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Abstract

Extending previous results of the first author, some new estimates are obtained for maximal operators of
Schrödinger type with a complex parameter.
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1. Introduction

For f belonging to the Schwartz class S(R), we set

St f (x)=
∫

R
ei xξei tξ2

f̂ (ξ) dξ ∀x ∈ R.

Here t is a complex number such that Im t ≥ 0, and f̂ denotes the Fourier transform
of the function f , defined by

f̂ (ξ)=
∫

R
e−i xξ f (x) dx .

If we set U (x, t)= (2π)−1St f (x), where x ∈ R and t ∈ R, then it follows that
U (x, 0)= f (x) for all x and further that U satisfies the Schrödinger equation
i∂U/∂t = ∂2U/∂x2. On the other hand, if we take t = iu, where u > 0, then U is,
modulo a constant, the solution to the usual heat equation with initial value f with
respect to the ‘time variable’ u.

We define the maximal function S∗ f by

S∗ f (x)= sup
0<t<1

|St f (x)| ∀x ∈ R,
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and also define Sobolev spaces Hs for all real s by setting

Hs = { f ∈ S ′ : ‖ f ‖Hs <∞},

where

‖ f ‖Hs =

(∫
Rn
(1+ |ξ |2)s | f̂ (ξ)|2 dξ

)1/2

.

It is well known that the estimate

‖S∗ f ‖2 ≤ C‖ f ‖Hs

holds if s > 1/2 and does not hold if s < 1/2 (see [1]). Here ‖S∗ f ‖2 denotes the norm
of S∗ f in the space L2(R), and C denotes a constant that varies from place to place.

When 0< γ <∞ and u > 0, we set

Pu f (x)= Su+iuγ f (x)=
∫

R
ei xξeiuξ2

e−uγ ξ2
f̂ (ξ) dξ ∀x ∈ R,

and
P∗ f (x)= sup

0<u<1
|Pu f (x)| ∀x ∈ R.

In Sjölin [3] the inequality

‖P∗ f ‖2 ≤ C‖ f ‖Hs (1.1)

was studied for various values of γ and the following results were obtained.

THEOREM A.

(i) When 0< γ ≤ 1, (1.1) holds if and only if s ≥ 0.
(ii) When γ = 2, (1.1) holds if and only if s ≥ 1/4.
(iii) When γ ≥ 4, if (1.1) holds then s ≥ 1/2− 1/γ .

When γ > 0, we denote by Eγ the set of all s such that (1.1) holds, and set

s(γ )= inf Eγ .

It was proved in [3] that s is a nondecreasing function on the interval (0,∞), and that
0≤ s(γ )≤ 1/2 when 0< γ <∞.

The results in Theorem A can be stated in the following way.

THEOREM B.

(i) When 0< γ ≤ 1, s(γ )= 0.
(ii) s(2)= 1/4.
(iii) When γ > 4, 1/2− 1/γ ≤ s(γ )≤ 1/2 and hence

lim
γ→∞

s(γ )= 1/2.

We give here the following improvement of the above results.
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THEOREM 1.1. If γ > 1 and s > 1/2− 1/(2γ ), then (1.1) holds.

The result in Theorem 1.1 is new when 1< γ < 2 and γ > 2, and allows us to
extend Theorem B in the following way.

THEOREM 1.2.

(i) When 0< γ ≤ 1, s(γ )= 0.
(ii) When 1< γ < 2, 0≤ s(γ )≤ 1/2− 1/(2γ ).
(iii) s(2)= 1/4.
(iv) When 2< γ ≤ 4, 1/4≤ s(γ )≤ 1/2− 1/(2γ ).
(v) When γ > 4, 1/2− 1/γ ≤ s(γ )≤ 1/2− 1/(2γ ).

2. Proof of the theorems

For the proof of the above results we shall use the following lemmas.

