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Abstract

In this paper we introduce certain Hankel matrices that can be used to study ME (matrix
exponential) distributions, in particular to compute their ME orders. The Hankel matrices
for a given ME probability distribution can be constructed if one of the following
five types of information about the distribution is available: (i) an ME representation,
(ii) its moments, (iii) the derivatives of its distribution function, (iv) its Laplace–Stieltjes
transform, or (v) its distribution function. Using the Hankel matrices, a necessary and
sufficient condition for a probability distribution to be an ME distribution is found and a
method of computing the ME order of the ME distribution developed. Implications for
the PH (phase-type) order of PH distributions are examined. The relationship between
the ME order, the PH order, and a lower bound on the PH order given by Aldous and
Shepp (1987) is discussed in numerical examples.
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1. Introduction

The ME (matrix exponential) distribution, as a generalization of the PH (phase-type) distri-
bution [23], [24], was studied in [3] and [5]. For every ME distribution there exist many matrix
representations (called ME representations). Of the ME representations of an ME distribution,
naturally some will be of minimal order; this order is called the ME order of the ME distribution.
In this paper we introduce certain Hankel matrices that can be used to study ME distributions
and to compute their ME orders.

ME distributions and ME representations deserve attention from researchers for a number
of reasons. First, ME distributions are useful in the analysis of stochastic models and, as was
demonstrated in [3] and [21], can be used in the analysis of renewal processes and queueing
systems. The study of ME representations of ME distributions makes it easier to use such
distributions in stochastic modeling, financial engineering, and insurance and risk analysis.
Second, the ME representation problem is closely related to the representation problem of
positive linear systems [4], [22]. Some of the results obtained in this paper can be extended
to that area. Third, the class of ME distributions includes all PH distributions and all Coxian
distributions. To a certain extent, the study of PH distributions and Coxian distributions depends
on results related to ME distributions, as demonstrated in [12] and [13] (and in this paper).
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PH distributions have been widely used in stochastic modeling [2], [20], [24], [25]–[28].
Furthermore, it was shown in [7] that the minimal PH representation problem is equivalent
to the positive realization problem in stochastic control theory. Thus, a better understanding
of ME distributions can further the study of some stochastic models, the realization problem
in stochastic control theory, and the two abovementioned special types of distribution (PH
distributions and Coxian distributions).

The literature on ME distributions is limited. Asmussen and Bladt [3] studied ME distri-
butions and applied them to the study of a class of queueing systems. They identified some
necessary and sufficient conditions for an ME representation to be minimal and developed
a method for computing a minimal ME representation from an ME representation. Bladt
and Neuts [5] studied the class of ME distributions and their related ME renewal processes
through a randomly stopped deterministic flow model. Fackrell [9], [10] studied the fitting of
ME distributions and characteristics of ME distributions under the provision that the Laplace–
Stieltjes transform of the original distribution is known. In [12] and [13], ME distributions were
used in the study of PH distributions. Some results of [14] and [30] were related to the ME order
of ME distributions. In [31], a method was developed for approximating ME distributions.

One of the important issues in the application of ME distributions is computational efficiency.
In order to improve the efficiency of algorithms involving ME distributions (or PH distributions),
minimal ME representations are desired. The ME order can play an important role in finding
minimal ME representations. In this paper we introduce certain Hankel matrices that can be
used to compute the ME order of ME distributions. The construction of these Hankel matrices
is based on one of the following five types of information about the ME distribution: (i) an ME
representation, (ii) its moments, (iii) derivatives of its distribution function, (iv) its Laplace–
Stieltjes transform, or (v) its distribution function.

In [3], the ME order of an ME distribution was found by using its Laplace–Stieltjes transform
or its ME representations. If the Laplace–Stieltjes transform, which is a rational function such
that the numerator and denominator are coprime polynomials, is known, then the degree of the
denominator gives the ME order. In comparison with that method, the method introduced here
does not require one to find the form of the Laplace–Stieltjes transform. If an ME representation
is known, the ME order can be found by computing the dimension of some subspace generated
from the matrix and vectors of the representation [3], [14], which is a straightforward and
efficient technique. In this case, for our method to work we need to calculate the moments or
derivatives before using the Hankel matrices to find the ME order. To the authors’ knowledge,
only ME representations and Laplace–Stieltjes transforms have been used to find ME orders
and minimal ME representations of ME distributions directly. Thus, the use of Hankel matrices
(constructed from one of the five abovementioned types of information) to find the ME order
is new.

Furthermore, using the Hankel matrices, in this paper we establish some relationships
between the Laplace–Stieltjes transforms, the distribution functions, and the minimal ME
representations of ME distributions. A necessary and sufficient condition for a probability
distribution function to be an ME distribution function is found. Since a PH distribution is also
an ME distribution, the ME order of a PH distribution calculated using the Hankel matrices
provides a lower bound on its PH order. Thus, we demonstrate that the Hankel matrices can
play an important role in the study of ME distributions and PH distributions.

The method used in this paper is related to identifiability of functions of finite Markov
chains [11], [14], [30]. Although ME representations in general are not associated with hidden
Markov chains, some of the ideas used in the study of the identifiability problem are useful. The

https://doi.org/10.1239/aap/1175266478 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266478


On matrix exponential distributions 273

method used in this paper is also related to the Chebyshev systems that have been widely used
in function approximations [15], [16], [17], [18]. Johnson and Taaffe [16] used the Chebyshev
systems to develop algorithms for computing PH distributions that fit the moments of the
original distributions up to a fixed level. Our method gives the ME order (the minimal order)
for a possible ME fit in distribution but does not actually compute an ME representation.

The remainder of the paper is organized as follows. In Section 2 the ME distribution and
ME representation are mathematically defined, and two basic properties of ME distributions
presented for later use. In Section 3 we introduce a certain Hankel matrix and establish a
relationship between the Hankel matrix and the ME order. A method of computing the ME
order is developed. In Section 4 the results in Section 3 are generalized to three other Hankel
matrices. A necessary and sufficient condition for a probability distribution to be an ME
distribution is obtained. In Section 5 we present an application to PH distributions. Some
results on PH simplicity and PH fullness are obtained. In Section 6 some numerical examples
are presented to provide insight into the relationship between the ME order, the PH order, and
the lower bound on the PH order given in [1]. Finally, some technical details are collected in
two appendices.

2. ME distributions and ME representations

The ME distribution was studied in [3]. A probability distribution function F(t) is called
an ME distribution if there exist a dimension-m row vector α, an m × m matrix T , and a
dimension-m column vector u such that

F(t) = 1 − α exp{T t}u, t ≥ 0. (2.1)

The triple (α, T , u) is called an ME representation of the ME distribution F(t). There is no
restriction on the elements of α, T , and u except that the right-hand side of (2.1) be a probability
distribution. The integer m is the order of the ME representation (α, T , u).

