A NOTE ON SCHRÖDINGER MAXIMAL OPERATORS WITH A COMPLEX PARAMETER

PER SJÖLIN and FERNANDO SORIA[™]

(Received 23 April 2009; accepted 26 January 2010)

Communicated by A. M. Hassell

Abstract

Extending previous results of the first author, some new estimates are obtained for maximal operators of Schrödinger type with a complex parameter.

2000 *Mathematics subject classification*: primary 42B15; secondary 42B25. *Keywords and phrases*: maximal function, Schrödinger equation, Sobolev spaces.

1. Introduction

For f belonging to the Schwartz class $\mathcal{S}(\mathbb{R})$, we set

$$S_t f(x) = \int_{\mathbb{R}} e^{ix\xi} e^{it\xi^2} \widehat{f}(\xi) d\xi \quad \forall x \in \mathbb{R}.$$

Here t is a complex number such that Im $t \ge 0$, and \widehat{f} denotes the Fourier transform of the function f, defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}} e^{-ix\xi} f(x) \, dx.$$

If we set $U(x, t) = (2\pi)^{-1}S_t f(x)$, where $x \in \mathbb{R}$ and $t \in \mathbb{R}$, then it follows that U(x, 0) = f(x) for all x and further that U satisfies the Schrödinger equation $i\partial U/\partial t = \partial^2 U/\partial x^2$. On the other hand, if we take t = iu, where u > 0, then U is, modulo a constant, the solution to the usual heat equation with initial value f with respect to the 'time variable' u.

We define the maximal function $S^* f$ by

$$S^*f(x) = \sup_{0 < t < 1} |S_t f(x)| \quad \forall x \in \mathbb{R},$$

The second author was partially supported by grants MTM2007-60952 and PR2009-0084.

^{© 2010} Australian Mathematical Publishing Association Inc. 1446-7887/2010 \$16.00

and also define Sobolev spaces H_s for all real s by setting

$$H_s = \{ f \in \mathcal{S}' : \| f \|_{H_s} < \infty \},\$$

where

$$\|f\|_{H_s} = \left(\int_{\mathbb{R}^n} (1+|\xi|^2)^s |\widehat{f}(\xi)|^2 d\xi\right)^{1/2}.$$

It is well known that the estimate

 $\|S^*f\|_2 \le C \|f\|_{H_s}$

holds if s > 1/2 and does not hold if s < 1/2 (see [1]). Here $||S^*f||_2$ denotes the norm of S^*f in the space $L^2(\mathbb{R})$, and *C* denotes a constant that varies from place to place.

When $0 < \gamma < \infty$ and u > 0, we set

$$P_u f(x) = S_{u+iu^{\gamma}} f(x) = \int_{\mathbb{R}} e^{ix\xi} e^{iu\xi^2} e^{-u^{\gamma}\xi^2} \widehat{f}(\xi) d\xi \quad \forall x \in \mathbb{R},$$

and

$$P^*f(x) = \sup_{0 < u < 1} |P_u f(x)| \quad \forall x \in \mathbb{R}.$$

In Sjölin [3] the inequality

$$\|P^*f\|_2 \le C \|f\|_{H_s} \tag{1.1}$$

was studied for various values of γ and the following results were obtained.

THEOREM A.

(i) When $0 < \gamma \le 1$, (1.1) holds if and only if $s \ge 0$.

- (ii) When $\gamma = 2$, (1.1) holds if and only if $s \ge 1/4$.
- (iii) When $\gamma \ge 4$, if (1.1) holds then $s \ge 1/2 1/\gamma$.

When $\gamma > 0$, we denote by E_{γ} the set of all *s* such that (1.1) holds, and set

$$s(\gamma) = \inf E_{\gamma}$$

It was proved in [3] that *s* is a nondecreasing function on the interval $(0, \infty)$, and that $0 \le s(\gamma) \le 1/2$ when $0 < \gamma < \infty$.

The results in Theorem A can be stated in the following way.

THEOREM B.

(i) When
$$0 < \gamma \le 1$$
, $s(\gamma) = 0$.

(ii) s(2) = 1/4.

(iii) When $\gamma > 4$, $1/2 - 1/\gamma \le s(\gamma) \le 1/2$ and hence

$$\lim_{\gamma \to \infty} s(\gamma) = 1/2.$$

We give here the following improvement of the above results.