LEMMA 2.1. Assume that a > 1, 1/2≤ s < 1 and µ ∈ C∞0 (R). Then∣∣∣∣∫
R

ei xξ+i t |ξ |a
|ξ |−sµ(ξ/N ) dξ

∣∣∣∣≤ C
1

|x |1−s
∀x ∈ R\{0},

when t ∈ R and N = 1, 2, 3, . . . . Here the constant C may depend on s and a but not
on x, t or N.

A proof of Lemma 2.1 can be found in [2].

LEMMA 2.2. Assume that 1/2≤ α < 1 and 0< d1, d2 < 1, and also that µ ∈ C∞0 (R)
is even and real-valued. Then∣∣∣∣∫

R
exp(i(d1 − d2)ξ

2
− i xξ)(1+ ξ2)−α/2 exp(−(d2

1 + d2
2 )ξ

2)µ(ξ/N ) dξ

∣∣∣∣
≤ K (x) ∀x ∈ R

when N = 1, 2, 3, . . . , where K ∈ L1(R). Here K is independent of d1, d2 and N.

Lemma 2.2 is proved in [3].
We also need two new lemmas.

LEMMA 2.3. Assume that 1< γ < 2, (γ − 1)/γ < α < 1/2, 0< d1, d2 < 1, and µ
is as in Lemma 2.2. Then∣∣∣∣∫

R
exp(i(d1 − d2)ξ

2
− i xξ)(1+ ξ2)−α/2 exp(−(dγ1 + dγ2 )ξ

2)µ(ξ/N ) dξ

∣∣∣∣
≤ K (x) ∀x ∈ R

when N = 1, 2, 3, . . . , where K ∈ L1(R). Here K is independent of d1, d2 and N.
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LEMMA 2.4. Assume that γ > 2, (γ − 1)/γ < α < 1, 0< d1, d2 < 1, and µ is as in
Lemma 2.2. Then∣∣∣∣∫

R
exp(i(d1 − d2)ξ

2
− i xξ)(1+ ξ2)−α/2 exp(−(dγ1 + dγ2 )ξ

2)µ(ξ/N ) dξ

∣∣∣∣
≤ K (x) ∀x ∈ R

when N = 1, 2, 3, . . . , where K ∈ L1(R). Here K is independent of d1, d2 and N.

We now give the proofs of Lemmas 2.4 and 2.3.

PROOF OF LEMMA 2.4. Let C0 denote a large constant. Since 1/2< α < 1, in the
case where |x | ≤ C0 we can use the proof in [2] of Lemma 2.1 to conclude that the
estimate in Lemma 2.4 holds when K (x)= C |x |α−1. To obtain this, we have to use
the observation (see [3]) that if h(ξ)= hε(ξ)= e−εξ

2
where 0< ε < 2, then

|h′(ξ)| ≤ C
1
ξ
∀ξ ∈ [1/2,∞),

where C is independent of ε.
We now consider the case where |x |> C0. To that end, we shall modify the proof

in [3] of our Lemma 2.2.
We may assume that d2 < d1 and set d = d1 − d2 and ε = dγ1 + dγ2 , so that

0< d < 1 and 0< ε < 2. Also set ρ = |x |/(2d) and

ψ(ξ)= (1+ ξ2)−α/2e−εξ
2
µ(ξ/N ) ∀ξ ∈ R.

Choose an even function ϕ0 ∈ C∞ such that ϕ0(ξ)= 1 if |ξ | ≤ 1/2 and ϕ(ξ)= 0 if
|ξ | ≥ 1. Set ψ0 = ψϕ0, so that supp ψ0 ⊂ [−1, 1]. Then, for a large constant K1,
choose ϕ2 ∈ C∞0 so that supp ϕ2 ⊂ [ρ/4, 2K1ρ] and ϕ2(ξ)= 1 if ρ/2≤ ξ ≤ K1ρ.
We may also assume that |ϕ′2(ξ)| ≤ Cξ−1 and |ϕ′′2 (ξ)| ≤ Cξ−2 if ξ > 0. We also set
ϕ3 = (1− ϕ2)χ[K1ρ,∞) and ϕ1 = (1− ϕ2 − ϕ0)χ[0,ρ/2].