The ME representation of an ME distribution is not unique. An ME representation of minimal
order is called a minimal ME representation, and the ME order of an ME distribution is defined
to be the order of (any of) its minimal ME representations. We point out that, since

F(t) = 1 − α exp{T t}u = 1 − α exp{(−λI + T )t}ueλt , t ≥ 0,

where I is the m×m identity matrix and λ is a positive real number, finding a minimal version
of (α, T , u) is equivalent to finding a minimal version of (α, −λI + T , u). Since we can
always choose λ such that all eigenvalues of the matrix −λI + T are nonzero, we assume that
the matrix T is invertible throughout this paper.

Next we present two basic properties of ME distributions which shall be repeatedly used in
the paper.

Proposition 2.1. Assume that a random variable X has an ME distribution with an ME
representation (α, T , u) and a distribution function F(t) of the form (2.1). Then

αT ku =

⎧⎪⎨
⎪⎩

−F (k)(0) for k ≥ 1,

1 − F(0) for k = 0,

(−1)k E[X−k]/(−k)! for k ≤ −1,

(2.2)

where F (k)(t) denotes the kth derivative of the function F(t).
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Proof. A proof of (2.2) can be found in [3]. For completeness, we include the following
simple proof. By taking derivatives on both sides of (2.1) and letting t = 0, we obtain (2.2) for
k ≥ 0. By integrating on both sides of (2.1), we obtain

E[Xk] =
∫ ∞

0
tk dF(t) = (−1)kk! αT −ku, k ≥ 1,

which yields the last part of (2.2). This completes the proof.

Next we consider an ME distribution with two ME representations, (α, T , u) and (β, S, v).

Proposition 2.2. The ME representations (α, T , u) and (β, S, v) represent the same proba-
bility distribution if and only if αT ku = βSkv, −∞ < k < ∞.

Proof. If the two ME representations (α, T , u) and (β, S, v) represent the same probability
distribution, then, by Proposition 2.1, we must have αT ku = βSkv, −∞ < k < ∞.

Now assume that αT ku = βSkv, −∞ < k < ∞. By (2.1) and the Taylor expansion of the
distribution function F(t), we have

F(t) = 1 −
∞∑

k=0

tkαT ku

k! = 1 −
∞∑

k=0

tkβSkv

k! , t ≥ 0.

Therefore, (α, T , u) and (β, S, v) represent the same probability distribution. This com-
pletes the proof.

Remark 2.1. The condition in Proposition 2.2 can be changed to either αT ku = βSkv, 0 ≤
k < ∞, or αT ku = βSkv, −∞ < k ≤ 0.

3. ME order and Hankel matrices

Consider a random variable X associated with a distribution function F(t) and an order-m
ME representation (α, T , u). For −∞ < k < ∞ and n ≥ 1, define an n × n matrix

�[k]
n = (a

[k]
i,j ) with a

[k]
i,j = αT i+j−2+ku, 1 ≤ i, j ≤ n. (3.1)

Since the matrix T is assumed to be invertible, the matrix �
[k]
n is well defined for all integers k.

The matrix �
[k]
n is symmetric and is a Hankel matrix [19]. For n = 3 and k = −2, we have

�
[−2]
3 =

⎛
⎝αT −2u αT −1u αu

αT −1u αu αT u

αu αT u αT 2u

⎞
⎠ .

An important observation is that, by Proposition 2.1, the definition of the matrix �
[k]
n is

independent of the specific ME representation used in (3.1) but depends on the moments and
the derivatives of the distribution function at 0.

Next we show that the ME order of the ME distribution can be found by using the determinants
of the matrices �

[k]
n , −∞ < k < ∞, n ≥ 1.

Lemma 3.1. Let (α, T , u) be an ME representation of order m. For positive integers n, we
have

�[k]
n = L(n)T kR(n), −∞ < k < ∞,
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where L(n) is an n × m matrix and R(n) an m × n matrix respectively given by

L(n) =

⎛
⎜⎜⎜⎝

α

αT
...

αT n−1

⎞
⎟⎟⎟⎠ and R(n) = (u, T u, . . . ,T n−1u). (3.2)

Proof. Lemma 3.1 follows from straightforward calculations using matrix multiplication.

From Lemma 3.1, the following result on the determinant of the matrix �
[k]
n can be obtained.

Lemma 3.2. For an order-m ME representation (α, T , u), we have det(�[k]
n ) = 0 for −∞ <

k < ∞ and n ≥ m + 1, where det(�[k]
n ) denotes the determinant of the matrix �

[k]
n .

Proof. By the Binet–Cauchy formula (see [19]), the rank of the matrix �
[k]
n is less than or

equal to the smallest respective rank of the matrices L(n), T , and R(n). Therefore, the rank of
�

[k]
n is less than or equal to m, since the ranks of L(n), T , and R(n) are all less than or equal

to m. Consequently, det(�[k]
n ) = 0 for n ≥ m + 1. This completes the proof.

Lemma 3.3. For an order-m ME representation (α, T , u), we have either det(�[k]
m ) = 0 for

all k or det(�[k]
m ) �= 0 for all k.

Proof. In this case, L(m) and R(m) are square matrices of order m. Thus,

det(�[k]
m ) = det(L(m)) det(T )k det(R(m)) = det(T )k det(�[0]

m ). (3.3)

Since det(T ) �= 0, det(�[k]
m ) = 0 if and only if det(L(m)) and/or det(R(m)) is 0, which leads

to the conclusion. This completes the proof.

We are now ready to state and prove the first main result of this paper.

Theorem 3.1. Consider a random variable X that has an ME distribution. The ME order of
X can be obtained as

max{n : max−∞<k<∞{| det(�[k]
n )|} �= 0, n ≥ 1}, (3.4)

max{n : det(�[2−2n]
n ) �= 0, n ≥ 1}, or (3.5)

max{n : det(�[k]
n ) �= 0, n ≥ 1} for any given integer k. (3.6)

Proof. Note that the ME order of an ME distribution is finite. First we prove (3.4).
Suppose that the ME distribution of the random variable X has an order-m ME representation
(α, T , u), and that this is minimal. By Theorem 2.1 of [3], {α, αT , αT 2, . . . ,αT m−1} and
{u, T u, T 2u, . . . ,T m−1u} are two sets of linearly independent vectors. This implies that the
matrices L(m) and R(m) defined in (3.2) are invertible. By (3.3), the matrix �

[0]
m is invertible.

Therefore, the quantity given in (3.4) is greater than or equal to m (the ME order of X). In fact,
for any k, since T is invertible �

[k]
m = L(m)T kR(m) is invertible if m is the ME order of X.

Thus, the ME order of X is less than or equal to the quantity given in (3.4). On the other hand,
if m is the ME order of X then it follows from Lemma 3.2 that det(�[k]

n ) = 0 for −∞ < k < ∞
and n ≥ m + 1. Therefore, the quantity given in (3.4) is less than or equal to the ME order
of X. Combining these two arguments, we conclude that the quantity given in (3.4) equals the
ME order of X.

Equations (3.5) and (3.6) are consequences of Lemmas 3.2 and 3.3 and (3.4). This completes
the proof.
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An immediate consequence of Theorem 3.1 is that, for any k, det(�[k]
n ) = 0 if n is greater

than the ME order of the ME distribution. Furthermore, Theorem 3.1 leads to the following
method of computing the ME order of an ME distribution.