406

THEOREM 1.1. If $\gamma > 1$ and $s > 1/2 - 1/(2\gamma)$, then (1.1) holds.

The result in Theorem 1.1 is new when $1 < \gamma < 2$ and $\gamma > 2$, and allows us to extend Theorem B in the following way.

THEOREM 1.2.

(i) When $0 < \gamma \le 1$, $s(\gamma) = 0$.

- (ii) When $1 < \gamma < 2$, $0 \le s(\gamma) \le 1/2 1/(2\gamma)$.
- (iii) s(2) = 1/4.
- (iv) When $2 < \gamma \le 4$, $1/4 \le s(\gamma) \le 1/2 1/(2\gamma)$.
- (v) When $\gamma > 4$, $1/2 1/\gamma \le s(\gamma) \le 1/2 1/(2\gamma)$.

2. Proof of the theorems

For the proof of the above results we shall use the following lemmas.

LEMMA 2.1. Assume that a > 1, $1/2 \le s < 1$ and $\mu \in C_0^{\infty}(\mathbb{R})$. Then

$$\left| \int_{\mathbb{R}} e^{ix\xi + it|\xi|^a} |\xi|^{-s} \mu(\xi/N) \, d\xi \right| \le C \frac{1}{|x|^{1-s}} \quad \forall x \in \mathbb{R} \setminus \{0\}$$

when $t \in \mathbb{R}$ and $N = 1, 2, 3, \ldots$. Here the constant C may depend on s and a but not on x, t or N.

A proof of Lemma 2.1 can be found in [2].

LEMMA 2.2. Assume that $1/2 \le \alpha < 1$ and $0 < d_1, d_2 < 1$, and also that $\mu \in C_0^{\infty}(\mathbb{R})$ is even and real-valued. Then

$$\left| \int_{\mathbb{R}} \exp(i(d_1 - d_2)\xi^2 - ix\xi)(1 + \xi^2)^{-\alpha/2} \exp(-(d_1^2 + d_2^2)\xi^2)\mu(\xi/N) \, d\xi \right| \\ \leq K(x) \quad \forall x \in \mathbb{R}$$

when $N = 1, 2, 3, \ldots$, where $K \in L^1(\mathbb{R})$. Here K is independent of d_1, d_2 and N.

Lemma 2.2 is proved in [3].

We also need two new lemmas.

LEMMA 2.3. Assume that $1 < \gamma < 2$, $(\gamma - 1)/\gamma < \alpha < 1/2$, $0 < d_1$, $d_2 < 1$, and μ is as in Lemma 2.2. Then

$$\begin{aligned} &\int_{\mathbb{R}} \exp(i(d_1 - d_2)\xi^2 - ix\xi)(1 + \xi^2)^{-\alpha/2} \exp(-(d_1^{\gamma} + d_2^{\gamma})\xi^2)\mu(\xi/N) \, d\xi \\ &\leq K(x) \quad \forall x \in \mathbb{R} \end{aligned}$$

when N = 1, 2, 3, ..., where $K \in L^1(\mathbb{R})$. Here K is independent of d_1, d_2 and N.

LEMMA 2.4. Assume that $\gamma > 2$, $(\gamma - 1)/\gamma < \alpha < 1$, $0 < d_1$, $d_2 < 1$, and μ is as in Lemma 2.2. Then

$$\begin{aligned} \left| \int_{\mathbb{R}} \exp(i(d_1 - d_2)\xi^2 - ix\xi)(1 + \xi^2)^{-\alpha/2} \exp(-(d_1^{\gamma} + d_2^{\gamma})\xi^2)\mu(\xi/N) \, d\xi \right| \\ &\leq K(x) \quad \forall x \in \mathbb{R} \end{aligned}$$

when N = 1, 2, 3, ..., where $K \in L^1(\mathbb{R})$. Here K is independent of d_1, d_2 and N.

We now give the proofs of Lemmas 2.4 and 2.3.

PROOF OF LEMMA 2.4. Let C_0 denote a large constant. Since $1/2 < \alpha < 1$, in the case where $|x| \le C_0$ we can use the proof in [2] of Lemma 2.1 to conclude that the estimate in Lemma 2.4 holds when $K(x) = C|x|^{\alpha-1}$. To obtain this, we have to use the observation (see [3]) that if $h(\xi) = h_{\epsilon}(\xi) = e^{-\epsilon\xi^2}$ where $0 < \epsilon < 2$, then

$$|h'(\xi)| \le C \frac{1}{\xi} \quad \forall \xi \in [1/2, \infty),$$

where C is independent of ϵ .

