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A Finite-time Condition for Exponential
Trichotomy in Infinite Dynamical Systems

Arnaud Ducrot, Pierre Magal, and Ousmane Seydi

Abstract. In this article we study exponential trichotomy for infinite dimensional discrete time dy-
namical systems. The goal of this article is to prove that finite time exponential trichotomy conditions
allow us to derive exponential trichotomy for arbitrary times. We present an application to the case of
pseudo orbits in some neighborhood of a normally hyperbolic set.

1 Introduction

Consider the linear non-autonomous discrete time dynamical system

xn+1 = Anxn, for each n ≥ m,

xm = x ∈ X,

(1.1)

where x = {xn}n≥m is a sequence in a Banach space (X, ‖ · ‖) and A = {An}n∈Z

is a sequence in L(X), the space of bounded linear operators on X. The discrete
time evolution semigroup associated with the system (1.1), or equivalently, associ-
ated to the sequence of bounded linear operator A = {An}n∈Z ⊂ L(X), is defined as
{UA(n, p)}n≥p ⊂ L(X), which is a parametrized family of bounded linear operators
on X defined on

∆+ := {(n, p) ∈ Z2 : n ≥ p}
by

UA(n, p) :=

{
An−1 · · ·Ap if n > p,

I, if n = p.

In this work we will use the following notion of exponential dichotomy taken from
Hale and Lin [11].

Definition 1.1 Let I be an interval in Z and let A = {An}n∈I : I → L(X) be
a map. Then UA has an exponential dichotomy (or A is exponentially dichotomic)
on I with constant κ and exponents ρ > 0 if there exist two families of projectors
Π α = {Πα

n}n∈I : I→ L(X) with α = u, s satisfying the following properties.

(i) For n ∈ I and α, β ∈ {u, s}, we have Πs
n + Πu

n = I and if α 6= β, Πα
n Πβ

n = 0.
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(ii) For all n,m ∈ I with n ≥ m we have

Uα
A (n,m) := Πα

nUA(n,m) = UA(n,m)Πα
m for α = u, s.

(iii) U u
A(n,m) is invertible from Πu

m(X) into Πu
n(X) for all n ≥ m in I, and its inverse

is denoted by Uα
A (m, n) : Πα

n (X)→ Πα
m(X).

(iv) For each x ∈ X we have, for all n ≥ m in I,

‖U s
A(n,m)Πs

mx‖ ≤ κe−ρ(n−m)‖x‖,

‖U u
A(m, n)Πu

nx‖ ≤ κe−ρ(n−m)‖x‖.

We also introduce the following notion of a relatively dense subset of integers
taken from Palmer [15].

Definition 1.2 Let D = {θi}i∈Z ⊂ Z be a non-decreasing sequence of integers and
let T0 ∈ N�{0}.
(i) We will say that D is a relatively dense subset of integers for T0 if every interval

(in Z) of length T0 contains at least one point of D.
(ii) We will say that D is a T0-covering of Z if

Z =
⋃

i∈Z
[θi , θi + T0],

where [θi , θi + T0] is understood as an interval in Z.

Lemma 1.3 Properties (i) and (ii) in Definition 1.2 are equivalent.

Proof (i)⇒ (ii) Let n ∈ Z be given. Then [n − T0, n] is an interval of length T0

and there exists θi ∈ [n− T0, n] such that n ∈ [θi , θi + T0].
(ii) ⇒ (i) Let [n, p] be an interval of Z of length T0. Then one has [n, p] =

[n, n + T0]. By using (ii) and since p = n + T0 ∈ Z, we can find θi ∈ D such that
n + T0 ∈ [θi , θi + T0]. Therefore, θi ∈ [n, n + T0]. The proof is completed.

Continuing a recent work by Palmer [15] on the finite time condition for expo-
nential dichotomy, we will prove the following theorem.

Theorem 1.4 Let ρ > ρ̂ > 0 and κ ≥ 1. Let D = {θi}i∈Z be a T0-covering of Z. Let
A = {An}n∈Z ⊂ L(X) be a given sequence of bounded linear operators on a Banach
space X. Assume that ‖An‖L(X) ≤ K, for some positive real constant K > 0.

Then there exist two constants T̂ := T̂(T0,K, κ, ρ, ρ̂) > 0 and κ̂ := κ̂(K, κ, ρ) ≥ κ
such that for each T ≥ T̂, if A is exponentially dichotomic on each interval [θi , θi + T]
of Z (with constant κ ≥ 1 and exponent ρ > 0), then A is exponentially dichotomic on
Z (with constant κ̂ and exponent ρ̂).

Compared to [15, Theorem 2.1], one may observe that in Theorem 1.4 the invert-
ibility of the bounded linear operators An is not required. We also refer to Palmer
[18, Lemma 2.17] for early results on this topic. In [18, Lemma 2.17], Palmer con-
siders intervals of the form [(i − 1)m, im] (where m is a fixed positive integer) and
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assumes that the projectors {
Πiα

n , n ∈ [(i − 1)m, im]
}

for α = u, s are close at the endpoints, i.e., that the norm of Πiα
im − Π(i+1)α

im is small
enough. In Palmer [15] this condition is no longer required. Actually the closeness
of the projectors follows from the exponential dichotomy property on intervals large
enough (see Lemma 4.9). Nevertheless, the proof of Lemma 4.9 will be different from
Palmer [15] due to the non-invertibility of the linear operators.

We should also mention that there are various perturbation results using finite
time conditions. We refer to Henry [12, Theorem 7.6.8 p. 234], Sakamoto [25, The-
orem 4], Palmer [15–18], and Pötzsche [20] for more results on this subject.

Theorem 1.4 has many consequences, namely shadowing in dynamical systems,
robustness of hyperbolic sets (see also Sacker and Sell [23, Theorem 6] for spectral
theory approach), hyperbolicity along pseudo orbits, slowly varying systems, and
almost periodic systems (see for instance [15, Section 3] and [6]). This concept is
also the main tools in the theory of invariant hyperbolic sets and invariant normally
hyperbolic sets using Lyapunov-Perron approach. We refer the reader to Sakamoto
[24, 25] and Henry [12] for more results on this topic.

The main goal of this article is to extend Palmer’s [15] results from the exponential
dichotomy to the exponential trichotomy (see Section 2) for infinite dimensional
dynamical systems.

The plan of the article follows. In Section 2 we will present Theorem 2.3, which
is the main result. In section 3 we present an application of this theorem to study
the persistence of exponential trichotomy along pseudo orbits. Sections 4 and 5 are
devoted to the proofs of these results. In the spirit of Palmer’s work, in Section 6 we
apply Theorem 2.3 in the context of slowly varying systems, almost periodic systems,
and to a perturbation problem.

2 Main Results

Before presenting the main results of this article, we first need to define the notion of
exponential trichotomy. The notion used here is taken from Hale and Lin [11].

Definition 2.1 Let I be an interval of Z and let A = {An}n∈I : I → L(X) be a
map. Then UA has an exponential trichotomy (or A is exponentially trichotomic) on I
with constant κ and exponents 0 < ρ0 < ρ if there exist three families of projectors
Π α = {Πα

n}n∈I : I→ L(X) with α = u, s, c satisfying the following properties.

(i) For all n ∈ I and α, β ∈ {u, s, c}, we have

Πα
n Πβ

n = 0 if α 6= β, and Πs
n + Πu

n + Πc
n = I.

(ii) For all n ≥ m in I we have

Uα
A (n,m) := Πα

nUA(n,m) = UA(n,m)Πα
m for α = u, s, c.

(iii) Uα
A (n,m) is invertible from Πα

m(X) into Πα
n (X) for all n ≥ m in I, α = u, c and

its inverse is denoted by Uα
A (m, n) : Πα

n (X)→ Πα
m(X).
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(iv) For each x ∈ X we have

‖U c
A(n,m)Πc

mx‖ ≤ κeρ0|n−m|‖x‖

for all n,m ∈ I, and

‖U s
A(n,m)Πs

mx‖ ≤ κe−ρ(n−m)‖x‖,

‖U u
A(m, n)Πu

nx‖ ≤ κe−ρ(n−m)‖x‖

for n > m.

Remark 2.2 The above definition coincides with the Definition 1.1 whenever Πc
n =

0L(X), for all n ∈ I.

The main result of this article is the following theorem.

Theorem 2.3 Let ρ > ρ̂ > ρ̂0 > ρ0 > 0 and κ ≥ 1. Let D = {θi}i∈Z be a
T0-covering of Z. Let A = {An}n∈Z ⊂ L(X) be a given sequence of bounded linear
operators on a Banach space X. Assume that

‖An‖L(X) ≤ K, n ∈ Z,

for some positive real constant K > 0.
Then there exists T̂ := T̂(T0,K, κ, ρ, ρ̂, ρ0, ρ̂0) > 0 and κ̂ := κ̂(K, κ, ρ) ≥ κ such

that for each T ≥ T̂, if A is exponentially trichotomic on each intervals [θi , θi + T] of
Z (with constant κ exponents ρ and ρ0), then A is exponentially trichotomic on Z (with
constant κ̂ exponents ρ̂ and ρ̂0).