(a) If an ME representation of order m is available then we can use either (3.5) or (3.6), for
1 ≤ n ≤ m, to find the ME order.

(b) If the moments of the ME distribution are available, (3.5) can be used to compute the ME
order. An upper limit for n must be chosen, to decide where to terminate the computation
process. If the Laplace–Stieltjes transform of the ME distribution is available, we first
calculate the moments of the ME distribution and then use (3.5) to find the ME order.

(c) If the derivatives of the distribution function at 0 are available, (3.6) can be used to
compute the ME order. Again, an upper limit for n must be chosen, to decide where to
terminate the computation process.

Remark 3.1. The matrix �
[k]
n defined in (3.1) is a special case of some matrices introduced

in [11] in relation to the identifiability problem for functions of finite Markov chains. Although
ME representations are not directly related to hidden Markov chains, Theorem 3.1 shows that
the Hankel matrix can still be useful.

Remark 3.2. In [15], a matrix similar to the one defined in (3.1) for k = −2n + 2 was
introduced for parameter estimation and the fitting of PH distributions. It was assumed that
the first n moments of a probability distribution are known, and a method for finding a PH
distribution having the same first n moments as that of the original probability distribution was
developed.

The matrix �
[k]
n defined in (3.1) can be ill conditioned: the determinant of �

[k]
n can be

either very large or very small, which may lead to computation instability. To deal with
this problem, we present an extension of �

[k]
n . This extension does not have an explicit

probabilistic interpretation, but it can be useful in computations. Let c = (c1, c2, . . . , cn)

and d = (d1, d2, . . . , dn). For an ME representation (α, T , u), define, for n ≥ 1,

�̂[k]
n (g, c, d) = (â

[k]
i,j ) with â

[k]
i,j = cidjg

kαT i+j−2+ku, 1 ≤ i, j ≤ n, (3.7)

where g is a constant. By choosing {g, c, d} appropriately, it is possible to overcome the
numerical difficulty associated with �

[k]
n . It is easy to see that the definition in (3.7) is

independent of the specific ME representation of the ME distribution used there.

Proposition 3.1. For the matrices defined respectively in (3.1) and (3.7), we have

â
[k]
i,j = cidjg

ka
[k]
i,j , 1 ≤ i, j ≤ n, (3.8)

det(�̂[k]
n (g, c, d)) = gnk

( n∏
i=1

cidi

)
det(�[k]

n ), −∞ < k < ∞, n ≥ 1. (3.9)

If g and all elements of the vectors c and d are nonzero, then det(�[k]
n ) = 0 if and only if

det(�̂[k]
n (g, c, d)) = 0, for n ≥ 1 and −∞ < k < ∞. Thus, the matrices �̂

[k]
n (g, c, d),

−∞ < k < ∞, n ≥ 1, can be used to determine the ME order.
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Proof. Equation (3.8) is obvious from the definitions given in (3.1) and (3.7). To prove (3.9),
we note that definition (3.7) is equivalent to

�̂[k]
n (g, c, d) = L̂(c, n)(gT )kR̂(d, n), −∞ < k < ∞, (3.10)

where L̂(c, n) is an n × m matrix and R̂(d, n) an m × n matrix respectively given by

L̂(c, n) =

⎛
⎜⎜⎜⎝

c1α

c2αT
...

cnαT n−1

⎞
⎟⎟⎟⎠ and R̂(d, n) = (d1u, d2T u, . . . , dnT

n−1u). (3.11)

Equation (3.9) is obtained from (3.10) and (3.11) using properties of the matrix determinant.
This completes the proof.

Remark 3.3. If we choose g = −1 and cj = dj = (−1)j , 1 ≤ j ≤ n, then the matrix
�̂

[k]
n (g, c, d) defined in (3.7) is nonnegative for k ≤ −2n + 2. This nonnegativity property can

be useful in analysis.

4. Three generalizations

Theorem 3.1 established a relationship between the ME order, the moments, and the deriva-
tives of the distribution function at 0. In this section we give three generalizations of Theo-
rem 3.1.

4.1. ME order and Laplace–Stieltjes transforms

In this subsection Theorem 3.1 is generalized to depend on the Laplace–Stieltjes transform
of the ME distribution. Assume that the ME distribution has an ME representation (α, T , u).
Define an n × n matrix

�∗[k]
n (s) = (a

∗[k]
i,j (s)) with a

∗[k]
i,j (s) = α(T − sI )i+j−2+kT u, 1 ≤ i, j ≤ n, (4.1)

where s is not an eigenvalue of T . By definition, it is easy to see that �
[k]
n = �

∗[k−1]
n (0). Thus,

the Hankel matrix defined in (3.1) is a special case of the one defined in (4.1).
If k < −(i + j) + 1 then

a
∗[k]
i,j (s) = 1

(1 − k − i − j)!f
∗(1−k−i−j)(s),

where f ∗(s) is the Laplace–Stieltjes transform of the ME distribution, f ∗(1−k−i−j)(s) is the
(1 − k − i − j)th derivative of f ∗(s), and s is not a pole of f ∗(s). If an ME representation
(α, T , u) is known, then f ∗(s) = 1 − αu − α(sI − T )−1T u. If k = −(i + j) + 1 then
a

∗[k]
i,j (s) = f ∗(s) − f ∗(∞), and if k > −(i + j) + 1 then, by Proposition 2.1, a

∗[k]
i,j (s)

can be expressed in terms of the derivatives of the distribution function at 0. Therefore, the
matrix �

∗[k]
n (s) is independent of the specific ME representation used in (4.1), but depends

on the derivatives of the distribution function at 0 and the derivatives of the Laplace–Stieltjes
transform of the ME distribution. Furthermore, if k < −2n + 1 then the matrix �

∗[k]
n (s) is

defined completely by the derivatives of the Laplace–Stieltjes transform of the ME distribution.
From definition (4.1), if an ME representation (α, T , u) is available then it is easy to show that

�∗[k]
n (s) = L∗(n, s)(T − sI )kR∗(n, s), (4.2)
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where

L∗(n, s) =

⎛
⎜⎜⎜⎝

α

α(T − sI )
...

α(T − sI )n−1

⎞
⎟⎟⎟⎠ and R∗(n, s) = (T u, (T − sI )T u, . . . , (T − sI )n−1T u).

(4.3)

Theorem 4.1. The ME order of an ME distribution can be obtained as

max{n : max−∞<k<∞{| det(�∗[k]
n (s))|} �= 0, n ≥ 1} or

max{n : det(�∗[−2n+2]
n (s)) �= 0, n ≥ 1},

provided that s is not a pole of the Laplace–Stieltjes transform of the ME distribution.

Proof. First note that the matrix T − sI is invertible if s is not an eigenvalue of T . Also
note that the vectors α, α(T − sI ), α(T − sI )2, . . . , α(T − sI )n−1 are linearly independent if
and only if the vectors α, αT , αT 2, . . . ,αT n−1 are linearly independent. By (4.2) and (4.3),
Theorem 4.1 can be proved in a way similar to Theorem 3.1.