We now consider the case where $|x| > C_0$. To that end, we shall modify the proof in [3] of our Lemma 2.2.

We may assume that $d_2 < d_1$ and set $d = d_1 - d_2$ and $\epsilon = d_1^{\gamma} + d_2^{\gamma}$, so that 0 < d < 1 and $0 < \epsilon < 2$. Also set $\rho = |x|/(2d)$ and

$$\psi(\xi) = (1+\xi^2)^{-\alpha/2} e^{-\epsilon\xi^2} \mu(\xi/N) \quad \forall \xi \in \mathbb{R}.$$

Choose an even function $\varphi_0 \in C^{\infty}$ such that $\varphi_0(\xi) = 1$ if $|\xi| \le 1/2$ and $\varphi(\xi) = 0$ if $|\xi| \ge 1$. Set $\psi_0 = \psi \varphi_0$, so that supp $\psi_0 \subset [-1, 1]$. Then, for a large constant K_1 , choose $\varphi_2 \in C_0^{\infty}$ so that supp $\varphi_2 \subset [\rho/4, 2K_1\rho]$ and $\varphi_2(\xi) = 1$ if $\rho/2 \le \xi \le K_1\rho$. We may also assume that $|\varphi'_2(\xi)| \le C\xi^{-1}$ and $|\varphi''_2(\xi)| \le C\xi^{-2}$ if $\xi > 0$. We also set $\varphi_3 = (1 - \varphi_2)\chi_{[K_1\rho,\infty)}$ and $\varphi_1 = (1 - \varphi_2 - \varphi_0)\chi_{[0,\rho/2]}$.

Having defined the cutoff functions φ_j , where j = 0, 1, 2, 3, it is clear that it is sufficient to estimate the integrals

$$\mathcal{J}_j = \int e^{iF} \psi_j \, d\xi$$

where $F(\xi) = d\xi^2 - x\xi$ and $\psi_j(\xi) = \psi(\xi)\varphi_j(\xi)$. (A similar argument works for the functions $\psi(\xi)\varphi_j(-\xi)$.) A double integration by parts easily shows the estimate $|\mathcal{J}_0| \leq C/|x|^2$ (see [3]). Now observe that when j = 1, 2, 3 and $\xi > 1/2$, the pointwise estimates

$$\begin{split} |\psi_j(\xi)| &\leq C \frac{1}{(1+\xi^2)^{\alpha/2}}, \\ |\psi_j'(\xi)| &\leq C \frac{1}{(1+\xi^2)^{\alpha/2}\xi}, \end{split}$$

and

$$|\psi_j''(\xi)| \le C \frac{1}{(1+\xi^2)^{\alpha/2}\xi^2}$$

hold. Using the same arguments as in [3], we obtain the estimate $\mathcal{O}(|x|^{-2})$ for \mathcal{J}_1 and \mathcal{J}_3 .

To estimate \mathcal{J}_2 , we use van der Corput's lemma and deduce that

$$\begin{aligned} |\mathcal{J}_2| &\leq Cd^{-1/2}\rho^{-\alpha}\exp(-c\epsilon\rho^2) \\ &\leq Cd^{-1/2}\left(\frac{|x|}{d}\right)^{-\alpha}\exp(-c(d_1^{\gamma}+d_2^{\gamma})|x|^2/d^2) \\ &\leq Cd^{\alpha-1/2}|x|^{-\alpha}\exp(-c(d_1+d_2)^{\gamma}|x|^2/d^2) \\ &\leq Cd^{\alpha-1/2}|x|^{-\alpha}\exp(-cd^{\gamma-2}|x|^2), \end{aligned}$$

where we have used the fact that $d_1 + d_2 \ge d$. Here *c* denotes possibly different positive constants.