3 Application

In this section, we present an application of Theorem 2.3 to study the persistence of
the normal hyperbolicity along pseudo orbits for the discrete time dynamical system

xn+1 = F(xn), ∀n ≥ 0, x0 = x ∈ X,

whenever F : X → X is a continuously differentiable map on the Banach space X.
Recall that a sequence x= {xn}n∈Z ⊂ X is called a δ-pseudo-orbit for F if

(3.1) ‖xn+1 − F(xn)‖ ≤ δ, ∀n ∈ Z,

while we will say that x= {xn}n∈Z is a complete orbit for F if

xn+1 = F(xn), ∀n ∈ Z.

So a complete orbit is nothing but a δ-pseudo-orbit with δ = 0 in (3.1).
Next we recall the definition of normally hyperbolic invariant sets inspired by

Bates, Lu, and Zeng [1]. This notion plays a crucial role in the context of the theory
of geometric singular perturbation, and we refer the reader to [1,9,13] (and reference
therein) for more results.
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Definition 3.1 (Normally hyperbolic set) Let F : X → X be a continuously differ-
entiable map on the Banach space X. Let M ⊂ X be an invariant subset for F, that is,
F(M) = M. Then we will say that M ⊂ X is normally hyperbolic for F if the following
properties are satisfied.

(i) For each x ∈ M, there exist three closed subspaces Xα
x with α = s, c, u, such

that

(3.2) X = Xu
x ⊕ Xs

x ⊕ Xc
x

for each α = s, c, u, DF(x)(Xα
x ) ⊂ Xα

F(x), and for α = u, c, the map DF(x)|Xα
x

is
invertible from Xα

x into Xα
F(x).

(ii) There exist a constant κ ≥ 1 and rates 0 < ρ0 < ρ such that for each n ≥ 0 and
each x ∈ M,

‖DFn(x)|Xs
x
‖ ≤ κe−ρn,

1

κ
eρn ≤ inf{‖DFn(x)xu‖ : xu ∈ Xu

x and ‖xu‖ = 1},

and
1

κ
e−ρ0n ≤ inf{‖DFn(x)xc‖ : xc ∈ Xc

x and ‖xc‖ = 1}

≤ ‖DFn(x)|Xc
x
‖ ≤ κeρ0n,

where

‖DFn(x)|Xα
x
‖ = sup{‖DFn(x)x‖ : x ∈ Xα

x and ‖x‖ = 1} for α = s, c.

By using property (i) for each x ∈ M, we can define three projectors Πα
x for α =

u, s, c associated with the state decomposition (3.2). For each x ∈ M and each α ∈
{s, c, u}, these projectors are uniquely determined by

R(Πα
x ) = Xα

x and N(Πα
x ) =

⊕
α′∈{s,c,u}\{α}

Xα′

x .

Define an (open) ε-neighborhood of a subset M ⊂ X,

V(M, ε) := {x ∈ X : d(x,M) < ε},
where

d(x,M) := inf
y∈M
‖x − y‖.

One may equivalently define V(M, ε) as

V(M, ε) :=
⋃

x∈M
B(x, ε),

where
B(x, ε) := {y ∈ X : ‖x − y‖ < ε}.

Now we make the following assumption.

Assumption 3.2 Let F : X → X be a continuously differentiable map on the Banach
space X. Let M ⊂ X be an invariant subset for F. We assume the following:

(i) M is normally hyperbolic for F with the constant κ ≥ 1 and the rates 0 < ρ0 < ρ.
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(ii) There exists κ0 ≥ 1 such that

(3.3) sup
x∈M
‖Πα

x ‖L(X) ≤ κ0, α = s, c, u.

(iii) There exist K > 0 and ε0 > 0 such that the map x → DF(x) is uniformly
continuous from V(M, ε0) into L(X) and

‖F(x)− F(y)‖ ≤ K‖x − y‖ ∀x, y ∈ V(M, ε0),

sup
x∈M
‖DF(x)‖L(X) ≤ K.

Remark 3.3 Whenever V(M, ε0) is convex, assertion (iii) can be replaced by

sup
x∈V(M,ε0)

‖DF(x)‖L(X) ≤ K.

The main result of this section is the following proposition.

Proposition 3.4 Let Assumption 3.2 be satisfied. Let 0 < ρ0 < ρ̂0 < ρ̂ < ρ. There
exist two constants

δ0 := δ0(K, κ, κ0, ρ0, ρ, ρ̂0, ρ̂) > 0 and ε0 := ε0(K, κ, κ0, ρ0, ρ, ρ̂0, ρ̂) > 0,

such that for each δ ∈ [0, δ0), ε ∈ [0, ε0) if x={xn}n∈Z ⊂ V(M, ε) is a δ-pseudo-
orbit of F in the neighborhood V(M, ε) of M then DF(x) = {DF(xn)}n∈Z ⊂ L(X) is
exponentially trichotomic on Z with a constant κ̂ := κ̂(K, κ, ρ, ρ̂, ρ0, ρ̂0) and exponents
ρ̂0, ρ̂.

Remark 3.5 Under Assumption 3.2, for each complete orbit x = {xn}n∈Z of F
in M, the family of bounded linear operators DF(x) = {DF(xn)}n∈Z ⊂ L(X) is
exponentially trichotomic on Z with constant κ̃ := κκ0 and exponents ρ0, ρ.

4 Proof of Theorem 2.3

We will start this section by considering the case where A : Z→ L(X) is exponentially
trichotomic on intervals of the form

[(i − 1)m, im], i ∈ Z,

where m > 0 is some integer. We observe that Z is a disjoint union of the intervals
{[(i − 1)m, im[}i∈Z. Therefore,

Z =
⋃

i∈Z

[
(i − 1)m, im

[
=
⋃

i∈Z

[
(i − 1)m, im− 1

]
.

As we will see at the end of this section, this is not a real restriction for the proof of
Theorem 2.3. In order to clarify the notion of exponential trichotomy on a family of
intervals, we introduce the following definition.

Definition 4.1 Let m > 0 be an integer. We will say that a sequence of bounded
linear operators A = {An}n∈Z ⊂ L(X) is exponentially trichotomic on the family of
intervals {[(i − 1)m, im] : i ∈ Z} with uniform constant κ and uniform exponents
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ρ > 0 and ρ0 ∈ (0, ρ) if on each interval [(i − 1)m, im] the following properties are
satisfied:

(i) There exist three families of projectors {Πiα
n , n ∈ [(i−1)m, im]} ⊂ L(X), with

α = u, s, c, such that for each n ∈ [(i − 1)m, im]

Πiα
n Πiβ

n = 0 if α 6= β, and Πis
n + Πic

n + Πiu
n = I.

(ii) For all n, p ∈ [(i − 1)m, im] with n ≥ p, we have

U iα
A (n, p) := Πiα

n UA(n, p) = UA(n, p)Πiα
p for α = u, s, c.

(iii) The map U iα
A (n, p) is invertible from Πiα

p (X) into Πiα
n (X) for all n ≥ p in [(i −

1)m, im] and α = u, c, and its inverse is denoted by

U iα
A (p, n) : Πα

n (X)→ Πα
p (X).

(iv) For each x ∈ X, we have for all n, p ∈ [(i − 1)m, im]

(4.1) ‖U ic
A (n, p)Πic

p x‖ ≤ κeρ0|n−p|‖x‖,

and if n ≥ p, then

(4.2) ‖U is
A (n, p)Πis

p x‖ ≤ κe−ρ(n−p)‖x‖,

(4.3) ‖U iu
A (p, n)Πiu

n x‖ ≤ κe−ρ(n−p)‖x‖.

Remark 4.2 Let us note that due to condition (iv), we have for each i ∈ Z and each
n ∈ [(i − 1)m, im],

(4.4) ‖Πiα
n ‖L(X) ≤ κ, α = u, s, c.

The proof of the following theorem is given in Appendix A. An extended version
has been proved recently in Ducrot, Magal, and Seydi [8, Theorem 1.8].

Theorem 4.3 (Perturbation) Let A : Z→L(X) be given. Assume that A is exponen-
tially trichotomic on Z with constant κ, exponents 0 < ρ0 < ρ, and associated with
the three families of projectors {Π α : Z → L(X)}α=s,c,u. Let ρ0 < ρ̂0 < ρ̂ < ρ and
κ̂ > 2κ be given. Then there exists δ0 := δ0(ρ0, ρ̂0, ρ̂, ρ, κ, κ̂) ∈ (0, 1) such that for
each each B : Z→ L(X) with supn∈Z ‖Bn‖L(X) ≤ δ, the sequence A+B is exponentially
trichotomic on Z with constant κ̂2 and exponents ρ̂, ρ̂0.