An interesting consequence of Theorem 4.1 is that the characteristic polynomial of the matrix
T in a minimal ME representation can be obtained from the Hankel matrices, even when the
matrix T is unknown.

Corollary 4.1. Assume that the ME order of an ME distribution is equal to m and that the
Laplace–Stieltjes transform of the ME distribution is known. Then, for any integer k, we have

det(�∗[k]
m (s))

det(�∗[k−1]
m (s))

= det(T − sI ), (4.4)

where s is not a pole of the Laplace–Stieltjes transform and T is the m×m matrix of a minimal
ME representation.

Proof. If s is not a pole of the Laplace–Stieltjes transform then, by (4.2), for any integer k

the function det(�∗[k−1]
m (s)) is well defined. Equation (4.4) is obtained from (4.2) by direct

calculation:

det(�∗[k]
m (s))

det(�∗[k−1]
m (s))

= det(L∗(m, s)) det((T − sI )k) det(R∗(m, s))

det(L∗(m, s)) det((T − sI )k−1) det(R∗(m, s))
= det(T − sI ).

This completes the proof.

Corollary 4.1 implies that all the matrices of the minimal ME representations of an ME
distribution have the same characteristic polynomial.

Remark 4.1. In [3], the ME order of an ME distribution was found from its Laplace–Stieltjes
transform by (i) finding an ME representation and (ii) identifying the dimension of the minimal
space related to the ME representation. In comparison with that method, our method is
straightforward.
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4.2. ME order and derivatives of distribution functions

In this subsection Theorem 3.1 is generalized to depend on derivatives and integrals of
distribution functions of ME distributions. Define

�[k]
n (t) = (a

[k]
i,j (t)) with a

[k]
i,j (t) = α exp{T t}T i+j−2+ku, 1 ≤ i, j ≤ n. (4.5)

Since
d

dt
a

[k]
i,j (t) = a

[k]
i+1,j (t) = a

[k]
i,j+1(t),

the determinant det(�[k]
n (t)) is a Hankel determinant of the function a

[k]
1,1(t) [17]. Since

�
[k]
n = �

[k]
n (0), the Hankel matrix �

[k]
n defined in (3.1) is a special case of the one defined

in (4.5).
Note that a[2−i−j ]

i,j (t) = 1−F(t), where F(t) is the distribution function. For i+j +k−2 ≥
1, we have

d

dt
a

[k−1]
i,j (t) = a

[k]
i,j (t) = −F (i+j+k−2)(t). (4.6)

For i + j + k − 2 ≤ −1, we have

a
[k]
i,j (t) = −

∫ ∞

t

a
[k+1]
i,j (t1) dt1

= (−1)2−i−j−k

∫ ∞

t

∫ ∞

t1

· · ·
∫ ∞

t3−i−j−k

(1 − F(t2−i−j−k)) dt1 · · · dt2−i−j−k. (4.7)

In general, we have the following relationships between the Hankel matrices �
[k]
n (t):

d

dt
�[k]

n (t) = �[k+1]
n (t) and �[k]

n (t) = −
∫ ∞

t

�[k+1]
n (t1) dt1.

Equations (4.6) and (4.7) indicate that the matrix �
(k)
n (t) is independent of the specific ME

representation used in (4.5), but depends on the derivatives and integrals of the distribution
function F(t). From the definition given in (4.5), if an ME representation (α, T , u) is available
then it is easy to show that

�[k]
n (t) = L(n) exp{T t}T kR(n), (4.8)

where L(n) and R(n) are as defined in (3.2).

Theorem 4.2. The ME order of an ME distribution can be obtained, for any t , as

max{n : max−∞<k<∞{| det(�[k]
n (t))|} �= 0, n ≥ 1} or

max{n : det(�[k]
n (t)) �= 0, n ≥ 1} for any given integer k .

Proof. Note that the matrix exp{T t} is invertible for any real t . By (4.8), Theorem 4.2 can
be proved in a way similar to Theorem 3.1.

Theorem 4.2 leads to a necessary and sufficient condition for a probability distribution
function to be an ME distribution function, stated as follows.
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Theorem 4.3. A probability distribution function F(t) is an ME distribution function if and
only if the integer

m = max{n : maxt≥0{| det(�[k]
n (t))|} �= 0, n ≥ 1}

is finite for a given integer k, and m is then the ME order of the ME distribution. Furthermore,
if F(t) is an ME distribution function with ME order m then, for any integer k,

1. det(�[k]
n (t)) = 0 for all t ≥ 0 if and only if n ≥ m + 1,

2. as a function of t , det(�[k]
m (t)) is either always positive or always negative,

3. (1/t) log(| det(�[k]
n (t))/ det(�[k]

n (0))|) is constant for t ≥ 0 if and only if n = m and,
for n = m and any t > 0,

m∑
i=1

λi =
m∑

i=1

ti,i = 1

t
log

(∣∣∣∣ det(�[k]
m (t))

det(�[k]
m (0))

∣∣∣∣
)

, (4.9)

where {λ1, λ2, . . . , λm} and {t1,1, t2,2, . . . , tm,m} are respectively the eigenvalues (count-
ing multiplicities) and the diagonal elements of the matrix of any minimal ME represen-
tation.

Proof. Note that, implicitly, the function F(t) is infinitely differentiable. Theorem 4.2
indicates that the integer

m = max{n : maxt≥0{| det(�[k]
n (t))|} �= 0, n ≥ 1}

is finite for any ME distribution. Conversely, we shall show that if m is finite then F(t) is an
ME distribution with an ME representation of order m. First we show the result for the case
in which k = 0. Here det(�[0]

m+1(t)) = 0 for all t ≥ 0. Recall that det(�[0]
m+1(t)) is a Hankel

determinant of 1–F(t). By [17, Theorem 7.1], 1 − F(t) is an exponential polynomial of order
at most m (note that a

(0)
1,1(t) = 1 − F(t)), i.e.

1 − F(t) =
K∑

k=1

pk(t)e
λkt ,

where λi �= λj if i �= j , p1(t), p2(t), . . . , pK(t) are polynomials of respective degrees r1 − 1,

r2 − 1, . . . , rK − 1, and r1 + r2 + · · · + rK = m. Suppose that

pk(t) =
rk−1∑
j=0

pk,j t
j , k = 1, 2, . . . , K;

let β = (β1, β2, . . . ,βK), where, for k = 1, 2, . . . , K ,

βk = (pk,0 − pk,1, pk,1 − 2! pk,2, . . . ,

(rk − 2)! pk,rk−2 − (rk − 1)! pk,rk−1, (rk − 1)! pk,rk−1);
and define the m × m matrix

S =

⎛
⎜⎜⎜⎝

J1(λ1)

J2(λ2)

. . .

JK(λK)

⎞
⎟⎟⎟⎠ ,
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where the omitted entries all equal 0 and Jk(λk) are rk × rk matrices given by

Jk(λk) =

⎛
⎜⎜⎜⎜⎝

λk 1

λk

. . .

