 
cannot connect to the chromosphere. 

low the radiative loss curve over a large temperature range and intersect it 
several times. The fact that then alternating heating and radiative losses 
dominate led this authors to speculate that such loops would be charac-
terized by temperature oscillations along the loop. This is however not the 
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case. In Fig. 3a we show a heating function which crosses the radiative loss 
curve three times corresponding to the presence of three critical points. 
The corresponding phase plane of the solutions is given in Fig. 3b. The fig-
ure shows that the central intersection corresponds to a saddle point while 
the other intersections correspond to centre points. A local analysis (see 
VDOZ) shows that if near the critical point the radiative losses vary as 
φ ~ Τ~Ί and the heating as £neat ~ Τδ, the critical point is a saddle point 
for <5 + 7 + 2 < 0. The interesting point is that the solutions can never cross 
the separatrix (thick line). The solutions encircling the high-temperature 
centre point are physically disconnected from the chromosphere. Only loops 
with a large conductive flux at the base can have high apex temperatures 
but there exists a region of non-accessible apex temperatures. The presence 
of the saddle point implies that within a loop the heating function cannot 
intersect the radiative loss curve more than once so that 'esoteric' heat-
ing functions do not appear in nature. Furthermore, any coronal heating 
mechanism must deposit energy near the loop apex, while switching off the 
heating below Τ = T\ does not affect the loop structure. 

3 .1 . SCALING LAWS 

Over the last decades scaling laws have received considerable attention be-
cause they are extremely useful when interpreting observations without 
spatial resolution. The exact form of any scaling law depends of course 
on the approximation for the radiative loss curve used (see e.g. Kuin and 
Martens 1982). One scaling law is related to the critical point in the phase 
plane (E^t/p2 = Φ(Ί\)/\2kT\)2) while a second scaling law follows from 
integrating Eq. (3) over the (half) length of the loop. Because of the com-
plexity of the integral authors normally assume TD j 0 and F C j D [ 0. The 
apex temperature and the loop length depend of course on the phase space 
trajectory one selects in Fig. lb. In Fig. 4 we show the relation between 
p, L and T a when T D = 3 104 Κ and Eheat = !0~ 3 e r S c m ~ 3 s _ 1 , and for 
various values of the base conductive flux. The base conductive flux is ex-
pressed in the unit -î iimit which corresponds to FC(T = 3 104 K) on the 
RTV trajectory. The vertical line indicates the pressure at which Tb = Ti 
below which pressure no solutions exist. The figure shows that the relation 
between p, L and T a is fairly insensitive to the value of FC)b- Diagrams like 
Fig. 4 are also useful to study the effect of varying ρ (with E'heat and L 
constant) or varying L (with Eheat a n d Ρ constant). A discussion can be 
found in VDOZ. These type of variations were considered by Hood and 
Priest (1979) to show that for certain variations no adjacent (hot) equilib-
rium can be found. This would then result in catastrophic cooling due to a 
jump from equilibria with hot apexes towards equilibria with temperature 
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inversions (cool apexes). Later it was shown by Hood and Anzer (1988) 
that the inverted solutions found by Hood and Priest are an artefact of the 
high base temperature (Tb = 106 K) employed by Hood and Priest. In other 
words, the boundary conditions at the base assumed by Hood and Priest 
do not permit a connection of the coronal part of the loop to the chromo-
sphere. Given the fact that cool solutions do not exist, Fig. 4 indicates that 
for certain variations no equilibrium exists and the quasi-static assumption 
must break down. E.g., if L and £beat are kept constant, an increase of the 
pressure results in a decrease of Fc until no further equilibria are found. 

length versus pressure T0 ond Tj versus pressure 

pressure (dyne c m - 2 ) pressure (dyne c m - 2 ) 

Figure 4- Resulting loop lengths (a) and apex temperatures (b ) for the case of heat-
ing per unit volume (Eheat = 1 0 ~ 3 erg c m ~ 3 s _ 1 ) and radiative losses according to 
Φ(Γ) = Φο/λ/Τ. In this case T\ = ( ρ 2 Φ 0 / ( 4 Α ; 2 £ w ) ) 2 ' 5 · The vertical lines indicate 
the pressure for which T\ = Tb. The loop lengths and apex temperatures are determined 
for various values of the base conductive flux FC )b = &F\imit with Fyimit the conductive 
flux at T b = 3 ΙΟ 4 Κ on the R T V trajectory which runs through (T,F C ) = (0,0). Also 
indicated is the scaling law (dots) of RTV. In (b ) the lower dashed line indicates T\ as a 
function of pressure. 