An easy consequence of the above theorem is the following corollary.

Corollary 4.4 Let I be an interval (finite or infinite) in Z and let A = {An}n∈I : I→
L(X) be a map. Assume that A is exponentially trichotomic on I with constant
κ, exponents 0 < ρ0 < ρ, and associated with the three families of projectors
{Π α : Z→ L(X)}α=s,c,u. Let ρ0 < ρ̂0 < ρ̂ < ρ and κ̂ > 2κ be given. Then there
exists δ > 0 such that for each B : Z→ L(X) with

sup
n∈I
‖Bn‖L(X) ≤ δ,

https://doi.org/10.4153/CJM-2014-023-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-023-3


1072 A. Ducrot, P. Magal, and O. Seydi

the sequence A + B ={An + Bn}n∈I is exponentially trichotomic on I with constant κ̂2

and exponents ρ̂, ρ̂0.

Proof Define

n− := inf{k : k ∈ I} and n+ := sup{k : k ∈ I}.

We will give the arguments for the case n+ < +∞ and n− = −∞. The remaining
cases hold similarly. Define the following sequences of bounded linear operators

An :=

{
An, if n < n+,

e−ρΠs
n+

+ eρΠu
n+

+ Πc
n+
, if n ≥ n+,

and

Bn:= 1I(n)Bn, ∀n ∈ Z,

where 1I( · ) is the characteristic function on I. Then the sequences A and B trivially
satisfy the conditions of Theorem 4.3. Hence the result follows by applying Theorem
4.3 with A and B and using the fact that An + Bn = An + Bn for all n ∈ (−∞, n+ − 1].

In the next lemma we will show that if A = {An}n∈Z ⊂ L(X) is exponentially
trichotomic on the family of intervals {[i − 1m, im]}i∈Z (m a positive integer large
enough) and the norm of Πiα

im − Π(i+1)α
im , i ∈ Z is small, then A is exponentially

trichotomic on Z. This lemma generalizes [15, Lemma 2.3].

Lemma 4.5 Let ρ > ρ̂ > ρ̂0 > ρ0 > 0, κ ≥ 1 and K ≥ 1 be fixed. Define

(4.5)
κ̃ := max{2κ3eρ+ρ0 , (3κK + K)κ}

m0 := max
{

2,
2

ρ− ρ̂
ln κ̃,

2

ρ̂0 − ρ0
ln κ̃
}
.

Let A = {An}n∈Z ⊂ L(X) be a sequence of bounded linear operators on X. Assume that

(i)

(4.6) sup
n∈Z
‖An‖L(X) ≤ K.

(ii) There exists an integer m ≥ m0 such that A = {An}n∈Z ⊂ L(X) is exponentially
trichotomic on the family of intervals {[(i − 1)m, im] : i ∈ Z} with uniform
constant κ and uniform exponents ρ and ρ0.

Then there exist two constants

κ̂ := κ̂(K, κ, ρ, ρ0) > 2κ̃2 and η0 := η0(ρ0, ρ̂0, ρ̂, ρ, κ, κ̂,K) ∈ (0,
√

2− 1)

such that

‖Πiα
im −Π(i+1)α

im ‖L(X) ≤ η0, ∀i ∈ Z, ∀α = u, s, c,

implies that A = {An}n∈Z ⊂ L(X) is exponentially trichotomic on Z with constant κ̂2

and exponents ρ̂ and ρ̂0.
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In order to prove Lemma 4.5, we will need the following auxiliary lemma (see
[8, Lemma 2.1] or [1, Lemma 4.1]).

Lemma 4.6 Let Π : X → X and Π̂ : X → X be two bounded linear projectors on a
Banach space X. Assume that

‖Π− Π̂‖L(X) < δ with 0 < δ <
√

2− 1.

Then Π is invertible from Π̂(X) into Π(X) and

‖(Π|Π̂(X))
−1x‖ ≤ 1

1− δ
‖x‖, ∀x ∈ Π(X).

Remark 4.7 By symmetry, the bounded linear projector Π̂ is also invertible from
Π(X) into Π̂(X) and∥∥ (Π̂|Π(X))

−1x
∥∥ ≤ 1

1− δ
‖x‖, ∀x ∈ Π̂(X).

Proof of Lemma 4.5 The principle of the proof is to construct an auxiliary se-
quence of bounded linear operators A : Z→L(X) and three families of projectors
{Π α}α=u,s,c ⊂ L(X), such that A is exponentially trichotomic on Z, and A is close
to A.

To do so let m ≥ m0 be the positive integer defined in the assumption of
Lemma 4.5. Recall that for each i ∈ Z, A is exponentially trichotomic on
[(i − 1)m, im], with uniform constant κ and uniform exponents ρ > 0, ρ0 ∈ (0, ρ)
and projectors {Πiα

n , n ∈ [(i − 1)m, im]} ⊂ L(X), α = u, s, c satisfying properties
(i)–(iv) in Definition 4.1.

We define a family of bounded linear projectors {Πα

n}n∈Z ⊂ L(X), α = u, s, c,
given on each interval [(i − 1)m, im[= [(i − 1)m, im− 1] of Z by

(4.7) Π
α

n := Πiα
n , for (i − 1)m ≤ n ≤ im− 1.

It follows that

(4.8) Π
α

im = Π(i+1)α
im , ∀i ∈ Z.

We define A : Z→L(X) on each interval [(i − 1)m, im[= [(i − 1)m, im− 1] of Z by

(4.9) An :=

An, if n ∈ [(i − 1)m, im− 2],∑
α=u,s,c

Π(i+1)α
im Aim−1Π

iα
im−1 if n = im− 1.

Next we will prove that A ={An}n∈Z ⊂ L(X) is exponentially trichotomic with pro-
jectors {Π α}α=u,s,c and that A is close to A.

To do so, we verify properties (i)–(iv) stated in Definition 2.1. Without loss of
generality, we can assume that η0 ∈ (0, 1/2), and that

(4.10) ‖Πiα
im −Π(i+1)α

im ‖L(X) ≤ η0, ∀i ∈ Z and α = u, s, c.

https://doi.org/10.4153/CJM-2014-023-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-023-3


1074 A. Ducrot, P. Magal, and O. Seydi

Proof of (i) From (4.7) for each n ∈ Z we have

Π
u
n + Π

s
n + Π

c
n = IL(X) and Π

β

n Π
α

n = 0L(X) for α, β ∈ {u, s, c} with α 6= β,

and property (i) is satisfied.

Proof of (ii) We will prove that

(4.11) Π
α

n+1An = AnΠ
α

n , ∀n ∈ Z and α = u, s, c,

or equivalently

(4.12) Uα
A

(n, p) := UA(n, p)Π
α

p = Π
α

nUA(n, p), ∀n ≥ p and α = u, s, c.

Let n ∈ Z be given. Let i ∈ Z be given such that n ∈ [(i − 1)m, im[. If (i − 1)m ≤
n + 1 < im, that is, n 6= im − 1, then by using (4.7) and (4.9), property (4.11) is
clearly verified.

If n + 1 = im ( i.e., n = im−1), one has from (4.8)–(4.9) that for each α = u, s, c,

Π
α

n+1An = Π
α

imAim−1

= Π(i+1)α
im

∑
β=u,s,c

Π(i+1)β
im Aim−1Π

iβ
im−1

= Π(i+1)α
im Aim−1Π

iα
im−1

=
[ ∑
β=u,s,c

Π(i+1)β
im Aim−1Π

iβ
im−1

]
Πiα

im−1

= Aim−1Π
iα
im−1,

so we obtain

Π
α

n+1An = Aim−1Π
iα
im−1 = Aim−1Π

α

im−1 = AnΠ
α

n , ∀α = u, s, c.

Proof of (iii) We need to prove that for each n ≥ p and each α = u, c, the linear
operator Uα

A
(n, p) is invertible from Π

α

p (X) into Π
α

n (X). Due to the definition of the
evolution semigroup Uα

A
in (4.12) it is sufficient to prove that for each n ∈ Z and

each α = u, c, the operator AnΠ
α

n is invertible from Π
α

n (X) into Π
α

n+1(X). But on
each interval [(i − 1)m, im[, i ∈ Z , the operator

AnΠ
α

n = AnΠiα
n , with n ∈ [(i − 1)m, im[ and n 6= im− 1,

is invertible from Π
α

n (X) = Πiα
n (X) into Π

α

n+1(X) = Πiα
n+1(X). Therefore, it is suf-

ficient to prove that Aim−1Π
α

im−1 is invertible from Π
α

im−1(X) = Πiα
im−1(X) into

Π
α

im(X) = Π(i+1)α
im (X). But due to (4.9), we have

Aim−1Π
α

im−1 = Π(i+1)α
im Aim−1Π

iα
im−1, ∀i ∈ Z and α = u, s, c,

hence

Aim−1Π
α

im−1 = Π(i+1)α
im Aim−1, ∀i ∈ Z and α = u, s, c.

