ON THE DIMENSION OF MODULES AND ALGEBRAS, VII ALGEBRAS WITH FINITE-DIMENSIONAL RESIDUE-ALGEBRAS

J. P. JANS and TADASI NAKAYAMA

It was shown in Eilenberg-Nagao-Nakayama [3] (Theorem 8 and §4) that if \mathcal{Q} is an algebra (with unit element) over a field K with $(\mathcal{Q}:K) < \infty$ and if the cohomolgical dimension of \mathcal{Q} , dim \mathcal{Q} , is ≤ 1 , then every residue-algebra of \mathcal{Q} has a finite cohomological dimension. In the present note we prove a theorem of converse type, which gives, when combined with the cited result, a rather complete general picture of algebras whose residue-algebras are all of finite cohomological dimension. Namely, if Λ is an algebra over a field K with $(\Lambda:K) < \infty$ and if

$$\dim\left(\Lambda/N^2\right)<\infty,$$

where N is the radical of Λ , then Λ is a homomorphic image of an algebra Ω over K with $(\Omega: K) < \infty$ such that

 $\dim \mathcal{Q} \leq 1.$

We may further impose the condition

$$\Omega/M^2 pprox arLambda/N^2$$

where M is the radical of Ω , and with this additional condition the algebra Ω and the homomorphism $\Omega \to \Lambda$ are determined uniquely up to an isomorphism.

Thus, algebras with cohomological dimension ≤ 1 are in a sense "prototypes" for algebras with finite-dimensional residue-algebras. The construction of \mathcal{Q} and the homomorphism $\mathcal{Q} \rightarrow \Lambda$ is essentially what was employed by Hochschild [5, 6] in connection with his notion of "maximal algebra" and by Jans [3] as free algebras.

We shall start with semi-primary rings (in the sense in [3]). For them and for their global dimensions we shall prove a theorem which is quite similar as above but which assumes an additional condition on "splitting".

Received April 14, 1956.

§ 1. Rings with $N^2 = 0$

In this section Λ will denote a semi-primary ring with radical N such that $N^2 = 0$. The quotient ring $\Gamma = \Lambda/N$ is then semi-simple and N is a two-sided Γ -module.

LEMMA 1. Let e, e' be primitive idempotents in Γ such that

 $Ne \neq 0 \neq eNe'$.

Then

$$0 \leq 1. \dim_{\Lambda} Ne < 1. \dim_{\Lambda} Ne'$$

Proof. Our lemma (as well as Proposition 2 below) follows readily from the consideration of "minimal resolution" (i.e. a projective resolution consisting of "minimal homomorphisms") (Eilenberg-Nakayama [4], Eilenberg [2]). But, since we are dealing here with a very simple situation, we shall give a direct proof. Since NNe' = 0, the left Λ -module Ne' is semi-simple and thus $Ne' \approx \Sigma \Gamma e_{\alpha}$ where the sum is direct and $\{e_{\alpha}\}$ is an indexed family of primitive idempotents in Γ . Since $eNe' \neq 0$ we have $e\Gamma e_{\alpha} \neq 0$ for at least one index α . Thus $e_{\alpha} \approx e$ (meaning $\Gamma e_{\alpha} \approx \Gamma e$) and Ne' has a direct factor isomorphic with Γe . Thus

$$1.\dim_{\Lambda}\Gamma e \leq 1.\dim_{\Lambda}Ne'$$

Next consider the exact sequence $0 \rightarrow Ne \rightarrow \Lambda e \rightarrow \Gamma e \rightarrow 0$. If Γe is not Λ -projective, then

$$1.\dim_{\Delta}\Gamma e = 1 + 1.\dim_{\Delta}N e \ge 1$$

which implies the desired result. If Γe is Λ -projective, then the exact sequence splits and we have a direct sum $\Lambda e = Ne + 1$ where 1 is a left ideal of Λ . Multiplying by N we find $Ne = N^2e + N1 = N1 \le 1$. Thus Ne = 0 contrary to hypothesis.

A sequence (e_0, \ldots, e_n) of primitive idempotents in Γ is called *connected* if $e_{i-1}Ne_i \neq 0$ for $i = 1, \ldots, n$. The number *n* is called the *length* of the connected sequence. It is clear that if in a connected sequence an idempotent is replaced by an isomorphic one, the sequence remains connected.