We note that analytic scaling laws can only be found for autonomous 
systems, that is, systems for which a first integral exists. Apart from the 
case of constant heating and constant cross-section, this integral also exists 
for scalings like A ~ Ta and ü?heat ~ (see e.g. Landini and Monsignori-
Fossi, 1981). A scaling like A ~ Ta implies unrealistically large expansions 
of loops given the typical values for Tb and T a . A scaling like .Eheat ~ T@ 
does not strongly influence the loop structure because below Tj the heating 
is not important and above TJ it will only reduce the apex temperature 
compared to constant heating: T a/Tj = (3.5 + ^)i/(2.5+/3) 

4. Loops in hydrostatic equilibrium 

The effect of hydrostatic equilibrium (g φ 0) on the structure of coronal 
loops is small. This can be easily seen from Fig. la. When the pressure 
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Figure 5. (a) Phase plane diagram for solutions resulting from integration from the 
base (Tb = 3 1 0 4 K, p\> = 1 dyne cm 2 , F c,b = 0) to the apex for various values of the 
gravitational acceleration. The arrows point towards the apex. For g = 0 a closed tra-
jectory is found with Tb = T a . A finite gravitational acceleration results in a shift of the 
apex temperature to values below the base temperature. For solutions with g/go > 1 0 - 3 

no apex temperatures can be found with realistic values, say T a > 10 4 . For those solu-
tions the calculations where terminated at ΙΟ 4 Κ (crosses), (b) Corresponding diagnostic 
diagram for the solutions in panel (a). Due to the decrease of the pressure towards the 
apex the Ehe&t/p2

 curve has now a lower and an upper branch which (almost) coincide 
when g is zero (or small). 

Several authors (Serio et al. 1981, Collier Cameron 1988) have consid-
ered the possibility that loops with a temperature inversion might exist 
under hydrostatic equilibrium. These loops have a local temperature mini-
mum at/near their apex. The interpretation of the results published in the 
literature is hampered by the fact that the various authors do not present 
the phase plane trajectories of their solutions. A loop with a temperature 
inversion corresponds to a full encircling of the critical point in the phase 
plane until F c (T a ) = 0 for T a < T\\ one intersection with the line Fc = 0 
corresponds to the point where the temperature reaches a maximum while 
the next intersection occurs at the inverted apex temperature. In Fig. 5 we 
show what happens when the gravity is increased in a loop. When g = 0 
(constant pressure loops) the phase trajectory is a closed curve starting 
and ending at Tb = 3 ΙΟ4 Κ and FCjb = 0. If however g is increased, the 

drops along a loop the £heat/p 2-curve turns slightly upward with increasing 
temperature, so that 2] slightly shifts to lower temperatures. Because the 
difference between the E^t/p2 and the Φ(Τ)/(2£Τ) 2 curves then increases 
above 2], the conductive flux becomes more rapidly zero, so that also the 
apex temperature is lowered. Because of the large coronal pressure scale 
height (3 ΙΟ 1 0 Τγ cm) these effects are only small. Because DEM ~ p 2 the 
influence of hydrostatic equilibrium is to make the DEM-distribution a bit 
flatter at the high temperature end (see VDOZ). 
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point associated with the cool apex moves rapidly into the region where 
the coronal approximation breaks down. For g = # Θ we even stopped the 
computation because the apex temperature becomes almost zero. We con-
clude that inverted loop solutions do not exist for realistic values of the 
gravitational acceleration. The apex temperature lies necessarily at such 
low values that the radiative losses cannot be appropriately described by 
the optically thin radiative loss curve. In fact, it can be shown that if one 
integrates from a cool apex (e.g. T a = 3 104 K) towards the foot points, 
one cannot find solutions which at the base connect to the chromosphere 
(see VDOZ). 

5. Expanding loops 

The thermodynamical structure of expanding loops has been numerically 
investigated by VAU and Collier Cameron (1988). In order to compare the 
solutions for a varying cross-section with those of a constant cross-section 
it is useful to redefine the conductive flux. In Eq. (3) the conductive flux 
Fc(s) is defined as the flux through the whole cross-section of the loop at 
position s: Fc(s) = —A(s)KoT5/2(dT/ds) e r g s - 1 . Let us now define the 
flux per unit cross-section: Gc(s) = Fc(s)/A(s). Eqs. (3) and (4) can then 
be written as 

^ - — ^ L - (8) 

dGc ρ 2 φ(Τ) dlnA 

-dT-Eheat~W^--Gc~ds~ ( 9 ) 