. . . 1
λk

⎞
⎟⎟⎟⎟⎠ , 1 ≤ k ≤ K.

Routine calculations verify that 1 − F(t) = β exp{St}e, where e is a column vector all
of whose elements equal 1, which implies that (β, S, e) is an ME representation of F(t). By
Theorem 4.2, the ME representation (β, S, e) is a minimal ME representation.

If k �= 0 then det(�[k]
m+1(t)) is a Hankel determinant of a

[k]
1,1(t). Using the above argument

it can be shown that a
[k]
1,1(t) = β exp{St}e. From (4.6) or (4.7), we find that 1 − F(t) =

β exp{St}S−ke. Thus, the probability distribution has an ME representation (β, S, S−ke).
This proves the necessary and sufficient condition for a probability distribution to be an ME
distribution.

Next we prove assertion 1. If n ≥ m + 1 then, again by Theorem 4.2, det(�(k)
n (t)) = 0

for all t ≥ 0. If n ≤ m and det(�(k)
n (t)) = 0 for all t ≥ 0 (and any fixed k), then, by [17,

Theorem 7.1], and the above argument, the function 1 − F(t) is an exponential polynomial of
order at most n − 1. This implies that det(�(k)

m (t)) = 0 for all t ≥ 0, which contradicts both
the assumption that m is the ME order and Theorem 4.2. This proves assertion 1.

Since det(�(k)
m (t)) is continuous in t and cannot equal 0 for all t ≥ 0, then it is either always

positive or always negative. This proves assertion 2.
Finally we prove assertion 3. If m is the ME order of the ME distribution then, by (4.8), we

have

det(�[k]
m (t)) = det(�[k]

m (0)) det(exp{T t}). (4.10)

Since

det(exp{T t}) = exp

{ m∑
i=1

λit

}
= exp

{ m∑
i=1

ti,i t

}
,

(4.10) becomes

det(�[k]
m (t)) = det(�[k]

m (0)) exp

{ m∑
i=1

λit

}
,

which yields (4.9). If n < m and (1/t) log(| det(�[k]
n (t))/ det(�[k]

n (0))|) is constant in t , then,
by [17, Corollary 7.1], the function 1 − F(t) is an exponential polynomial of order at most n,
which contradicts the assumption that m is the ME order. This completes the proof of assertion 3
and, hence, the proof of Theorem 4.3.

Example 4.1. Consider a distribution with density function

F (1)(t) =
(

1 + 1

4π2

)
(1 − cos(2πt))e−t .

Note that Asmussen and Bladt [3], using a different method, proved that the ME order of this
distribution equals 3 and found some minimal ME representations. By routine but tedious
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calculations (see Appendix A), we obtain

det(�[1]
1 (t)) = a

[1]
1,1(t) = −F (1)(t),

det(�[1]
2 (t)) = (4π2 + 1)2(1 − cos(2πt))e−2t ,

det(�[1]
3 (t)) = (4π2 + 1)3e−3t ,

det(�[1]
n (t)) = 0, n ≥ 4.

(4.11)

By Theorem 4.3, the distribution is an ME distribution with ME order 3. Since

1

t
log

(∣∣∣∣ det(�[1]
3 (t))

det(�[1]
3 (0))

∣∣∣∣
)

= −3,

the sum of the diagonal elements of the matrix of any minimal ME representation is −3.

4.3. ME order and distribution functions

In this subsection we present a generalization of Theorem 3.1 that depends on F(t), the
distribution function of the ME distribution. Forx = (x1, x2, . . . , xn) andy = (y1, y2, . . . , yn),
define

�n(x, y, t) = (ai,j (xi, yj , t)) with

ai,j (xi, yj , t) = α exp{T (xi + yj + t)}u = 1 − F(xi + yj + t), 1 ≤ i, j ≤ n.

The definition of the Hankel matrix �n(x, y, t) is independent of the specific ME representation,
but depends (only) on the distribution function. It is easy to show that

�n(x, y, t) = L(n, x) exp{T t}R(n, y),

where

L(n, x) =

⎛
⎜⎜⎜⎝

α exp{T x1}
α exp{T x2}

...

α exp{T xn}

⎞
⎟⎟⎟⎠ and R(n, y) = (exp{T y1}u, . . . , exp{T yn}u).

Theorem 4.4. The ME order of an ME distribution (α, T , u) can be obtained, for any t , as

max{n : max{| det(�n(x, y, t))| : x ∈ R
n+, y ∈ R

n+,

x1 < x2 < · · · < xn, y1 < y2 < · · · < yn} �= 0, n ≥ 1}, (4.12)

where R
n+ is the Cartesian product of n copies of the set of nonnegative real numbers. Con-

sequently, if n is greater than the ME order then det(�n(x, y, t)) = 0 for any x satisfying
x1 < x2 < · · · < xn, any y satisfying y1 < y2 < · · · < yn, and any t .

Proof. Suppose that m is the ME order of the ME distribution of interest and that there exists
an order-m ME representation (α, T , u). By [3, Lemma 2.2], the dimensions of the space
generated by {α exp{T t} : t ≥ 0} and the space generated by {exp{T t}u : t ≥ 0} both equal m.
Thus, there exist x and y such that {α exp{T xi} : 1 ≤ i ≤ m} and {exp{T yi}u : 1 ≤ i ≤ m} are
two sets of linearly independent vectors, and the matrices L(m, x) and R(m, y) are invertible.
The quantity defined in (4.12) is then greater than or equal to the ME order, m. On the other
hand, if n > m then the vectors α exp{T xi}, 1 ≤ i ≤ n, are linearly dependent for any x and
the vectors exp{T yi}u, 1 ≤ i ≤ n, are linearly dependent for any y, which implies that the
quantity defined in (4.12) is less than or equal to m. This completes the proof.
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5. An application to PH distributions

In this section we present an application of Theorem 3.1 to PH distributions. We begin with
a general property related to the ME order of an ME distribution with an ME representation
(α, T , u). We consider two subspaces, respectively generated by the vectors α, αT , αT 2, . . .

and u, T u, T 2u, . . . . Suppose that the dimensions of the two subspaces are n1 and n2,
respectively. Since T is invertible, it can be proved (see [3, Lemma 2.2]) that the vectors
α, αT , . . . ,αT n1−1 are linearly independent and the vectors u, T u, . . . ,T n2−1u are linearly
independent. Since the matrix T is of order m, we must have max{n1, n2} ≤ m. Furthermore,
we have the following proposition regarding the matrix �

[k]
n .

Proposition 5.1. For n ≥ min{n1, n2} + 1 and −∞ < k < ∞, we have det(�[k]
n ) = 0.

Consequently, the ME order of the ME distribution (α, T , u) is less than or equal to min{n1, n2}.
Proof. By definition (see (3.2)), the rank of the matrix L(n) is at most n1 and the rank of

the matrix R(n) is at most n2. By the Binet–Cauchy formula (see [19]), the rank of the matrix
�

[k]
n is at most min{n1, n2}. Therefore, we must have det(�[k]

n ) = 0 for n ≥ min{n1, n2} + 1
and −∞ < k < ∞. This completes the proof.