But by assumption, Aim−1 is invertible from Π
α

im−1(X) = Πiα
im−1(X) into Πiα

im(X),
and since

‖Πiα
im −Π(i+1)α

im ‖L(X) <
√

2− 1,
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we deduce from Lemma 4.6, that Π(i+1)α
im is invertible from Πiα

im(X) into Π(i+1)α
im (X).

Therefore, Aim−1 is invertible from Πiα
im−1(X) into Π(i+1)α

im (X), and

(Aim−1Π
α

im−1)−1 = (Aim−1Π
iα
im−1)−1[Π(i+1)α

im ]−1, ∀i ∈ Z and α = u, c;

[Π(i+1)α
im ]−1 : Π(i+1)α

im (X) → Πiα
im(X) is the inverse of Π(i+1)α

im : Πiα
im(X) → Π(i+1)α

im (X).
So we deduce that for each n ≥ p and each α = u, c, the operator Uα

A
(n, p) is

invertible from R(Π
α

p ) into R(Π
α

n ), and its inverse is defined by

Uα
A

(p, n) : R(Π
α

n )→ R(Π
α

p ).

More precisely, for each i ∈ Z and each α = u, c the inverse of Uα
A

(im, im − 1) is
given by

Uα
A

(im− 1, im) : R(Π
α

im)→ R(Π
α

im−1),

which is defined by

Uα
A

(im− 1, im) = U iα
A (im− 1, im)[Π(i+1)α

im ]−1, ∀i ∈ Z and α = u, c,

and by using Lemma 4.6 again combined with (4.10), we also deduce that for each
i ∈ Z and each α = u, c

(4.13) ‖Uα
A

(im− 1, im)Π
α

im‖L(X) ≤
κ2eρ0

1− η0
≤ 2κ2eρ0 , ∀η0 ∈ (0, 1/2).

Closeness of A and A Let us now give some estimate of the supremum norm of A−
A. By using (4.9) we have

sup
n∈Z
‖An − An‖L(X) = sup

i∈Z
‖Aim−1 − Aim−1‖L(X).

But

‖Aim−1 − Aim−1‖L(X) = ‖
∑

α=u,s,c
Πiα

imAim−1 −
∑

α=u,s,c
Π(i+1)α

im Aim−1‖L(X)

= ‖
∑

α=u,s,c
[Πiα

imAim−1Π
iα
im−1 −Π(i+1)α

im Aim−1Π
iα
im−1]‖L(X)

≤
∑

α=u,s,c
‖Πiα

im −Π(i+1)α
im ‖L(X)‖Aim−1Π

iα
im−1‖L(X)

≤
∑

α=u,s,c
‖Πiα

im −Π(i+1)α
im ‖L(X)‖Aim−1‖L(X)‖Πiα

im−1‖L(X).

So by using (4.4), (4.6), and (4.10) we deduce that

(4.14) sup
n∈Z
‖An − An‖L(X) ≤ 3κKη0, ∀η0 ∈ (0,

√
2− 1),

and by using (4.6) and (4.14) we obtain

(4.15) sup
n∈Z
‖An‖L(X) ≤ sup

n∈Z
‖An − An‖L(X) + sup

n∈Z
‖An‖L(X) ≤ 3κK + K.

Proof of (iv) We will proceed in three steps to provide some growth rate estimates
for UA.
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Step 1. Let i ∈ Z be given. Let n, p ∈ [(i − 1)m, im] be such that

(i − 1)m ≤ p ≤ n < im.

Then we have

Uα
A

(n, p) = UA(n, p)Π
α

p = UA(n, p)Πiα
p = U iα

A (n, p), for α = u, s, c.

Hence we deduce from (4.1), (4.2), and (4.3) that for (i − 1)m ≤ p ≤ n < im,

‖U s
A

(n, p)‖L(X) ≤ κe−ρ(n−p), ‖U u
A

(p, n)‖L(X) ≤ κe−ρ(n−p),

‖U c
A

(n, p)‖L(X) ≤ κeρ0(n−p), ‖U c
A

(p, n)‖L(X) ≤ κeρ0(n−p).

Step 2. Let i ∈ Z be given. Let n, p ∈ [(i − 1)m, im] be such that (i − 1)m ≤ p ≤
n = im. First note that we have

Uα
A

(im, p) = Π
α

im = Π
(i+1)α
im if p = im,

Uα
A

(im, p) = Uα
A

(im, im− 1)U iα
A (im− 1, p) = Aim−1U iα

A (im− 1, p), if p < im.

Therefore it follows from the Step 1 and (4.15) that

‖U s
A

(n, p)‖L(X) ≤ (3κK + K)eρκe−ρ(im−p),

‖U c
A

(n, p)‖ ≤ (3κK + K)κe−ρ0 eρ0(im−p).

Note that one has for α = u, c,

Uα
A

(p, im) =

{
Π
α

im = Π
(i+1)α
im if p = im,

U iα
A (p, im− 1)Uα

A
(im− 1, im) if p < im,

so that we deduce from Step 1 and (4.13) that

‖U u
A

(p, n)‖ ≤ 2κ2eρ0κeρe−ρ(im−p) and ‖U u
A

(p, n)‖ ≤ 2κ2eρ0κe−ρ0 e−ρ(im−p).

Step 3. We can summarize Steps 1 and 2 as follows for each i ∈ Z and each n, p ∈
[(i − 1)m, im] with n ≥ p, we have

‖U s
A

(n, p)‖L(X) ≤ κ̃e−ρ(n−p), ‖U u
A

(p, n)‖L(X) ≤ κ̃e−ρ(n−p),

‖U c
A

(n, p)‖L(X) ≤ κ̃eρ0(n−p), ‖U c
A

(p, n)‖L(X) ≤ κ̃eρ0(n−p),

where κ̃ is defined in (4.5).
Now let n, p ∈ Z with n > p be given. Then there exists j ≤ i such that

( j − 1)m ≤ p ≤ jm and (i − 1)m ≤ n ≤ im.

Since the case j = i is already studied in Step 1 and Step 2, it is sufficient to study the
case j ≤ i − 1. In fact if j ≤ i − 1, one has for α = s

‖U s
A

(n, p)‖ = ‖U s
A

(n, (i − 1)m)U s
A

((i − 1)m, jm)U s
A

( jm, p)‖
≤ ‖U s

A
(n, (i − 1)m)‖‖U s

A
((i − 1)m, jm)‖‖U s

A
( jm, p)‖

≤ κ̃e−ρ(n−(i−1)m)(κ̃e−ρ)(i−1)m− jmκ̃e−ρ( jm−p)

≤ κ̃2κ̃i−1− je−ρ(n−p),
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and since (i − 1− j)m ≤ n− p and κ̃ ≥ 1, one obtains

‖U s
A

(n, p)‖ ≤ κ̃2(e−ρκ̃
1
m )n−p ≤ κ̃2e−(ρ− 1

m ln κ̃)(n−p).

Similarly, we also obtain

‖U c
A

(n, p)‖ ≤ κ̃2e(ρ0+ 1
m ln κ̃)(n−p),

‖U c
A

(p, n)‖ ≤ κ̃2e(ρ0+ 1
m ln κ̃)(n−p),

‖U u
A

(n, p)‖ ≤ κ̃2e−(ρ− 1
m ln κ̃)(n−p).

Now note that since m ≥ m0 with m0 defined in (4.5), one has the inequality

ρ0 +
1

m
ln κ̃ <

ρ̂0 + ρ0

2
<
ρ̂ + ρ

2
< ρ− 1

m
ln κ̃.

Therefore, one can claim that A is exponentially trichotomic with constant κ̃2, expo-
nents ρ̂0+ρ0

2 and ρ̂+ρ
2 . The proof is complete.

Remark 4.8 Note that in Lemma 4.5, condition (4.6) can be replaced by

(4.16) ‖AnΠiu
n ‖L(X) ≤ K, ∀i ∈ Z and n ∈ [(i − 1)m, im[.

In fact by using (4.1), (4.3) and (4.16), we deduce that for each i ∈ Z and n ∈
[(i − 1)m, im[,

‖An‖L(X) ≤ ‖AnΠiu
n ‖L(X) + ‖AnΠis

n‖L(X) + ‖AnΠic
n ‖L(X)

≤ K + κe−ρ + κeρ0 .

