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DIMENSION INVAB1ANCE OF SUBDIVISIONS

JEH GWON LEE, W E I - P I N G LIU, RICHARD NOWAKOWSKI, IVAN RIVAL

The dimension of an ordered set is invariant with respect to any subdivision of
its completion. This may be applied to support the conjecture (still open) that
the problem to determine the (order) dimension of an N-free ordered set is NP-
complete.

1. INTRODUCTION

iV-free ordered sets are uncommonly useful in the combinatorial theory of or-
dered sets. Recently, Habib [1] conjectured that the computational time-complexity of
the problem to determine the dimension of an N-iree ordered set is polynomial. An
approach to settling Habib's conjecture in the affirmative uses the popular idea of sub-
dividing the edges of the diagram. Spinrad [3] has shown, by a clever example, that
this obvious approach cannot succeed. In fact, our paper is inspired by an effort to
settle Habib's conjecture in the negative, by using the same subdivision idea, albeit in
a more sophisticated context than before. To this end we show that the dimension of
an ordered set is unchanged for any subdivision of its completion, a result that seems
to be of independent interest.

THEOREM 1 . For any finite ordered set P, the dimension of P is the same as
the dimension of any subdivision of the completion of P.

Let P be a finite ordered set. The dimension of P is denned to be the minimum
number of chains into whose product P can be order embedded and the completion of
P turns out to be the smallest lattice into which P can be order embedded. Loosely
speaking, the completion of P is the smallest lattice containing P. A subdivision of P
is an ordered set obtained from P by adjoining vertices s(a, b) to P corresponding to
pairs (a, b) of elements of P such that a >- b, that is, o covers b [a > b and a > x ^ b
imply x = b] ordered by the relations induced from P and a >• s(a, b) >- b.
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P completion P a subdivision of completion P

Figure 1.

In contrast to Theorem 1, the dimension of a subdivision of P may be strictly
larger than the dimension of P (see Figure 2). And, according to Spinrad [3], there is
not even a constant c such that dimension (subdivision P) ^ c dimension P.

dimension=2 dimension=3

Figure 2.

One important and notable exception is the ordered set Sn of the singleton subsets
and (n — 1)-element subsets of an n-element set ordered by set inclusion.

THEOREM 2. For any positive integer n, the dimension of any subdivision of Sn

equals n, the dimension of Sn •

Our approach to settling Habib's conjecture (in the negative) uses the idea of a
"spanning set" in a lattice. Given a lattice L let P stand for its set of join-irreducible
or meet-irreducible elements. A spanning set in L is a subset S of L containing P such
that, for each c, 6 i n S , i f a > - 6 i n S then a >- b in L, that is, 5 is a subdiagram of L
containing P. Of course, L itself is a spanning set in L. Thus, the hypercube L = 2n

of all subsets of an n-element set ordered by set inclusion (which is the completion of
Sn) is a spanning set of itself. What we seek, however, is a "small" spanning set in L.

CONJECTURE. There is a constant k such that every finite lattice with n join-
irreducible or meet-irreducible elements contains a spanning- set with at most nk ele-
ments.
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THEOREM 3 . For any positive integer n, the hypercube 2 n contains a spanning
set with at most n2 elements.

Our approach to Habib's conjecture now runs as follows. Starting with an arbitrary
n-element ordered set P, let L be its completion. It is well known that the join-
irreducible or meet-irreducible elements of L are contained in P (see [2]). Supposing
our conjecture is true, then L contains a spanning set S of size at most n* elements,
k a constant. The rest is easy. Subdivide every edge of the diagram of 5 to obtain
an ordered set T with \T\ ^ n2k. (There cannot be more than \S\2 edges.) It is easy
to verify that such a subdivision T of 5 is iV-free, that is, its diagram contains no
subdiagram isomorphic to N (see Figure 3).

iV-free N-iree Not JV-free

Figure 3.

JV-free

Now supposing that there is a polynomial (in the number of elements of an ordered
set) which bounds the number of steps needed to compute the dimension of an N-
free ordered set, then the dimension of this subdivision T can be computed within
nm steps, m a constant. Finally, as a dimension is an isotone operator, dimension
P ^ dimension 5 ^ dimension T < dimension(subdivision(completion P ) ) , which, by
Theorem 1, implies that the dimension of P is the same as the dimension of T.

Thus, as long as the construction itself is a polynomial in n , it follows that there
is a polynomial (in n) to compute the dimension of P, an arbitrary ordered set. This,
however, lies in contradiction to the result of Yannakakis [4] who showed that the
problem to determine the dimension of an arbitrary ordered set is itself NP-complete.