We now invoke the inequality

$$e^{-y} \le C_{\beta} y^{-\beta}, \tag{2.1}$$

which holds whenever y > 0 and $\beta > 0$, to deduce that

$$\begin{aligned} |\mathcal{J}_2| &\leq C d^{\alpha - 1/2} |x|^{-\alpha} \frac{1}{d^{(\gamma - 2)\beta} |x|^{2\beta}} \\ &= C \frac{d^{\alpha - 1/2}}{d^{\beta(\gamma - 2)}} \frac{1}{|x|^{\alpha + 2\beta}}. \end{aligned}$$

We now choose β so that $\beta(\gamma - 2) = \alpha - 1/2$, that is,

$$\beta = \frac{\alpha - 1/2}{\gamma - 2}.$$

Since $\gamma > 2$ and $1/2 < \alpha < 1$, it is clear that β is positive. We obtain the inequality

$$|\mathcal{J}_2| \le C \frac{1}{|x|^{\alpha + 2\beta}}.$$

Finally, using our assumption that $\alpha > (\gamma - 1)/\gamma$, we get

$$\alpha + 2\beta = \frac{\alpha\gamma - 1}{\gamma - 2} > \frac{\gamma - 1 - 1}{\gamma - 2} = 1.$$

Hence the function $|x|^{-\alpha-2\beta}$ is integrable when $|x| > C_0$ and the proof of Lemma 2.4 is complete.

PROOF OF LEMMA 2.3. As before, we let C_0 denote a large constant. We first study the case where $|x| > C_0$. With the same notation as in the previous proof and the arguments in [3], the estimates for \mathcal{J}_0 , \mathcal{J}_1 and \mathcal{J}_3 follow easily. (Observe that the condition $\alpha \ge 1/2$ was not used for these estimates.)

[5]

To estimate \mathcal{J}_2 we use van der Corput's lemma again and deduce that

$$\begin{aligned} |\mathcal{J}_2| &\leq C d^{-1/2} \rho^{-\alpha} e^{-c\epsilon \rho^2} \\ &\leq C d^{\alpha - 1/2} |x|^{-\alpha} e^{-cd^{\gamma - 2} |x|^2}. \end{aligned}$$

Using inequality (2.1), we then obtain

$$|\mathcal{J}_{2}| \leq C d^{\alpha - 1/2} |x|^{-\alpha} \frac{1}{d^{(\gamma - 2)\beta} |x|^{2\beta}} = C \frac{d^{\beta(2 - \gamma)}}{d^{1/2 - \alpha}} \frac{1}{|x|^{\alpha + 2\beta}}.$$

Here $2 - \gamma > 0$ and, therefore, $1/2 - \alpha > 0$. Choosing β large, we conclude that

$$|\mathcal{J}_2| \le C \frac{1}{|x|^{\alpha+2\beta}} \le C \frac{1}{|x|^2}.$$

This completes the proof in the case where $|x| > C_0$. It remains to study the case where $|x| \le C_0$. To do so, we modify the arguments given in the proof of Lemma 2.1 (see [2]). Since $\alpha < 1/2$, we need a different argument to estimate

$$\int_{I_2} e^{iF} \psi \, d\xi,$$

where, for some constants c_1 small and C_1 large, I_2 denotes the interval

$$I_2 = \left\{ \xi \ge \frac{1}{|x|} : c_1 \frac{|x|}{d} \le \xi \le C_1 \frac{|x|}{d} \right\}.$$

Also,

$$F(\xi) = -x\xi + d\xi^2,$$

$$\psi(\xi) = (1 + \xi^2)^{-\alpha/2} e^{-\epsilon\xi^2} \mu(\xi/N) \quad \forall \xi \in \mathbb{R},$$

and $d = d_1 - d_2$, $\epsilon = d_1^{\gamma} + d_2^{\gamma}$. The rest of the proof is unchanged.

Set $\rho = |x|/(2d)$ as before. Arguing as in the proof of Lemma 2.2, we deduce that

$$|\psi| \le C\rho^{-\alpha} e^{-c\epsilon\rho^2}$$

on
$$I_2$$
, and

$$\int_{I_2} |\psi'| \, d\xi \leq C \rho^{-\alpha} e^{-c\epsilon \rho^2}.$$

An application of van der Corput's lemma then yields

$$\left|\int_{I_2} e^{iF} \psi \, d\xi\right| \leq C d^{-1/2} \rho^{-\alpha} e^{-c\epsilon\rho^2}.$$

Arguing as in the previous case, we obtain the estimate

$$\left|\int_{I_2} e^{iF} \psi \ d\xi\right| \le C \frac{d^{\beta(2-\gamma)}}{d^{1/2-\alpha}} \frac{1}{|x|^{\alpha+2\beta}}$$

Choosing

$$\beta = \frac{1/2 - \alpha}{2 - \gamma}$$

it follows that

$$\left|\int_{I_2} e^{iF}\psi \,d\xi\right| \leq C\frac{1}{|x|^{\alpha+2\beta}},$$

and using our assumption that $\alpha > (\gamma - 1)/\gamma$, we get

$$\alpha + 2\beta = \frac{1 - \alpha\gamma}{2 - \gamma} < \frac{1 - (\gamma - 1)}{2 - \gamma} = 1.$$

Hence, the function $x \mapsto |x|^{-\alpha-2\beta}$ is integrable in the interval $|x| \le C_0$ and the proof of Lemma 2.3 is complete.