The next lemma will allow us to derive the closeness of the projectors. This lemma
generalizes [15, Lemma 2.2], but this proof is different, since the linear operators are
not invertible.

Lemma 4.9 Let κ > 0, 0 < ρ0 < ρ be given and let l > 0 be an integer. Let a, b ∈ Z
such that b − a ≥ 2l. Assume that there exist two families of projectors {Π α}α=u,s,c

and {Π α}α=u,s,c such that A = {An}n∈Z ⊂ L(X) has two exponential trichotomies
on [a, b] ∩ Z, with constant κ, exponents 0 < ρ0 < ρ, with respect to both families of
projectors. Then we have

(4.17) sup
n∈[a+l,b−l]∩Z

‖Πα

n −Πα
n‖L(X) ≤ 6κ3e−(ρ−ρ0)l.

Proof Let n ∈ [a + l, b − l] be given. Denote by UA the evolution semigroup as-
sociated to A. For each α = u, c and each n, p ∈ [a, b] with n ≥ p, we defined
U
α
A(p, n) : Π

α

n (X)→ Π
α

p (X) the inverse of the bounded linear operator

UA(n, p)Π
α

p : Π
α

p (X)→ Π
α

n (X).

We claim that

‖Πs
nx‖ ≤ κ2e−(ρ−ρ0)l‖x‖, ∀x ∈ Πα

n (X), ∀α = u, c.
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Let x ∈ Πα
n (X) with α = u, c. We have

x = Πα
n x = UA(n, n− l)Uα

A (n− l, n)x,

which implies

Π
s
nx = UA(n, n− l)Π

s
n−lU

α
A (n− l, n)x,

hence
‖Πs

nx‖ ≤ κ2e−(ρ−ρ0)l‖x‖.
Similarly, by using Πs

n and U
α
A(n − l, n) instead of Π

s
n and Uα

A (n − l, n), we obtain
that

(4.18) ‖Πs
nx‖ ≤ κ2e−(ρ−ρ0)l‖x‖, ∀x ∈ Π

α

n (X), ∀α = u, c.

Next we claim that

(4.19) ‖Πu
nx‖ ≤ κ2e−(ρ−ρ0)l‖x‖, ∀x ∈ Π

α

n (X), ∀α = s, c.

Let x ∈ Π
α

n (X) be given with α = s, c. Then

Πu
nx = U u

A(n, n + l)UA(n + l, n)x = U u
A(n, n + l)UA(n + l, n)Π

α

n x,

so that
‖Πu

nx‖ ≤ κ2e−(ρ−ρ0)l‖x‖,
and we obtain in a similar way that

‖Πu
nx‖ ≤ κ2e−(ρ−ρ0)l‖x‖, ∀x ∈ Πα

n (X), ∀α = u, c.

Finally we claim that

(4.20) ‖Πc
nx‖ ≤ κ2e−(ρ−ρ0)l‖x‖, ∀x ∈ Π

α

n (X), ∀α = u, c.

Let x ∈ Π
u
n(X) be given. Then one has

x = Πu
nx = UA(n, n− l)U

u
A(n− l, n)x,

which implies that
Πc

nx = U c
A(n, n− l)U

u
A(n− l, n)x,

thus
‖Πc

nx‖ ≤ κ2e−(ρ−ρ0)l‖x‖.
Let x ∈ Π

s
n(X) be given. Then

Πc
nx = U c

A(n, n + l)UA(n + l, n)x = U c
A(n, n + l)UA(n + l, n)Π

s
nx,

and we obtain
‖Πc

nx‖ ≤ κ2e−(ρ−ρ0)l‖x‖.
Now we prove inequality (4.17).

Let x ∈ X be given. Then we have

‖[Πs
n −Πs

n]x‖ = ‖[I −Πs
n]Π

s
nx −Πs

n[I −Π
s
n]x‖

= ‖[Πc
n + Πu

n]Π
s
nx −Πs

n[Π
c
n + Π

u
n]x‖

≤ ‖Πc
nΠ

s
nx‖ + ‖Πu

nΠ
s
nx‖ + ‖Πs

nΠ
c
nx‖ + ‖Πs

nΠ
u
nx‖.
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Hence by (4.18), (4.19), and (4.20), we obtain

‖[Πs
n −Πs

n]x‖ ≤ κ2e−(ρ−ρ0)l
[
‖Πs

nx‖ + ‖Πs
nx‖ + ‖Πc

nx‖ + ‖Πu
nx‖
]

(4.21)

≤ 3κ3e−(ρ−ρ0)l‖x‖.

Similarly we have

‖[Πu
n −Πu

n]x‖ = ‖Πc
nΠ

u
nx + Πs

nΠ
u
nx −Πu

nΠ
c
nx −Πu

nΠ
s
nx‖(4.22)

≤ ‖Πc
nΠ

u
nx‖ + ‖Πs

nΠ
u
nx‖ + ‖Πu

nΠ
c
nx‖ + ‖Πu

nΠ
s
nx‖

≤ κ2e−(ρ−ρ0)l[‖Πu
nx‖ + ‖Πu

nx‖ + ‖Πc
nx‖ + ‖Πs

nx‖]

≤ 3κ3e−(ρ−ρ0)l‖x‖.

Since Π
c
n = I − Π

u
n − Π

s
n and Πc

n = I − Πu
n − Πs

n, we obtain from (4.21) and (4.22)
that

‖[Πc
n −Πc

n]x‖ ≤ 6κ3e−(ρ−ρ0)l‖x‖.

The proof is complete.

Proof of Theorem 2.3 Let D = {θi}i∈Z be a T0-covering of Z. Therefore from Def-
inition 1.2 one knows that for each interval of Z of length T0 there exists some θi in
this interval. Let T > 3T0 be an integer that is assumed to be divisible by 6. Assume
that A is exponentially trichotomic on each interval [θ j , θ j + T].

Let n ∈ Z be given. Since T > 3T0, it follows that the interval [n− T
3 , n] contains

at least one θ j ∈ D, and[
n, n +

T

2

]
⊂ [θ j , θ j + T],

[
n +

T

6
, n +

2T

6

]
⊂ [θ j , θ j + T].

Since n is an arbitrary integer, by choosing n = i T
6 for some integer i ∈ Z, there exists

an integer j ∈ Z such that[
i
T

6
, i

T

6
+

T

2

]
=
[

i
T

6
, i

T

6
+

3T

6

]
⊂ [θ j , θ j + T].

Assuming that A is exponentially trichotomic on [θ j , θ j + T], it follows that A is also
exponentially trichotomic on[

(i + 1)
T

6
, (i + 2)

T

6

]
, ∀i ∈ Z,

and the exponential trichotomy can be extended to the interval[
i
T

6
, (i + 2)

T

6
+

T

6

]
.

Now since T > 3T0 can be chosen arbitrarily large, the result follows from Lemma
4.5 and Lemma 4.9.
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5 Proof of Proposition 3.4

Before proving Proposition 3.4, we first prove Remark 3.5. This remark will be useful
during the proof of Proposition 3.4.

Claim 5.1 We claim that if x = {xn}n∈Z is a complete orbit of F in M, then the
evolution semigroup Ux := UDF(x) associated with DF(x) = {DF(xn)}n∈Z has an ex-
ponential trichotomy with constant κκ0 and exponents ρ0, ρ.

Let x be a complete orbit of F in M. By (4.2) and Definition 3.1(i) we can find
three families of projectors {Πα

xn
}n∈Z, α = u, s, c satisfying

(5.1) Πα
xn

Πα′

xn
= 0 if α′ 6= α and Πu

xn
+ Πs

xn
+ Πc

xn
= I.

Recall that the evolution semigroup Ux associated with DF(x) is defined by

Ux(n, p) :=

{
DF(xn−1) · · ·DF(xp) if n > p,

I if n = p.

Observe that since x is a complete orbit of F, by Definition 3.1(i), one has that for
each n ∈ Z,

Πα
F(xn)DF(xn)Πα

xn
= DF(xn)Πα

xn
,

(5.2) Πα
xn+1

DF(xn)Πα
xn

= DF(xn)Πα
xn
.

Hence (5.2) combined with (5.1) implies that for each n ∈ Z and each α = u, s, c,

(5.3) Πα
xn+1

DF(xn) = Πα
xn+1

DF(xn)Πα
xn

and (5.2) combined with (5.3) yields

(5.4) Πα
xn+1

DF(xn) = DF(xn)Πα
xn
, ∀n ∈ Z.

Therefore by using (5.4) one can deduce that for each n ≥ p and each α = u, s, c

Uα
x (n, p) := Πα

xn
Ux(n, p) = Ux(n, p)Πα

xp
= DF(xn−1)Πα

xn−1
· · ·DF(xp)Πα

xp
.