These equations have the same form as Eqs. (3) and (4) except for the last 
term in Eq. (9) which accounts for the effects of expansion. Because in nor-
mal loops Gc < 0 the term — Gc(d\n A/ds) can be considered as an extra 
heat source in the system, a point already noted by VAU. Prom our previous 
discussion we can directly describe the effect of such an increased heating: 
for constant boundary conditions it lowers the temperature T a . Note how-
ever that Gc = 0 at the apex and, depending on the boundary conditions, 
also at the base. At Τ = 2], |G C | has a maximum but decreases rapidly 
towards T a . In a diagnostic diagram like Fig. la the effective 'heating5 func-
tion (J^heat — Gcd In A/ds)/p2 will first turn upward for Τ <T\ and then turn 
downward to approach ü^eat/p 2 at T a . The effect of loop expansion is most 
noticeable in the DEM-distribution given the DEM ~ A2/Fc = A/Gc de-
pendence which implies a steepening of the DEM. Because a DEM reflects 
mostly the ratio of lines formed at different temperatures, the observed ratio 
of 'hot' and 'cool' lines can be mimicked by allowing a loop expansion. 

A special class of solutions exist for exponentially expanding loops: 
A(s) = Abexp(s/H\) with H\ the scale height for the expansion of the 
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loop. In that case the system becomes autonomous and a local analysis 
can be made near the critical point. An important parameter is R = 
4 ( 7 + 2 ) t f 1

2 £ h e a t / ( * o ^ 3 ' 5 ) (for Φ ~ T ~ 7 ) . For R > 1 the critical point 
is a spiral point and for R < 1 a stable node point The typical trajecto-
ries for these cases are shown in Fig. 6. These solutions are first identified 
in VDOZ where a further discussion of the critical point analysis can be 
found. The solutions have several interesting properties: 1) T a = T\ so that 
for high values of ü?heat/p 2 cool apexes can be found; 2) all solutions with 
R > 1 have temperature inversions and for R < 1 temperature inversions 
are found for a finite conductive flux at the base; 3 ) because the phase space 
trajectories cross certain temperature ranges multiple times, the DEM will 
show a strong 'shoulder' starting near T a . These solutions are especially in-
teresting because they permit the formation/presence of cool filament-like 
plasma near the apex without the need of a radiative instability. We note 
that exponentially expanding flux tubes occur naturally in linear force-free 
arcades so that arcade-like structures may have a complicated thermody-
namical structure with strong X-ray emission coming from the apex or with 
cool material near the apex, depending on the value of i?heat/p 2 -

phase plane R - 0.4 (stable node point) phase plane R = 10 (spiral point) 

Figure 6. Phase space trajectories for an exponentially expanding loop. For these solu-
tions T a = Ti and the critical point (asterisk), for which the heating balances the radiative 
losses, is an attractor. The classification of the critical point depends on parameter R 
(see text). When R < 1 the critical point is a stable node point (a) and when R > 1 a 
spiral point ( b ) . 

6. Reversed gravity potentials 

A special situation exists when the gravitational acceleration changes sign 
somewhere along a loop. Such a situation exists for loops on fast rotating 
stars (see Collier Cameron 1988) and for loops in binary systems which 
experience the gravitational pull by the binary companion (see VDOZ). In 
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phase diagram diagnostic diagram 

Temperature (K) temperature (keV) 

Figure 7. Solutions for coronal loops on a rapidly rotating star with M = M © , R = RQ 
and the rotation period chosen in such a way that the co-rotation radius is located at 
Q.5RQ above the stellar surface. The boundary conditions at the base of the loop are 
T b = 3 10 4 K, ph = 1 dyne cm and -Fc,b = 0. The curves labeled (1) - (7) correspond 
to heating rates of 15,10,9,8,7,6,4 x 1 0 ~ 5 erg c m ~ 3 s _ 1 respectively, (a) Phase space tra-
jectories. The crosses indicate the position of the co-rotation radius. The dots indicate 
the apexes of loops with a temperature inversion. The co-rotation radius is found at 
increasingly lower increasingly lower values of Fc. (b ) Diagnostic diagram, (c) Run of 
the density as a function of the temperature, (d ) Differential emission measure for the 
solutions having a temperature inversion at the apex. 