Having defined the cutoff functions ϕ j , where j = 0, 1, 2, 3, it is clear that it is
sufficient to estimate the integrals

J j =

∫
ei Fψ j dξ

where F(ξ)= dξ2
− xξ and ψ j (ξ)= ψ(ξ)ϕ j (ξ). (A similar argument works for

the functions ψ(ξ)ϕ j (−ξ).) A double integration by parts easily shows the estimate
|J0| ≤ C/|x |2 (see [3]). Now observe that when j = 1, 2, 3 and ξ > 1/2, the pointwise
estimates

|ψ j (ξ)| ≤ C
1

(1+ ξ2)α/2
,

|ψ ′j (ξ)| ≤ C
1

(1+ ξ2)α/2ξ
,
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and

|ψ ′′j (ξ)| ≤ C
1

(1+ ξ2)α/2ξ2

hold. Using the same arguments as in [3], we obtain the estimate O(|x |−2) for J1
and J3.

To estimate J2, we use van der Corput’s lemma and deduce that

|J2| ≤ Cd−1/2ρ−α exp(−cερ2)

≤ Cd−1/2
(
|x |

d

)−α
exp(−c(dγ1 + dγ2 )|x |

2/d2)

≤ Cdα−1/2
|x |−α exp(−c(d1 + d2)

γ
|x |2/d2)

≤ Cdα−1/2
|x |−α exp(−cdγ−2

|x |2),

where we have used the fact that d1 + d2 ≥ d . Here c denotes possibly different
positive constants.

We now invoke the inequality

e−y
≤ Cβ y−β , (2.1)

which holds whenever y > 0 and β > 0, to deduce that

|J2| ≤ Cdα−1/2
|x |−α

1

d(γ−2)β |x |2β

= C
dα−1/2

dβ(γ−2)

1

|x |α+2β .

We now choose β so that β(γ − 2)= α − 1/2, that is,

β =
α − 1/2
γ − 2

.

Since γ > 2 and 1/2< α < 1, it is clear that β is positive. We obtain the inequality

|J2| ≤ C
1

|x |α+2β .

Finally, using our assumption that α > (γ − 1)/γ , we get

α + 2β =
αγ − 1
γ − 2

>
γ − 1− 1
γ − 2

= 1.

Hence the function |x |−α−2β is integrable when |x |> C0 and the proof of Lemma 2.4
is complete. 2

PROOF OF LEMMA 2.3. As before, we let C0 denote a large constant. We first study
the case where |x |> C0. With the same notation as in the previous proof and the
arguments in [3], the estimates for J0, J1 and J3 follow easily. (Observe that the
condition α ≥ 1/2 was not used for these estimates.)

https://doi.org/10.1017/S1446788710000170 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000170
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To estimate J2 we use van der Corput’s lemma again and deduce that

|J2| ≤ Cd−1/2ρ−αe−cερ2

≤ Cdα−1/2
|x |−αe−cdγ−2

|x |2 .

Using inequality (2.1), we then obtain

|J2| ≤ Cdα−1/2
|x |−α

1

d(γ−2)β |x |2β

= C
dβ(2−γ )

d1/2−α

1

|x |α+2β .

Here 2− γ > 0 and, therefore, 1/2− α > 0. Choosing β large, we conclude that

|J2| ≤ C
1

|x |α+2β ≤ C
1

|x |2
.

This completes the proof in the case where |x |> C0. It remains to study the case
where |x | ≤ C0. To do so, we modify the arguments given in the proof of Lemma 2.1
(see [2]). Since α < 1/2, we need a different argument to estimate∫

I2

ei Fψ dξ,

where, for some constants c1 small and C1 large, I2 denotes the interval

I2 =

{
ξ ≥

1
|x |
: c1
|x |

d
≤ ξ ≤ C1

|x |

d

}
.