By using Definition 3.1(i) again we have for each n ≥ p and each α = u, c that the
bounded linear operator Uα

x (n, p) : Πα
xp

(X)→ Πα
xn

(X) is invertible. Define its inverse
as

Uα
x (p, n) : Πα

xn
(X)→ Πα

xp
(X).

By observing that
Ux(n, p) = DFn−p(xp), ∀n ≥ p,

we obtain from Definition 3.1(ii) and (3.3) that for each n ≥ p,

‖U s
x(n, p)‖L(X) ≤ κκ0e−ρ(n−p),

‖U u
x (p, n)‖L(X) ≤ κκ0e−ρ(n−p),

and for each (n, p) ∈ Z2,

‖U c
x(n, p)‖L(X) ≤ κκ0eρ0|n−p|.

This proves the exponential trichotomy for Ux.
We now turn to the proof of Proposition 3.4.
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Claim 5.2 Let 0 < ρ0 < ρ̂0 < ρ̂ < ρ be given. We claim that if z ={zn}n∈Z is a
δ-pseudo-orbit of F in a neighborhood V(M, ε) of M for some ε and δ small enough,
then the evolution semigroup Uz := UDF(z) associated with DF(z) = {DF(zn)}n∈Z has
an exponential trichotomy with constant κ̂ and exponents ρ̂0 and ρ̂.

Proof of Claim 5.2 First recall that, by Claim 5.1, for each complete orbit x =
{xn}n∈Z of F in M, the evolution semigroup Ux associated with DF(x) has an expo-
nential trichotomy with constant κ ≥ 0 and exponents 0 < ρ0 < ρ. Let z ={zn}n∈Z

be a δ-pseudo orbit of F lying in a neighborhood V(M, ε) of M. Then there exists a
sequence z ={zn}n∈Z ⊂ M such that

‖zn − zn‖ ≤ ε, ∀n ∈ Z.

Let us prove that z ={zn}n∈Z ⊂ M is a pseudo orbit of F in M. In fact by using
Assumption 3.2(iii) we have

‖zn+1 − F(zn)‖ ≤ ‖zn+1 − zn+1‖ + ‖zn+1 − F(zn)‖ + ‖F(zn)− F(zn)‖
≤ ε + δ + Kε,

so that z ={zn}n∈Z is a ε(1 + K) + δ-pseudo orbit of F in M. Next let θ ∈ Z and T
be a positive integer. Consider the complete orbit x given by xn = Fn−θ(zθ) for each
n ∈ Z with the notation zθ = F0(zθ). Then since z is a ε(1 + K) + δ-pseudo orbit of
F in M, one has

‖xθ+2 − zθ+2‖ = ‖F2(zθ)− zθ+2‖
≤ ‖F(F(zθ))− F(zθ+1)‖ + ‖F(zθ+1)− zθ+2‖
≤ K‖F(zθ)− zθ+1‖ + ‖F(zθ+1)− zθ+1‖
≤ K[ε(1 + K) + δ] + ε(1 + K) + δ.

By induction one can easily derive that for each k ∈ [0,T]

‖xθ+k − zθ+k‖ ≤ (1 + K + · · · + Kk−1)[ε(1 + K) + δ]

≤ (1 + K + · · · + KT−1)[ε(1 + K) + δ].

Since by Assumption 3.2 the map x → DF(x) is uniformly continuous on V(M, ε0),
we can define the modulus of continuity of x→ DF(x), which is a map ω : [0, ε0]→
[0,+∞) defined by

ω(ε) := sup
x,y∈V(M,ε0)
‖x−y‖≤ε

‖DF(x)− DF(y)‖.

Thus one gets for each k ∈ [0,T],

‖DF(xθ+k)− DF(zθ+k)‖ ≤ ω((1 + K + · · · + KT−1)[ε(1 + K) + δ]).

Therefore we obtain that

‖DF(xθ+k)− DF(zθ+k)‖
≤ ‖DF(xθ+k)− DF(zθ+k)‖ + ‖DF(zθ+k)− DF(zθ+k)‖(5.5)

≤ ω(ε) + ω((1 + K + · · · + KT−1)[ε(1 + K) + δ]).
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Next observe that

DF(z) = DF(x) + [DF(z)− DF(x)].

Recalling that the evolution semigroup Ux has an exponential trichotomy on Z and
writing (5.5) as

sup
k∈[θ,θ+T]

‖DF(xk)− DF(zk)‖ ≤ ω(ε) + ω((1 + K + · · · + KT−1)[ε(1 + K) + δ]),

Corollary 4.4 applies and ensures, for δ and ε sufficiently small, depending only on
K, κ, ρ0, ρ, ρ̂0, ρ̂, and T, that Uz has an exponential trichotomy on [θ, θ + T] with
constant κ = (2κ + 1)2, exponents ρ+ρ̂

2 , ρ0+ρ̂0

2 ∈ (0, ρ+ρ̂
2 ) and projectors {Πα

n}n∈Z

with α = u, s, c.
We now complete the proof by applying Theorem 2.3. To do so, first note that

since Uz has exponential trichotomy on each [θ, θ + T] with θ ∈ Z whenever δ and ε
sufficiently small, one can use Z as a relative dense subset of integers or equivalently
a 1-covering. Furthermore, we also note that

ρ0 + ρ̂0

2
< ρ̂0 < ρ̂ <

ρ + ρ̂

2
,

and since the choice of δ and ε depend only on K, κ, ρ0, ρ, ρ̂0, ρ̂, and T, one
can choose T large enough (depending only on K, κ, ρ0, ρ, ρ̂0, ρ̂) in the previous
lines such that Theorem 2.3 holds for T with the constant of trichotomy (2κ + 1)2

and exponents ρ0+ρ̂0

2 and ρ+ρ̂
2 . The proof is complete.

6 Further Consequences

In this section we present more consequences of Theorem 2.3. We use some exam-
ples presented by Palmer [15], but for finite time exponential trichotomy instead of
exponential dichotomy.

6.1 Slowly Varying Systems

Proposition 6.1 Let ρ > ρ̂ > ρ̂0 > ρ0 > 0 and κ ≥ 1. Let A = {An}n∈Z ⊂ L(X)
be a given uniformly bounded sequence with

‖An‖L(X) ≤ K, n ∈ Z,

for some positive real constant K > 0. There exists δ := δ(ρ0, ρ̂0, ρ̂, ρ, κ) > 0 and
κ̂(K, κ, ρ, ρ̂, ρ0, ρ̂0) ≥ κ such that if the following two properties hold, then A is expo-
nentially trichotomic on Z with constant κ̂, exponents ρ̂ and ρ̂0.

(i) For each k ∈ Z, the constant sequence Bk
n := Ak, n ∈ Z, is exponentially tri-

chotomic on Z with constant κ, exponents ρ and ρ0.
(ii) The sequence {An}n∈Z ⊂ L(X) satisfies

‖An+1 − An‖L(X) ≤ δ, ∀n ∈ Z.

Proof Let us first observe that if

‖An+1 − An‖L(X) ≤ δ, ∀n ∈ Z,
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then for any given and fixed T ∈ N one has for each n ∈ [θ, θ + T]

‖An − Bθn‖L(X) = ‖An − Aθ‖L(X) ≤
θ+T−1∑

k=θ

‖Ak+1 − Ak‖L(X) ≤ Tδ.

Thus due to Corollary 4.4, there exists δ > 0 depending only on T, ρ0, ρ̂0, ρ̂, ρ, and
κ such that if conditions (i) and (ii) hold, then A is exponentially trichotomic on
each interval [θ, θ + T], θ ∈ Z (T an arbitrary fixed integer) with constant (2κ + 1)2,

exponents ρ+ρ̂
2 and ρ0+ρ̂0

2 . Next observe that ρ0+ρ̂0

2 < ρ̂0 < ρ̂ < ρ+ρ̂
2 so that the

result follows by applying Theorem 2.3 by first taking T large enough depending
only K, κ, ρ, ρ̂, ρ0, ρ̂0 and secondly choosing δ.

6.2 Almost Periodic Systems

Consider l∞(Z,L(X)) the space of bounded sequences of bounded linear operators
endowed with the usual supremum norm ‖A‖∞ := supn∈Z ‖An‖. Define the shift
operator S : l∞(Z,L(X)) → l∞(Z,L(X)), S(A)n = An+1,∀n ∈ Z. In the follow-
ing definition, property (i) corresponds to the notion of almost periodic map in the
sense of Bohr [4], and (ii) corresponds to the notion of almost periodic function
introduced by Bochner [3] for continuous time maps. We also refer the reader to
Corduneanu [7, p. 93] (see also [14]) for more results about the discrete time case.