The fly in the ointment is, of course, the construction of a spanning set which is
the substance of our own conjecture. We do, however, have this evidence about Habib's
conjecture which, in turn, substantiates our own.

THEOREM 4 . Let P bean n-element ordered set with no subdiagram isomorphic
to F (Figure 4) and also no subset isomorphic to G (Figure 4) in which either to3 >~ w\
or wz >- W2 or w* >- w\. Then there is an ordered set Q satisfying these conditions
such that

(i) Q contains P;
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(ii) Q is TV-free;
(Hi) dimension Q= dimension P;
(iv) |QKn 4 .

wilt

Figure 4.

2. PROOF OF THEOREM l

It is a well-known, by now, classical fact (see [2]) that, for any ordered set P, the
dimension of P is the same as the dimension of the completion of P. What we must,
therefore, establish is that for any finite lattice L, the dimension of L is the same as
the dimension of any subdivision of L.

To this end let a >- b in L. We show that the lattice L' = LU {c} with order
induced from L and a >~ c>- b has the same dimension as L. Repeating this for each
edge of L, will complete the proof, for, after each such subdivision, the ordered set is
still a lattice.

Let L have dimension k and consider an order embedding / of L into the direct
product Ci x C2 x • • • x Cfc of k chains C\, Cz,... , C*. Suppose there is x in C\ x C2 x
• •• x Cfc such that /(a) > x > f(b) and, for any y in L, x > f(y) implies f(b) ^ f(y)
and x < f(y) implies f(a) ^ f(y). In this case, f(L) U {x} = L', that is, V, too, is
order embedded in C\ x C2 x • • • x Ck whence dimension V = dimension L.

Suppose then that, for any x satisfying /(a) > x > f(b) there is y in L such that
either x > f(y) but f(b) ? f{y) or x < f{y) but /(a) £ f(y). Let

A = {x e Ci x • • • x Cfc I /(a) > 1 > /(&) and, for some y in L, x> f(y) but f(b) $£ /(y)}

and

B = {x 6 Ci x • • • x Ck I /(a) > 1 > /(6) and, for some y in L, x < /(y) but /(a) % /(y)}.

If there is z in A n 5 then choose y.4 in L maximal satisfying x > /(y.4) but
/(&) J£ /(y>0 and J/B in I minimal satisfying x < Z(ys) but /(a) $£ /(J /B)- Thus,
a > !/A) a > 6, ys > VA, VB > b. As L is a lattice there is z in X such that, in
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particular, a> z > b which, however, is in contradiction to the fact that a >- b in L.
Thus, A n B = 0. Of course, it may be that A = 0 or B = 0, too.

Let x be a minima.! element in A U {/(a)}. Let z in Ci x Ci x • • • x C* satisfy
that x >• z ^ /(&). Then there is a coordinate % such that the t th coordinates Zj, Zj
of x,z satisfy that x< >- Zi in Q , yet, for j ^ t , x5- = z7-. Now, replace Cj by another
chain C'i = Ci U {ci} in which Xi >- C| >- Zj.

The lattice L may still be order embedded in C\ x Ci x • • • x Ci_i x CJ x Ci+i x
• • • x Ck by composing / with the identity embedding of C\ x C2 x • • • x Ck into
Ci x C2 x • • • x Cj_i x C - x C7j+i x • • • x Ck • Then we may adjoin the fc-tuple
( i i , i2 , • • • ,Xi-i,Ci,Xi+i,... ,Xk) to f(L) to form an ordered subset of C\ x Ci x
• • • x Ci_i x C - x Ci+i x • • • x Ck isomorphic to V, for this new element is larger,
in f(L), only than those elements dominated by f(b) and is smaller in, f(L), only
than those dominating / ( a ) . Thus, L' has the same dimension as L. Repeating this
construction for any edge of L completes the proof. D

3. PROOF OF THEOREM 2

Let a.i, 02, - •. , On be the mavim^i elements of Sn and 61, i>2, - - - , bn its minimal
such that en > bj just if i ^ j . Let T be the subdivision of Sn obtained by adjoining
a new vertex ĉ - for each covering pair a* >• bj, i^j, such that, in T, Oj >- Cy- >• bj.
We construct n linear extensions L\,Li,... ,Ln of T such that x < y in T just if
x < y in Li for every i = 1,2,... , n . To this end, let

>- Oj+2 >-•••>- ai+(n_!) >- o i + ( n_1)} ,

where the subscript i+k is replaced by i+k—n if i+Jfc > n. Let .X* = {x | Oj >- x(T)}
and Yi = {y \ y >- bi(T)}. Then XiCYi = 0. Put S = XiUX2U- • -UXn = yiU72U- - -U
yn and Zi = S- {Xi U l i ) . Finally, let Lt = 5i©Xie{oi}©Zie{6i}eFi©Ai, where
Xi, Yi, and Zj are linear extensions of Xi, Yi, and Zj, respectively, for * = 1,2,... , n,
and Y ® X stands for the linear sum of X and then Y.