such gravity potentials, loops with temperature inversions at their apex do 
exist under certain conditions. In that case the pressure first drops and then 
starts to increase again towards the apex so that i£heat/i>2 first increases 
and then decreases again. In Fig. 7 we show the diagnostic diagram and 
the phase plane for seven values of E^eat- For high values of î heat only 
hot apex solutions exist (crossing of Fc = 0 on the right; case 1). Con-
tinuing the integration for these solutions in the upper half of the phase 
plane shows that the cool solutions run into the region where the coronal 
approximation breaks down. Decreasing the heating makes a class of solu-
tions accessible which can have both hot or cool apexes (cases 2 - 5). By 
further decreasing the heating the (cool) apex temperature shifts towards 
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the maximum temperature in the loop until a heating rate is reached at 
which the cool and hot apex solutions coincide. This behaviour explains 
Fig. 1 of Collier Cameron (1988). For a further reduction of the heating no 
solutions at all can be found (cases 6 and 7) because the pressure starts 
to increase so rapidly, due to the reversed gravity, that the point where 
Fc = 0 cannot be reached. In Fig. 7c we show the run of the density with 
temperature for loops having a temperature inversion at their apex. These 
loops are characterized by a strong shoulder in the DEM (Fig. 7d) which 
can serve as a diagnostic tool. Intuitively one may argue that if the plasma 
in a loop experiences a reversed gravity (acceleration towards apex), that 
this would result in a strong increase of the density. This is in general not 
the case. Because dlnn/ds = dlnp/ds — dlnT/ds, a strong increase of the 
density can be expected when dlnp/ds > dlnT/ds. For hot apex solutions 
one generally finds that the reverse holds and ijhat the density continues 
to decrease despite that dlnp/ds > 0. Only for)loops with temperature 
inversions, for which dlnT/ds < 0, a considerable increase of the density 
towards the apex is found (see Fig. 7c). The shoulder in the DEM indicates 
that strong emission can be expected from such loops. In VDOZ we show 
that in Algols and RS CVn-systems loops, penetrating the Roche lobe of 
the companion star near the Li-point, can also have shoulders in the DEM 
due to the gravity reversal. This suggests that (relatively) strong emission 
can arise from the region in-between the stars. Note that if loops connect-
ing both stars exist in these systems, these loops will not show exceptional 
emission because each half-loop can be considered as a normal loop. 

7. Conclusions 

In this review we have discussed various aspects of the modeling of quasi-
static coronal loops. We demonstrated the use of the (T,FC) phase plane for 
showing the behaviour of the solutions and showed that a diagnostic dia-
gram, depicting J5heat/p2 and Φ(Τ)/(2&Τ) 2, is useful to identify the critical 
points of the system and to determine the sign of dFc/ds at a specific 
temperature. Our conclusions can be summarized as follows: 1) constant 
pressure loops or loops obeying hydrostatic equilibrium cannot have a tem-
perature inversion near their apex because the apex condition Fc = 0 cannot 
be satisfied at Τ < T\\ 2) as a consequence the thermal instability predicted 
by Hood and Priest (1979) does not exist; 3) the boundary conditions Tb 
and i 7 ^ must chosen in such a way that the corresponding phase plane 
trajectory connects to the chromosphere; 4) within the context of quasi-
static coronal loops, spectroscopic studies do not provide information on 
the heating mechanism, despite numerous claims in observing proposals. 
Below Tj heating is unimportant while the range T\ < Τ < T a is almost 

https://doi.org/10.1017/S0074180900083455 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900083455


Coronal loops and their modeling 447 

isothermal; 5) heating must take place near the apex of loops, and the 
heating and radiative losses can only balance at one temperature in a loop. 
Esoteric heating functions do not exist; 6) the loop cross-section A acts as 
an extra weighting function in the DEM so that by adjusting A almost any 
observed DEM can be mimicked. This limits the diagnostic capabilities of 
DEM analyses; 7) loop expansion make the DEM distribution steeper while 
hydrostatic equilibrium makes it less steep; 8) for exponentially expanding 
loops we presented new classes of solutions which predict strong emission 
from the apex of arcade structures, or the presence of cool material without 
the need of a thermal instability; 9) loops with a temperature inversion can 
only be found when there is a gravity reversal in the loop (fast rotating 
stars, in-between binary components). These loops have a strong shoulder 
in their DEM distribution indicating that strong emission can arise near 
the co-rotation radius of fast rotators or near the L\ point in binaries. In-
terconnecting loops in binaries do not have a temperature inversion because 
the direction of the gravitational acceleration is 'downward' in each of the 
loop-halves. 
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Bert van den Oord at one of the most important tasks of a scientific meeting: 
asking nasty questions. (He is good in that!). 
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