Definition 6.2 A sequence of bounded linear operators A = {An}n∈Z ⊂ L(X) is
almost periodic if one of the two following (equivalent) properties is satisfied:

(i) For each δ > 0 there exists Dδ = {θi}i∈Z a Tδ−covering of Z such that

‖An+θi − An‖L(X) ≤ δ, ∀n ∈ Z, ∀i ∈ Z.

(ii) The sequence {Sn(A)}n∈Z is relatively compact in the Banach space l∞(Z,L(X)).

Let us recall that if A = {An}n∈Z is almost periodic, then A ∈ l∞(Z,L(X)) (see
for example [4]). Thus our proposition reads as

Proposition 6.3 Let ρ > ρ̂ > ρ̂0 > ρ0 > 0 and κ ≥ 1. Let p ∈ Z be given. Let
A = {An}n∈Z ⊂ L(X) be given. Assume that A is almost periodic.

There exists T̂ := T̂(Tδ, ‖A‖∞, κ, ρ, ρ̂, ρ0, ρ̂0) > 0 (where Tδ is given by Defini-
tion 6.2) and κ̂ := κ̂(‖A‖∞, κ, ρ, ρ̂, ρ0, ρ̂0) ≥ κ such that for each T ≥ T̂ if A is
exponentially trichotomic on [p, p + T] with constant κ, exponents ρ and ρ0, then A is
exponentially trichotomic on Z with constant κ̂, exponents ρ̂ and ρ̂0.

Proof In order to prove this proposition, we will apply Theorem 2.3. Hence we look
for a D = {θi}i∈Z a T-covering of Z such that A is exponentially trichotomic on each
interval of the form [θi , θi + T] for some T ∈ N large enough.

Let δ ∈ (0, 1) be given. Then since A is almost periodic, there exists Dδ = {θi}i∈Z

a Tδ-covering of Z such that

(6.1) ‖An+θi − An‖L(X) ≤ δ, ∀n ∈ Z, i ∈ Z.
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Let T ∈ N such that A is exponentially trichotomic on [p, p + T] with constant κ
exponents ρ and ρ0.Next note that due to (6.1), for each n ∈ [p, p + T], the operator

An+θi = An + An+θi − An, for each n ∈ [p, p + T],

is a small perturbation of An of order δ. Therefore by Corollary 4.4 for δ small enough
depending only on κ, ρ, ρ0, ρ̂ and ρ̂0, the sequence A = {An}n∈Z is exponentially
trichotomic on each [p + θi , p + θi + T] with constant (2κ + 1)2, exponents ρ+ρ̂

2 and
ρ0+ρ̂0

2 .
It is follows that A is exponentially trichotomic on each interval of the form

[θi , θi + T], with θi = p + θi . Clearly Dδ = {p + θi}i∈Z is a Tδ-covering of Z.
To complete the proof of the proposition it remains to apply Theorem 2.3. Since

we chose
ρ0 + ρ̂0

2
< ρ̂0 < ρ̂ <

ρ + ρ̂

2
,

the result follows from Theorem 2.3 by taking T large enough depending only on
Tδ, ‖A‖∞, κ, ρ, ρ̂, ρ0 and ρ̂0.

6.3 A Perturbation Theorem

Proposition 6.4 Let ρ > ρ̂ > ρ̂0 > ρ0 > 0 and κ ≥ 1. Let I be an index set and
let Ai = {Ai

n}n∈Z ⊂ L(X), i ∈ I be given. Let A = {An}n∈Z ⊂ L(X) be a given
uniformly bounded sequence with

‖An‖L(X) ≤ K, n ∈ Z,

for some positive real constant K > 0. There exists δ := δ(ρ0, ρ̂0, ρ̂, ρ, κ) > 0, T̂ :=
T̂(K, κ, ρ, ρ̂, ρ0, ρ̂0) > 0 and κ̂ := κ̂(K, κ, ρ, ρ̂, ρ0, ρ̂0) ≥ κ such that if the following
two properties hold, then A is exponentially trichotomic on Z with constant κ̂, exponents
ρ̂ and ρ̂0.

(i) For each i ∈ I, Ai is exponentially trichotomic on Z with constant κ, exponents ρ
and ρ0;

(ii) For each θ ∈ Z and some fixed T ≥ T̂, there exists i ∈ I such that

‖An − Ai
n‖L(X) ≤ δ, ∀n ∈ [θ, θ + T].

Proof Due to Corollary 4.4, there exists δ depending only on ρ0, ρ̂0, ρ̂, ρ, and κ
such that if conditions (i) and (ii) hold, then A is exponentially trichotomic on each
interval [θ, θ + T], θ ∈ Z (T an arbitrary fixed integer) with constant (2κ + 1)2,

exponents ρ+ρ̂
2 and ρ0+ρ̂0

2 . Next observe that ρ0+ρ̂0

2 < ρ̂0 < ρ̂ < ρ+ρ̂
2 so that the result

follows by applying Theorem 2.3 up to T large enough depending only K, κ, ρ, ρ̂, ρ0,
and ρ̂0.

Appendix A Persistence of Exponential Trichotomy

This section is devoted to a short proof of Theorem 4.3. It will be derived from the
usual results for perturbation of exponential dichotomy coupled with spectral shift
arguments. Theorem 4.3 could be considered as a classical result, but we did not find
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an appropriate reference for this statement. The arguments based on spectral shift in
the proof below have been mentioned in Pliss and Sell [19]. Such ideas have also been
used in Hale and Lin [11] with additional finite dimensional assumption for center
and unstable spaces. We also refer to Barreira and Valls [2], where an additional
invertibility assumption has been crucially used.

Define for each λ ∈ R and L = {Ln}n∈Z ⊂ L(X) the operator Lλ := eλL.The
associated evolution semigroup reads as

ULλ(n, p) = eλ(n−p)UL(n, p), ∀n ≥ p.

Recalling Definition 1.1 of exponential dichotomy, the following lemma holds true.

Lemma A.1 Let A : Z→L(X) be given. Assume that A is exponentially trichotomic
on Z with constant κ, exponents 0 < ρ0 < ρ and associated with the projectors
{Π α : Z→ L(X)}α=s,c,u. If we set λ = ρ+ρ0

2 , then the following properties hold true.

(i) Aλ is exponentially dichotomic on Z with constant 2κ, exponent ρ−ρ0

2 > 0 and
associated with the projectors Π s and Π cu := Π c + Π u.

(ii) A−λ is exponentially dichotomic on Z with constant 2κ, exponent ρ−ρ0

2 > 0 and
associated with the projectors Π u and Π cs := Π c + Π s.

By using the persistence result for exponential dichotomy in Henry [12, p. 232,
Theorem 7.6.7] or in Zhou, Lu and Zhang [26, p. 4027, Theorem 1] (see also Pötzsche
[21] for further results) combined with Lemma A.1, one obtains the following result.

Lemma A.2 Let A : Z→L(X) be given. Assume that A is exponentially trichotomic on
Z with constant κ, exponents 0 < ρ0 < ρ and associated with the projectors {Π α : Z→
L(X)}α=s,c,u. Let η ∈ (0, ρ−ρ0

2 ) and κ̂ > 2κ be given. Then, setting λ = ρ+ρ0

2 , there
exists δ := δ(ρ0, ρ, κ, η, κ̂) ∈ (0, 1) such that if the sequence B : Z→ L(X) satisfies

sup
n∈Z
‖Bn‖L(X) ≤ δ,

then the following properties hold:

(i) The sequence of operators Aλ + Bλ is exponentially dichotomic on Z with con-

stant κ̂, exponent η > 0 and associated with the projectors Π̂ s : Z → L(X) and

Π̂ cu : Z→ L(X).
(ii) The sequence of operators A−λ + B−λ is exponentially dichotomic on Z with con-

stant κ̂, exponent η > 0 and associated with the projectors Π̂ u : Z → L(X) and

Π̂ cs : Z→ L(X).

Remark A.3 Under the assumptions of the above lemma, one also has a characteri-

zation for the range of the projectors Π̂ s and Π̂ cu defined in (i), respectively Π̂ u and

Π̂ cs defined in (ii). Following Pötzsche [22], the characterization reads as follows:
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for all n ∈ Z, one has

Π̂s
n(X) := {x ∈ X : sup

k≥n
‖eλ(k−n)UA+B(k, n)x‖ < +∞},

Π̂cu
n (X) := { x ∈ X : ∃{xk}k≤n with xk = (Ak−1 + Bk−1)xk−1, xn = x

and supk≤n e−λ(n−k)‖xk‖ < +∞ },

and, for all n ∈ Z one has

Π̂cs
n (X) := {x ∈ X : sup

k≥n
‖e−λ(k−n)UA+B(k, n)x‖ < +∞},

Π̂u
n(X) := { x ∈ X : ∃{xk}k≤n with xk = (Ak−1 + Bk−1)xk−1, xn = x

and supk≤n eλ(n−k)‖xk‖ < +∞ }.