Finally, we give the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. As in [3, Theorem 1], we only need to prove that

$$\|T_N^*h\|_2 \le C \|h\|_2, \tag{2.2}$$

when N = 1, 2, 3, ..., where the operators T_N^* are defined by

$$T_N^*h(\xi) = \rho_N(\xi)(1+\xi^2)^{-s/2} \int_{\mathbb{R}} e^{-ix\xi} e^{-iu(x)\xi^2} e^{-(u(x))^{\gamma}\xi^2} \chi_N(x)h(x) \, dx.$$

Here $\chi_N(x) = \chi(x/N)$, $\rho_N(\xi) = \rho(\xi/N)$ and χ , $\rho \in C_0^{\infty}(\mathbb{R})$ are such that

$$\chi(x) = \rho(x) = \begin{cases} 1 & \text{when } |x| \le 1, \\ 0 & \text{when } |x| \ge 2, \end{cases}$$

and both χ and ρ are even and real-valued. Further, *u* is a measurable function on \mathbb{R} such that 0 < u(x) < 1. Invoking Lemmas 2.3 or 2.4, we then have

$$\begin{split} \|T_N^*h\|_2^2 &= \int T_N^*h(\xi)\overline{T_N^*h(\xi)} \, d\xi \\ &= \int \rho_N(\xi)^2 (1+\xi^2)^{-s} \left(\int_{\mathbb{R}} e^{-ix\xi} e^{-iu(x)\xi^2} e^{-(u(x))^{\gamma}\xi^2} \chi_N(x)h(x) \, dx \right) \\ &\quad \times \left(\int_{\mathbb{R}} e^{iy\xi} e^{iu(y)\xi^2} e^{-(u(y))^{\gamma}\xi^2} \chi_N(y)\overline{h(y)} \, dy \right) d\xi. \end{split}$$

Here, when $1 < \gamma < 2$ we have assumed, as we may, that $1/2 - 1/(2\gamma) < s < 1/4$. If $\alpha = 2s$ and $1 < \gamma < 2$, then

$$1 - 1/\gamma < \alpha < 1/2.$$

Also, if $\alpha = 2s$ and $\gamma > 2$, then we will assume that $1/2 - 1/(2\gamma) < s < 1/2$, so that

$$1-1/\gamma < \alpha < 1.$$

Hence, setting $\mu = \rho^2$ and applying Lemmas 2.3 and 2.4,

$$\|T_N^*h\|_2^2 = \iiint \left(\int (1+\xi^2)^{-s} \exp(i(y-x)\xi) \exp(i(u(y)-u(x))\xi^2) \right)$$

× $\exp(-((u(y))^{\gamma} + (u(x))^{\gamma})\xi^2)\mu(\xi/N) d\xi \right)$
× $\chi_N(x)\chi_N(y)h(x)\overline{h(y)} dx dy$
 $\leq C \iint K(x-y)|h(x)| |h(y)| dx dy \leq C ||h||_2^2.$

Hence (2.2) is proved, and the proof of Theorem 1.1 is complete.

References

- P. Sjölin, 'Global maximal estimates for solutions to the Schrödinger equation', *Studia Math.* 110 (1994), 105–114.
- P. Sjölin, 'Maximal estimates for solutions to the nonelliptic Schrödinger equation', *Bull. Lond. Math. Soc.* 39 (2007), 404–412.
- P. Sjölin, 'Maximal operators of Schrödinger type with a complex parameter', *Math. Scand.* 105 (2009), 121–133.

PER SJÖLIN, Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm, Sweden e-mail: pers@math.kth.se

FERNANDO SORIA, Departamento de Matemáticas, Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas, ICMAT, E-28049 Madrid, Spain e-mail: fernando.soria@uam.es