Next we present an application to PH distributions. The PH distribution was introduced by
Neuts [23] as the probability distribution of the absorption time of a finite-state Markov process.
For a given PH distribution F(t), if

F(t) = 1 − α exp{T t}e, t ≥ 0, (5.1)

(α, 1 −αe) is a probability vector, and T is a PH generator of order m (i.e. an m×m invertible
matrix with negative diagonal elements, nonnegative off-diagonal elements, and nonnegative
row sums), then we call the pair (α, T ) a PH representation of that PH distribution. The
integer m is the order of the PH representation (α, T ). We refer the reader to [24, Chapter 2],
for basic properties of PH distributions.

It is well known that the PH representation of a PH distribution is not unique. The PH
order of a PH distribution is defined to be the minimal order of all its PH representations. By
definitions (2.1) and (5.1), it is readily seen that PH distributions are special ME distributions.
Thus, each PH distribution has a PH order and an ME order, and the PH order is greater than
or equal to the ME order. Consequently, for PH distributions, Theorem 3.1 provides a lower
bound on their PH orders. Next, using the ME order, we prove a result on the PH orders of PH
representations with a PH-simple generator.

The following definition was first given in [25]. A PH generator T is PH simple if any two
PH representations (α, T ) and (β, T ), where α and β are different, represent two different
probability distributions. According to [25, Theorem 2], a PH generator T of order m is
PH simple if and only if e, T e, T 2e, . . . ,T m−1e are linearly independent. Related results on
PH simplicity can be found in [6]. Under the PH simplicity condition, by Theorem 3.1 it is
straightforward to obtain the following result.

Proposition 5.2. Consider an order-m PH representation (α, T ) where T is PH simple. If
α, αT , αT 2, . . . ,αT m−1 are linearly independent then the PH order of the PH distribution
(α, T ) is m.

As an application of the above proposition, we consider an order-m Erlang distribution with
parameter λ, where λ is a positive number. A PH representation of such an Erlang distribution
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has components

α = (0, 0, . . . , 0, 1) and T =

⎛
⎜⎜⎜⎜⎜⎝

−λ

λ −λ

λ −λ

. . .
. . .

λ −λ

⎞
⎟⎟⎟⎟⎟⎠

,

where α is a dimension-m vector and T is an m × m matrix. We use Theorem 3.1 to prove the
following well-known result, which implies that the ME order can be a tight lower bound of
the PH order.

Proposition 5.3. For an order-m Erlang distribution with parameter λ, we have det(�(k)
m ) �= 0

for −∞ < k < ∞. Consequently, the ME order and the PH order of the Erlang distribution
both equal m.

Proof. By definition (see (3.2)), it is easy to verify that

L(m)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 1
0 0 · · · 0 λ −λ

0 0 . .
.

λ2 −2λ2 λ2

... . .
.

. .
.

. .
. ...

...

0 λm−2 . .
.

(−1)m−4
(

m − 2

m − 4

)
λm−2 (−1)m−3

(
m − 2

m − 3

)
λm−2 (−λ)m−2

λm−1 −
(

m − 1

1

)
λm−1 · · · (−1)m−3

(
m − 1

m − 3

)
λm−1 (−1)m−2

(
m − 1

m − 2

)
λm−1 (−λ)m−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R(m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −λ λ2 · · · (−1)m−2
(

m − 3

0

)
λm−2 (−1)m−1

(
m − 2

0

)
λm−1

1 0 −λ2 · · · (−1)m−3
(

m − 3

1

)
λm−2 (−1)m−2

(
m − 2

1

)
λm−1

1 0 0
. . . (−1)m−4

(
m − 3

2

)
λm−2 (−1)m−3

(
m − 2

2

)
λm−1

...
...

. . .
. . .

. . .
...

1 0 0
. . . 0 −

(
m − 2

m − 2

)
λm−1

1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, both L(m) and R(m) have full rank (i.e. m). By (3.3), we have det(�(k)
m ) �= 0 for

−∞ < k < ∞. Therefore, the ME order and the PH order of the Erlang distribution both
equal m. This completes the proof.

Next we introduce a concept related to PH generators. A PH generator T is PH full
if there exists a probability vector α such that the PH representation (α, T ) is a minimal
PH representation. For a PH-full generator T , the PH representation (α, T ) may have an
equivalent PH representation of smaller order for some, but not all, probability vectors α.
Using Proposition 5.2, we obtain the following sufficient condition for a PH generator to be PH
full.
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Theorem 5.1. If T is PH simple then there exists a probability vector α such that the PH
representation (α, T ) is a minimal PH representation. Consequently, if T is PH simple then T

is PH full.

Proof. By definition, it is sufficient to show that there exists a probability vector α such that
the PH representation (α, T ) is a minimal PH representation. By the definition of PH simplicity
and Proposition 5.2, it is sufficient to find a probability vector α such that α, αT , αT 2, . . . ,

αT m−1 are linearly independent, where m is the order of the matrix T . For this purpose, we
utilize the Jordan canonical form of the matrix T . According to [25, Theorem 2], T is PH
simple if and only if no row eigenvector of T is orthogonal to the vector e. If two (row)
eigenvectors u1 and u2 correspond to the same eigenvalue, then u1 − u2 is also an eigenvector
of that eigenvalue. After normalization (if possible), one of the vectors u1, u2, and u1 −u2 must
have a zero summation. Therefore, [25, Theorem 2] implies that the algebraic multiplicities
of all eigenvalues of T equal 1 (i.e. every eigenvalue is related to exactly one Jordan block or,
equivalently, the eigenvalues of the Jordan blocks of T are different). Suppose that T = V JU ,

where V = (v1, v2, . . . , vm) = U−1, U = (u�
1 , . . . ,u�

m)�, and

J =
⎛
⎜⎝

J1(ρ1)

. . .

JK(ρK)

⎞
⎟⎠ with Jk(ρk) =

⎛
⎜⎜⎜⎜⎝

ρk 1
. . .

. . .

. . . 1
ρk

⎞
⎟⎟⎟⎟⎠ , 1 ≤ k ≤ K,

(5.2)
is the Jordan canonical form of T . Here ρ1, ρ2, . . . , ρK are the K different eigenvalues of T

and Jk(ρk) is of order mk . If un is an eigenvector of T and all nonzero elements of un have the
same sign, then the vector un is chosen to be nonnegative. We now define

α = εU/(εUe), (5.3)

where ε = (ε1, ε2, . . . , εK) and εk is a vector of dimension mk specified as follows. According
to (5.2), εk corresponds to the Jordan block Jk(ρk). The vector εk equals either (1, . . . , 1) or
(1, . . . , 1, c), where c is a very large, positive constant. If the corresponding eigenvector of ρk

is not nonnegative then εk equals (1, . . . , 1); otherwise εk equals (1, . . . , 1, c). We choose c

large enough that the vector α defined in (5.3) is stochastic and every element of α is positive.
If α, αT , αT 2, . . . ,αT m−1 are linearly dependent then there exist x1, x2, . . . , xm, not all of

which equal 0, such that

0 =
m∑

i=1

xiαT i−1 = 1

εUe
ε

( m∑
i=1

xiJ
i−1

)
V

= ε

εUe

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m∑
i=1

xiJ1(ρ1)
i−1

. . .
m∑

i=1

xiJK(ρK)i−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

V

= 1

εUe

(
ε1

m∑
i=1

xiJ1(ρ1)
i−1, ε2

m∑
i=1

xiJ2(ρ2)
i−1, . . . , εK

m∑
i=1

xiJK(ρK)i−1
)

V . (5.4)
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By routine calculations, we have
m∑

i=1

xiJk(ρk)
i−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
i=1

xi

(
i − 1

0

)
ρi−1

k

m∑
i=1

xi

(
i − 1

1

)
ρi−2

k · · ·
m∑

i=1

xi

(
i − 1

mk − 1

)
ρ

i−mk

k

m∑
i=1

xi

(
i − 1

0

)
ρi−1

k

. . .
...