Using the characterization of Remark A.3, we are able to derive some basic proper-
ties of the perturbed projectors provided by the above lemma. The following lemma
will be used to complete the proof of Theorem 4.3.

Lemma A.4 Under the assumptions of Lemma A.2, the perturbed projectors satisfy
the following properties:

(i) For all n ∈ Z,

(A.1) Π̂s
n(X) ⊂ Π̂cs

n (X) and Π̂u
n(X) ⊂ Π̂cu

n (X).

(ii) For all n ∈ Z,

(A.2) (Π̂cs
n (X) ∩ Π̂cu

n (X))⊕ Π̂s
n(X)⊕ Π̂u

n(X) = X,

and

Π̂cs
n Π̂cu

n x = Π̂cu
n Π̂cs

n x, ∀x ∈ X.

Proof Property (i) is a direct consequence of Remark A.3. Let us now prove (ii). In
the remaining part of this proof, n ∈ Z denotes a given and fixed integer. Recall that
due to Lemma A.2 one has

(A.3) Π̂u
n(X)⊕ Π̂cs

n (X) = X and Π̂s
n(X)⊕ Π̂cu

n (X) = X.

Hence on one hand we have from (A.3)

(Π̂cs
n (X) ∩ Π̂cu

n (X)) ∩ Π̂u
n(X) = {0},

(Π̂cs
n (X) ∩ Π̂cu

n (X)) ∩ Π̂s
n(X) = {0}.

On the other hand by using (A.1) combined with (A.3), one gets

(Π̂s
n(X) ∩ Π̂u

n(X)) ⊂ (Π̂cs
n (X) ∩ Π̂u

n(X)) = {0}.

To achieve the proof, it remains to show that

(Π̂cs
n (X) ∩ Π̂cu

n (X)) + Π̂s
n(X) + Π̂u

n(X) = X.

Let x ∈ X be given. By using (A.3), we have

(A.4) x = Π̂cu
n x + Π̂s

nx,

https://doi.org/10.4153/CJM-2014-023-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-023-3


A Finite-time Condition for Exponential Trichotomy 1087

and

(A.5) x = Π̂u
nx + Π̂cs

n x.

Hence by using (A.1) and by applying Π̂cu
n (respectively Π̂cs

n ) on the right-hand side
of (A.5) (respectively of (A.4)) yields

(A.6) Π̂cu
n x = Π̂u

nx + Π̂cu
n Π̂cs

n x,

respectively

(A.7) Π̂cs
n x = Π̂cs

n Π̂cu
n x + Π̂s

nx.

Next, plugging the right side of (A.6) (resp. (A.7)) into (A.4)) (resp. (A.5)) provides
that

x = Π̂u
nx + Π̂s

nx + Π̂cu
n Π̂cs

n x = Π̂u
nx + Π̂s

nx + Π̂cs
n Π̂cu

n x.

This implies that

Π̂cu
n Π̂cs

n x = Π̂cs
n Π̂cu

n x ∈ (Π̂cs
n (X) ∩ Π̂cu

n (X)),

and the result follows.

We are now able to complete the proof of Theorem 4.3.

Proof of Theorem 4.3 Set λ = ρ+ρ0

2 and fix

(A.8) η = max{ρ̂− λ;λ− ρ̂0} ∈
(

0,
ρ− ρ0

2

)
and κ̂ > 2κ.

Let δ := δ(ρ, ρ0, ρ̂, ρ̂0, κ̂) be the value provided by Lemma A.2. Let us fix B =
{Bn}n∈Z such that

sup
n∈Z
‖Bn‖L(X) ≤ δ.

In the sequel we will denote by Π̂ s and Π̂ cu the associated projectors for Aλ+ Bλ and

by Π̂ u and Π̂ cs the projectors associated with A−λ + B−λ.
Next using Lemma A.4(ii) let us define

(A.9) Π̂c
n = Π̂cs

n Π̂cu
n = Π̂cu

n Π̂cs
n , ∀n ∈ Z,

and observe that for all n ∈ Z, Π̂c
n, is a projector on X. Next observe that due to

Lemma A.2 combined with (A.1)) and (A.9) one has for all n ∈ Z

Π̂α
n Π̂β

n = 0L(X), ∀α, β ∈ {u, s, c} and α 6= β.

Furthermore note that by using (A.2) combined with (A.9), one also has for all n ∈ Z

Π̂c
n = I − Π̂s

n − Π̂u
n.

Finally let us notice that Lemma A.2 ensures that

(A.10) sup
n∈Z
‖Π̂α

n‖L(X) ≤ κ̂, α = s, u, cu, cs.

To complete the proof of Theorem 4.3, we will show that A + B is exponentially
trichotomic with constant κ̂2, exponents 0 < ρ̂0 < ρ̂ and associated to the family

of projectors {Π̂ α : Z→ L(X)}α=s,c,u. We will split the argument into three parts to
investigate the behaviour of the perturbed evolution semigroup respectively on the
stable, unstable and center spaces.
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Estimate along the stable space Let x ∈ X be given. Then by using Lemma A.2 one
obtains for all n ≥ p

‖UA+B(n, p)Π̂s
px‖ = ‖e−λ(n−p)UAλ+Bλ(n, p)Π̂s

px‖(A.11)

≤ κ̂e−(λ+η)(n−p)‖x‖

≤ κ̂e−ρ̂(n−p)‖x‖.

Estimate along the unstable space By using Lemma A.2 it follows that for all n ≥
p the operator UA+B(n, p)Π̂u

p is invertible from Π̂u
p(X) into Π̂u

n(X). The inverse is
denoted by U u

A+B(p, n). Moreover for all x ∈ X we have for all n ≥ p

‖U u
A+B(p, n)Π̂u

nx‖ = ‖e−λ(n−p)U u
A−λ+B−λ(p, n)Π̂u

nx‖(A.12)

≤ κ̂e−(λ+η)(n−p)‖x‖

≤ κ̂e−ρ̂(n−p)‖x‖.

Estimate along the center space Before proceeding to the estimates, we will first
prove that for n ≥ p, the operator UA+B(n, p)Π̂c

p is invertible from Π̂c
p(X) into

Π̂c
n(X).
Let n, p ∈ Z be given such that n ≥ p. Let x ∈ X be given. Then recall that due to

Lemma A.2 the operator UAλ+Bλ(n, p)Π̂cu
p |Π̂cu

p (X) : Π̂cu
p (X)→ Π̂cu

n (X) is invertible. We

will denote its inverse by

U cu
Aλ+Bλ(p, n) : Π̂cu

n (X)→ Π̂cu
p (X).

Then on the one hand one has

UAλ+Bλ(n, p)Π̂c
px = UAλ+Bλ(n, p)Π̂cu

p Π̂cs
p x.

Multiplying the left hand side of the above equality by U cu
Aλ+Bλ(p, n) implies that

(A.13) U cu
Aλ+Bλ(p, n)UAλ+Bλ(n, p)Π̂c

px = Π̂cu
p Π̂cs

p x = Π̂c
px.

On the other hand, we have

UAλ+Bλ(n, p)Π̂c
pU cu

Aλ+Bλ(p, n)x = UAλ+Bλ(n, p)Π̂cs
p Π̂cu

p U cu
Aλ+Bλ(p, n)x

= Π̂cs
n UAλ+Bλ(n, p)Π̂cu

p U cu
Aλ+Bλ(p, n)x

= Π̂cs
n Π̂cu

n x = Π̂c
nx.

Hence (A.13) and the above equality ensures that the operator UA+B(n, p)Π̂c
p =

e−λ(n−p)UAλ+Bλ(n, p)Π̂c
p is invertible from Π̂c

p(X) into Π̂c
n(X) for all n ≥ p with in-

verse U c
A+B(p, n) := eλ(n−p)U cu

Aλ+Bλ(p, n).
Let us now derive the estimates along the center space. Let n, p ∈ Z be given such

that n ≥ p and let x ∈ X be given. Then we have

‖UA+B(n, p)Π̂c
px‖ = ‖eλ(n−p)UAλ+Bλ(n, p)Π̂cs

p Π̂cu
p x‖ ≤ κ̂e(λ−η)(n−p)‖Π̂cu

p x‖,

and by using (A.8)–(A.10) it follows that

(A.14) ‖UA+B(n, p)Π̂c
px‖ ≤ κ̂2eρ̂0(n−p)‖x‖.
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Proceeding similarly one obtains

(A.15) ‖U c
A+B(p, n)Π̂c

px‖ = ‖eλ(n−p)U cu
Aλ+Bλ(n, p)Π̂cu

p Π̂cs
p x‖ ≤ κ̂2eρ̂0(n−p)‖x‖.

The proof is completed by combining (A.11), (A.12), (A.14), and (A.15) together
with Lemmas A.2 and A.4.
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