We claim that the Li's are the required linear extensions of T. First of all we
verify that each Li is a linear extension of T. It is enough to show that

(a) ay > bk(Li) whenever j ^k,
(b) if x in Xj, then x < a.j(Li),
(c) if y in Yk, then y > bk(Li).

(a) Suppose j ^ k. If j ^ i, then o3- is in Ai and so a,- > 6fc(L»); if j = t, then
k ^ i so bk belongs to Bi and a3- > bfc(Xi). Hence we always have ctj > bk{Li) if
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(b) Suppose x € Xj. If j ^ i, then, a, is in A» so x < dj(Li); if j = i, then x is
in Xi, so x < Oi(Li). Hence it is always true that x < aj(Xi) if x is in Xj.

(c) This is the dual of (b).

Let K be the order on the same set as T given by x < y{K) if and only if x < y(Li)
for each i = 1,2,... , n . To complete the proof we must now verify that K — T', that
is, for each i,j,

(d) Oi is noncomparable to bi in K,
(e) a» is noncomparable to x in if, for each x in Xj, i ^ j ,
(f) 6< is noncomparable to y in K, for each y in Yj, i^ j ,
(g) xi is noncomparable to X2 in if, for any distinct xi,X2 in 5 .

(d) According to the construction of Li we know that a* < 6i(Lj). On the other
hand, choosing j such that i ^ j , gives a» in Aj and 6< in B,- so Oj > &t(£i)-
Therefore, a* is noncomparable to 6j in K

(e) Again, according to the construction of Lj if i # j , and x is in X,-, then x is
in ZiUYi so x > Oi(Li) and, on the other hand if i ^ j then Oi is in Aj so a* > x(Lj).
Hence a* is noncomparable to x in K.

(f) This is the dual of (e).

(g) Let x{ be in Xi and X2 be in Xj. If z = j then xi is in Yh and X2 is in
Yk for some h,k satisfying h ^ k. Then xi > X2(Lh) and xx < x2(Z-fc), so Xi is
noncomparable to X2 in K. If i ^ j then Xi < X2(£j) and Xi > Xz{Lj) so Xi is
noncomparable to X2 in K. This completes the proof. D

4. P R O O F OF THEOREM 3

Let Tn be the subset of 2 n consisting of all members of

n-2

k=0

where i + k is replaced by i + k — n i f i - | - fc>n. Then

and

We know that 5 n is the set of join-irreducible or meet-irreducible elements of 2n

Clearly, Tn is a subdiagram of 2" , whence a spanning set in 2 n .
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Figure 5.

5. PROOF OF THEOREM 4

For subsets B and C of an ordered set P , we write B < C (B •< C) if b < c{b -< c)
for any b in B and any c in C. For the purposes of this proof, an N is regarded as
a quadruple (a, B, C, d) of elements a, d and subsets B,C of P such that {a} -< B >•
C -< {d} and a\\d, which means that a is noncomparable to d. The pair (B,C) is
called an N-edge. An N (a,B,C,d) or an iV-edge (B,C), is said to be maximal if
there is no other AT-edge (B\ C) with B c B ' a n d C c C .

LEMMA 1 . Let P be an ordered set with no subset isomorphic to G (Figure 4)
in which either W3 >- w\ or 103 >- u>2 or w* >- w\. If (a, B, C,d) is a maxima] N in
P and P = P U {p} is the ordered set with order induced from P and B >~ {p} >~ C,
then P and P have the same dimension.

PROOF: We first show that u = inf B >- sup C = v in the completion of P.
Suppose that there is z in the completion of P with u > z > v. Of course, 2 does
not belong to P and, therefore z is doubly reducible. We choose a minima.! element s
in P such that s ^ z but s $£ u and a ma-gimal element t in P such that t ^ z but
£ ^ r. Then {s} >- C, {*} -< B and s >- t, for otherwise P contains a forbidden copy
of G. Now (a,B,Cu{t},s) is an JV in P as long as a\\s, and (a,Bu{s},C,d) is an
iV in P as long as a -< s, both contradicting the maximality of the N-edge {B,C).
On the other hand, P will contain G if a < s but a-fi s. By Theorem 1, subdividing
the edge (u, v) by p gives us a lattice 1/ = completion P U {p} with dimension V =
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dimension P. Now, let P' be the ordered set on Pu{p} induced from V. Clearly,
dimension i " is equal to dimension P.