. . .

m∑
i=1

xi

(
i − 1

1

)
ρi−2

k

m∑
i=1

xi

(
i − 1

0

)
ρi−1

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.5)

Since the matrix V is invertible, (5.5) implies that (5.4) is equivalent to

0 =
m∑

i=1

xi

(
i − 1

j

)
ρ

i−1−j
k , 0 ≤ j ≤ mk − 1, 1 ≤ k ≤ K. (5.6)

Equation (5.6) can be rewritten as

0 = (x1, . . . , xm)(B1, B2, . . . ,BK), (5.7)

where

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1(
1

0

)
ρk 1

(
2

0

)
ρ2

k

(
2

1

)
ρ2−1

k

. . .

...
...

. . . 1(
mk

0

)
ρ

mk

k

...
...

(
mk

mk − 1

)
ρ

mk−(m1−1)
k

...
...

...
...(

m − 1

0

)
ρm−1

k

(
m − 1

1

)
ρm−1−1

k · · ·
(

m − 1

mk − 1

)
ρ

m−1−(mk−1)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix (B1, B2, . . . ,BK) is a confluent, or generalized, Vandermonde matrix (see [19]).
In Appendix B we show that

det(B1, B2, . . . ,BK) =
∏

1≤i<j≤K

(ρj − ρi)
mimj . (5.8)

Since ρ1, ρ2, . . . , ρK are all different, the determinant of (B1, B2, . . . ,BK) is nonzero and
the matrix (B1, B2, . . . ,BK) is invertible. Equation (5.7) then implies that x1, x2, . . . , xm

all equal 0, which contradicts the assumption made about them. Therefore, α, αT , αT 2, . . . ,

αT m−1 are linearly independent.
Since both {α, αT , αT 2, . . . ,αT m−1} and {e, T e, T 2e, . . . ,T m−1e} are sets of linearly

independent vectors, by Proposition 5.2 the PH order of (α, T ) is m. This completes the proof.
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6. Numerical examples

In [1], it was shown that the PH order of a PH random variable X is greater than or equal
to E[X2]/ var(X), where var(X) is the variance of X. The two are equal if and only if the PH
distribution is an Erlang distribution. We shall call the smallest integer that is greater than or
equal to E[X2]/ var(X) the Aldous–Shepp lower bound. In this section we present a number
of numerical examples to provide insight into the relationship between the ME order, the PH
order, and the Aldous–Shepp lower bound.

Remark 6.1. In [27] a lower bound on the PH order was given. This lower bound is useful if
the PH generator T has complex eigenvalues. However, we do not consider this lower bound
here.

Example 6.1. Consider the PH generator

T =

⎛
⎜⎜⎜⎜⎝

−1.5 0 0 0 0.2
1 −1.2 0 0.1 0
0 1 −1 0 0

0.2 0 1 −1.5 0
0 1 0 1 −2

⎞
⎟⎟⎟⎟⎠ . (6.1)

We consider the following two associated PH representations.

1. The PH representation (α, T ) with α = (0.5, 0.1, 0.3, 0, 0.1) has ME order 5. Thus, its
PH order also equals 5. Since E[X2]/ var(X) = 0.948, the Aldous–Shepp lower bound
equals 1, which is far below the PH order.

2. The PH representation (α, T ) with α = (0, 0, 0.8, 0, 0.2) has an ME order and a PH
order that both equal 5, while E[X2]/ var(X) = 2.051. In this case, the Aldous–Shepp
lower bound is 3, which is not far from the PH order.

For most of the PH distributions (α, T ) with T as in (6.1), we find that the ME order and the
PH order both equal 5, while the corresponding Aldous–Shepp lower bound equals either 1 or 2.
This example, as well as many other examples, shows that the Aldous–Shepp lower bound can
be significantly smaller than the PH order. Furthermore, numerical examples also show that in
many cases the Aldous–Shepp lower bound is smaller than the ME order of PH distributions.
However, as the following example shows, the Aldous–Shepp lower bound can be greater than
the ME order of a PH distribution.

Example 6.2. Consider the PH generator

T =
⎛
⎝−2.5 0 0.3

1.5 −1.5 0
0 0.1 −1

⎞
⎠ .

This matrix has three real eigenvalues, −λ1 = −2.4683, −λ2 = −1.5841, and −λ3 =
−0.9475, with corresponding eigenvectors

α1 = (1.2243, 0.0258, −0.2501),

α2 = (0.9115, 0.5566, −0.4681),

α3 = (0.1290, 0.1335, 0.7375).
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α4

α7

α5

α6

α2

α3

q2

q3

e1
e2

e3

α1 = q1

Figure 1: The convex set CT .

Thus, (αi , T ), 1 ≤ i ≤ 3, represent three exponential distributions with respective parameters
λ1, λ2, and λ3. Using the theory developed in [8], a convex set CT (plotted in Figure 1) can be
constructed. In the figure, q1, q2, and q3 are defined as

q1 = α1,

q2 = λ2

λ2 − λ1
α1 + λ1

λ1 − λ2
α2,

q3 = λ3λ2

(λ3 − λ1)(λ2 − λ1)
α1 + λ1λ3

(λ1 − λ2)(λ3 − λ2)
α2 + λ1λ2

(λ1 − λ3)(λ2 − λ3)
α3,

and thus calculated to be

q1 = (1.2243, 0.0258, −0.2501),

q2 = (0.3514, 1.5074, −0.8588),

q3 = (−1.9002, −1.7447, 4.6449).

All probability distributions whose Laplace–Stieltjes transforms have poles −λ1, −λ2, and
−λ3 are contained in the set CT , i.e. for every such distribution (except those on the curve
between q1 and q3), there exists an α in CT such that (α, T , e) is an ME representation of that
distribution. The plotted polytope conv {e1, e2, e3} [29], where e1 = (1, 0, 0), e2 = (0, 1, 0),
and e3 = (0, 0, 1), consists of all the probability vectors.

For all α contained in the convex set conv {q1, q2, q3}, (α, T , e) represents a Coxian distri-
bution. According to [27, Theorem 4.1], every (α, T , e) for which α is contained in the interior
of CT also represents a Coxian distribution. For such α, these distributions have PH orders and
ME orders. The ME orders are less than or equal to 3, but the PH orders can be very large. The
Aldous–Shepp lower bound is computed for the following examples.