Also,

F(ξ)=−xξ + dξ2,

ψ(ξ)= (1+ ξ2)−α/2e−εξ
2
µ(ξ/N ) ∀ξ ∈ R,

and d = d1 − d2, ε = dγ1 + dγ2 . The rest of the proof is unchanged.
Set ρ = |x |/(2d) as before. Arguing as in the proof of Lemma 2.2, we deduce that

|ψ | ≤ Cρ−αe−cερ2

on I2, and ∫
I2

|ψ ′| dξ ≤ Cρ−αe−cερ2
.

An application of van der Corput’s lemma then yields∣∣∣∣∫
I2

ei Fψ dξ

∣∣∣∣≤ Cd−1/2ρ−αe−cερ2
.
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Arguing as in the previous case, we obtain the estimate∣∣∣∣∫
I2

ei Fψ dξ

∣∣∣∣≤ C
dβ(2−γ )

d1/2−α

1

|x |α+2β .

Choosing

β =
1/2− α
2− γ

,

it follows that ∣∣∣∣∫
I2

ei Fψ dξ

∣∣∣∣≤ C
1

|x |α+2β ,

and using our assumption that α > (γ − 1)/γ , we get

α + 2β =
1− αγ
2− γ

<
1− (γ − 1)

2− γ
= 1.

Hence, the function x 7→ |x |−α−2β is integrable in the interval |x | ≤ C0 and the proof
of Lemma 2.3 is complete. 2

Finally, we give the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. As in [3, Theorem 1], we only need to prove that

‖T ∗N h‖2 ≤ C‖h‖2, (2.2)

when N = 1, 2, 3, . . . , where the operators T ∗N are defined by

T ∗N h(ξ)= ρN (ξ)(1+ ξ2)−s/2
∫

R
e−i xξe−iu(x)ξ2

e−(u(x))
γ ξ2
χN (x)h(x) dx .

Here χN (x)= χ(x/N ), ρN (ξ)= ρ(ξ/N ) and χ, ρ ∈ C∞0 (R) are such that

χ(x)= ρ(x)=

{
1 when |x | ≤ 1,

0 when |x | ≥ 2,

and both χ and ρ are even and real-valued. Further, u is a measurable function on R
such that 0< u(x) < 1. Invoking Lemmas 2.3 or 2.4, we then have

‖T ∗N h‖22 =
∫

T ∗N h(ξ)T ∗N h(ξ) dξ

=

∫
ρN (ξ)

2(1+ ξ2)−s
(∫

R
e−i xξe−iu(x)ξ2

e−(u(x))
γ ξ2
χN (x)h(x) dx

)
×

(∫
R

eiyξeiu(y)ξ2
e−(u(y))

γ ξ2
χN (y)h(y) dy

)
dξ.
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Here, when 1< γ < 2 we have assumed, as we may, that 1/2− 1/(2γ ) < s < 1/4. If
α = 2s and 1< γ < 2, then

1− 1/γ < α < 1/2.

Also, if α = 2s and γ > 2, then we will assume that 1/2− 1/(2γ ) < s < 1/2, so that

1− 1/γ < α < 1.

Hence, setting µ= ρ2 and applying Lemmas 2.3 and 2.4,

‖T ∗N h‖22 =
∫ ∫ (∫

(1+ ξ2)−s exp(i(y − x)ξ) exp(i(u(y)− u(x))ξ2)

× exp(−((u(y))γ + (u(x))γ )ξ2)µ(ξ/N ) dξ

)
× χN (x)χN (y)h(x)h(y) dx dy

≤ C
∫ ∫

K (x − y)|h(x)| |h(y)| dx dy ≤ C‖h‖22.

Hence (2.2) is proved, and the proof of Theorem 1.1 is complete. 2
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