Finally, we need to show that P' = P. Suppose not. By duality we assume that
there is an upper cover y of p in P' with y not in B. Then a < y. If a -fc y then P will
contain G; otherwise, (o,Bu{y}, C,d) is an N in P, contradicting the maximality of
(B,C). D

For an ordered set P, let

N(P) = {(X1,X2,X3,X4) A, Xi||x4}

LEMMA 2 . Let P be an ordered set containing neither a subdiagram isomorphic
to F (Figure 4) nor a subset isomorphic to G (Figure 4) in which either W3 >- toi or
W3 >- W2 or w4 >- wi. If (a, B,C,d) is maximal in P and P = P U {p} is the ordered
set with order induced from P and B >- {p} >- C, then P too contains no subdiagram
isomorphic to F, no subset isomorphic to G with either W3 >- toi or W3 >- 102 or

PROOF: We divide the proof into three parts.
I. P contains no subdiagram isomorphic to F.
By duality and symmetry we have only two cases to check (see Figure 6).

(ii)

Figure 6.

In case (i), by replacing p by c from C, we get F in P. As to case (ii), if u\\c
for some c in C, then choose c in place of p to get JP in P. Hence {u} X C, for
otherwise P contains a forbidden G. If a||u then P contains a subdiagram isomorphic
to F by replacing p by o. Thus a<u. If a -< u then u belongs to B , and otherwise
P contains a forbidden G. Now the conclusion follows.

II. P contains no forbidden G
By duality we have three cases to consider (see Figure 7).
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c •
(iii)

(i) p is adjacent to a covering edge of G, that is, p >- c. By taking b in B
in place of p, we get G in P .

(ii) p is not adjacent to a covering edge of G. We have c and c' from C
which are not below e. If e||6 for some 6 in Z? then pick b instead of p
to get G in P . Hence, {e} < £?. On the other hand, if e\\d then replace
p by d to get G in P . If e < d, then e -< d, and {e} -< £?, for otherwise
P contains G. Now, (o,B,CU {e},d) is an iV in P , a contradiction.

(iii) p is one of the middle elements, Observe that {b,c,u,v} is a cover-
preserving order subset of P . Now this case is divided into four further
cases.

CASE 1. {v} < B and {u} > C.

In fact {u} >• C and {v} -< B. If a < u, then again a -< u and so (a, Bl){u},C,d)
is an TV in P , which is a contraction. Hence a||u, which implies that (o,B,Cu{v},u)
is again an N in P .

CASE 2. {u} < 2? and u\\d for some </ in C.
If v < d and so (o,B,CU{t;},d) is an N in P . Thus v\\d. Then (u,u,fc,c,d,c/)

in P is a subdiagram isomorphic to F.

CASE 3. {u} < C and v||6' for some 6' in B.
This is the dual of Case 2.

CASE 4. u\\d and v||fc' for some V in £ and c7 in C.
In fact, {u,«,&,c,6',c'} in P is isomorphic to F.

m. \N(P)\ > \N(P)\.
Pick 6 from B and c from C. Define a map / on N(P~) to P 4 by

(c, £2, X35 X4) z i = p,

f(Xi,X2,X3,X4) =

x2=p,

otherwise.
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We shall show that / is in fact a map from N(P) to N(P). Since the cases except
xi = p and X4 = p are trivial, we consider only the case xi = p by duality. Suppose
c < X4. Since P contains no forbidden G, we have c -< X4, which also contradicts
II. Hence (c, x2jZ3.au) belongs to N(P). It is now routine to verify that / is one-
to-one and (a,b,c,d) does not belong to / ( iV(P)) . For instance, if (xi,X2,X3,X4) ^
(yij S/2) J/3> 3te) in N(P) ^ t h x\=P and y2 = P> then X3 is not in C and y3 is in C
so / (x i , x 2 , x 3 , x 4 ) = (c,x2 ,x3 ,x4) # (yi,b,y3,y4) = f(vi,y2,yz,V*)- D

Finally we are ready to complete the proof of Theorem 4. If there is no N in
P then Q = P and we are done. Suppose there is an N in P . Then we can find
a maximal iV-edge (B,C) in P . By Lemmas 1 and 2, we construct an ordered set
P = P U {p} with order induced from P and B >- {p} >- C such that dimension P =
dimension P and \N(P) \ < \N(P)\. Since JV(P) c P 4 , by adding elements to P one
by one, as above, we finally can reach a desired ordered set Q in at most n4 steps.
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