1. (q1, T , e) represents an exponential distribution. E[X2]/ var(X) = 1, so the Aldous–
Shepp lower bound equals 1, which is also the PH order.

2. (q2, T , e) represents a Coxian distribution of order 2. E[X2]/ var(X) = 1.901, so the
Aldous–Shepp lower bound equals 2, which is also the PH order.

3. (q3, T , e) represents a Coxian distribution of order 3. E[X2]/ var(X) = 2.610, so the
Aldous–Shepp lower bound equals 3, which is also the PH order.
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4. For e1, E[X2]/ var(X) = 0.6510, so the Aldous–Shepp lower bound equals 1. For
e2, E[X2]/ var(X) = 1.6335, so the Aldous–Shepp lower bound equals 2. For e3,
E[X2]/ var(X) = 1.0299, so the Aldous–Shepp lower bound equals 2. In these three
cases both the PH order and the ME order equal 3.

5. (αi , T , e), i = 1, 2, 3, represent exponential distributions. For each, E[X2]/ var(X) =
1, so the Aldous–Shepp lower bound equals 1, which is also the PH order.

6. For α4 = (1, −1, 1), E[X2]/ var(X) = 0.3088, so the Aldous–Shepp lower bound
equals 1. The ME order equals 3.

7. For α5 = (−0.5, −2, 3.5), E[X2]/ var(X) = 0.7538, so the Aldous–Shepp lower bound
equals 1. The ME order equals 3.

8. For α6 = (−1.5, −3.5, 6), E[X2]/ var(X) = 1.1026, so the Aldous–Shepp lower bound
equals 2. The ME order equals 3.

9. For α7 = (−2.49, −3, 6.49), E[X2]/ var(X) = 3.008, so theAldous–Shepp lower bound
equals 4, which is greater than the ME order, 3.

In the last case, the PH order is greater than the ME order. Note that α7 is close to the
boundary of CT . The PH order of (α7, T , e) can be very large.

Appendix A. Proof of (4.11)

Define w(t) = 1 − cos(2πt). Then we have F (1)(t) = ce−tw(t), where c = 1 + 1/(4π2).
It is easy to verify that

w(2n+1)(t) = (−1)n(2π)2n+1 sin(2πt), n ≥ 0,

w(2n)(t) = (−1)n−1(2π)2n cos(2πt), n ≥ 1. (A.1)

From (A.1), by induction we obtain, for n ≥ 0,

F (1+n)(t) = ce−t

( n∑
k=0

(−1)k
(

n

k

)
w(n−k)(t)

)

= ce−t

(n−1∑
k=0

(−1)k
(

n − 1

k

)
w(1+n−1−k)(t)

)
− F (n)(t). (A.2)

Using (A.2), it can be shown that

det(�[1]
n (t)) = cne−nt det

⎛
⎜⎜⎜⎝

w(t) w(1)(t) · · · w(n−1)(t)

w(1)(t) w(2)(t) · · · w(n)(t)
...

...
. . .

...

w(n−1)(t) w(n)(t) · · · w(2n−2)(t)

⎞
⎟⎟⎟⎠ . (A.3)

The first three equalities in (4.11) can be shown by setting n in (A.3) to equal 1, 2, and 3,
respectively. The last equality in (4.11) is obtained from the fact that elements in the second
column and the fourth column of the matrix in (A.3) satisfy w(n)(t) = −4π2w(n+2)(t), n ≥ 1.
This completes the proof.
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Appendix B. Proof of (5.8)

Equation (5.8) should be a consequence of the theory of total positivity developed in [17],
but the authors have not found an appropriate reference. Thus, for completeness, we include
its proof, in which we use the induction method.

If K = 1 then, by definition of B1, det(B1) = 1. For K ≥ 2, after multiplying the rth row
of B1 by −ρ1 and adding the result to its (r + 1)th row for r = m − 1, m − 2, . . . , 2, 1, the
matrix B1 becomes⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

0

(
2

1

)
ρ1 − ρ1

. . .

...
...

. . . 1
...

...
...

(
mk

mk − 1

)
ρ1 − ρ1

...
...

...
...

0

(
m − 1

1

)
ρm−2

1 −
(

m − 2

1

)
ρm−2

1 · · ·
(

m − 1

mk − 1

)
ρ

m−mk

1 −
(

m − 2

mk − 1

)
ρ

m−mk

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

0 ρ1
. . .

...
...

. . . 1
...

...
...

(
mk − 1

mk − 2

)
ρ1

...
...

...
...

0 ρm−2
1 · · ·

(
m − 2

mk − 2

)
ρ

m−mk

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=:
(

1 0
0 B ′

1

)
, (B.1)

where the identity
(
n
i

) = (
n−1

i

) + (
n−1
i−1

)
has been used. For 2 ≤ k ≤ K , the same operations

yield for Bk the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ρk − ρ1 1

ρk(ρk − ρ1)

(
2

1

)
ρk − ρ1

. . .

...
...

. . . 1

ρ
mk−1
k (ρk − ρ1)

...
...

(
mk

mk − 1

)
ρk − ρ1

...
...

...
...

ρm−2
k (ρk − ρ1)

(
m − 1

1

)
ρm−2

k

· · ·

(
m − 1

mk − 1

)
ρ

m−mk

k

−
(

m − 2

1

)
ρm−3

k ρ1 −
(

m − 2

mk − 1

)
ρ

m−1−mk

k ρ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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When the rth column of the above matrix is divided by −1/(ρk − ρ1) and the result added to
the (r + 1)th column for r = 1, 2, . . . , the matrix becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

ρk − ρ
· · ·

(
− 1

ρk − ρ

)mk−1

ρk − ρ1 0 · · · 0

ρk(ρk − ρ1) ρk − ρ1
. . .

...
...

...
. . . 0

ρ
mk−1
k (ρk − ρ1)

...
... ρk − ρ1

...
...

...
...

ρm−2
k (ρk − ρ1)

(
m − 2

1

)
ρm−2−1

k (ρk − ρ1) · · ·
(

m − 2

mk − 1

)
ρ

m−2−(mk−1)
k (ρk − ρ1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=:

⎛
⎜⎜⎝

(
1, − 1

ρk − ρ
, . . . ,

(
− 1

ρk − ρ

)mk−1)

(ρk − ρ1)B
′
k

⎞
⎟⎟⎠ .

Note that the first column of the matrix in (B.1) has only one nonzero element in the first row.
Then, by induction, we have

det(B1, B2, . . . ,BK) =
( ∏

2≤j≤K

(ρj − ρ1)
mj

)
det(B ′

1, B
′
2, . . . , B

′
K)

=
( ∏

2≤j≤K

(ρj − ρ1)
mj

)( ∏
2≤j≤K

(ρj − ρ1)
mj (m1−1)

)

×
( ∏

2≤i<j≤K

(ρj − ρi)
mj mi

)
,

which leads to (5.8). This completes the proof.
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