PROPOSITION 2. A connected sequence of length n exists if and only if gl.dim $\Lambda \ge n$.

Proof. We may assume $n \ge 1$. The condition gl.dim $\Lambda \ge n$ is equivalent to

 $1.\dim_A n \ge n-1$. Let (e_0, \ldots, e_n) be a connected sequence. Then, by Lemma 1,

 $0 \leq 1. \dim_{\Lambda} Ne_i < 1. \dim_{\Lambda} Ne_{i+1} \quad \text{for } i = 1, \ldots, n-1.$

Thus $1.\dim_{\Lambda} Ne \ge n-1$, whence $1.\dim_{\Lambda} N \ge n-1$.

Suppose conversely $1.\dim_{\Lambda}N \ge n-1$. Since N is the direct sum of modules of form Ne, where e is a primitive idempotent in Γ , there exists a primitive idempotent e_n in Γ such that $1.\dim_{\Lambda}Ne_n \ge n-1$. Since $NNe_n = 0$, the Λ -module Ne_n is semi-simple and is therefore the direct sum of modules Γe . Thus there exists a primitive idempotent e_{n-1} in Γ such that

- (i) Γe_{n-1} is isomorphic with a direct suumand of Ne_n ,
- (ii) $1.\dim_{\Lambda}\Gamma e_{n-1} \ge n-1.$

Since $e_{n-1}\Gamma e_{n-1} \neq 0$ we have $e_{n-1}Ne \neq 0$. Further, from the exact sequence $0 \rightarrow Ne_{n-1} \rightarrow \Lambda e_{n-1} \rightarrow \Gamma e_{n-1} \rightarrow 0$ we deduce that $1.\dim_{\Lambda} Ne_{n-1} \ge n-2$. Continuing in this fashion we obtain a connected sequence (e_1, \ldots, e_n) such that $1.\dim_{\Lambda} Ne_i \ge i-1$. In particular, $1.\dim_{\Lambda} Ne_1 \ge 0$ i.e. $Ne_1 \neq 0$. There exists therefore a primitive idempotent e_0 in Γ such that $e_0 Ne_1 \ge 0$. Thus (e_0, \ldots, e_n) is a connected sequence of length n as desired.

COROLLARY 3. Let Λ be a semi-primary ring with radical N such that $N^2 = 0$. 1. Let l be the number of simple components of the semi-simple ring $\Gamma = \Lambda/N$. Then

gl.dim
$$\Lambda < l$$
 or $= \infty$.

Proof. Assume gl.dim $\Lambda \ge l$. Then there exists a connected sequence (e_0, \ldots, e_l) of primitive idempotents in Γ . At least two of these idempotents must be isomorphic and therefore there exists a connected sequence (e'_0, \ldots, e'_n) with $e'_0 = e'_n$. This implies the existence of connected sequences of any length. Thus gl.dim $\Lambda = \infty$.

§2. The "maximal" ring Ω

Let Γ be a semi-simple ring and A a two-sided Γ -module. Define $A^{(0)} = \Gamma$, $A^{(n+1)} = A^{(n)} \otimes_{\Gamma} A$. Then define the (graded) ring

$$\Omega = \sum_{i=0}^{\infty} A^{(i)} \qquad (\text{restriced direct sum})$$

with multiplication defined by the obvious mapping $A^{(p)} \times A^{(q)} \rightarrow A^{(p+q)}$. Set

 $M = \sum_{i=1}^{\infty} A^{(i)}.$ Then

$$\mathcal{Q} = \Gamma + M = \Gamma + A + M^2$$
$$M^k = \sum_{i=0}^{\infty} A^{(k+i)}.$$

The ring $\Sigma = \Omega/M^2$ may be identified with the split extension $\Gamma + A$ (in which $A^2 = 0$). Clearly

$$M = \mathfrak{Q} \otimes_{\Gamma} A.$$

Since A is projective as a left Γ -module, it follows that M is projective as a left Ω -module.

PROPOSITION 4. The following conditions are equivalent:

(a)
$$gl.\dim \Sigma = n,$$

(b)
$$A^{(n+1)} = 0, A^{(n)} \neq 0.$$

If these conditions hold then Ω is a hereditary (i.e. gl.dim $\Omega \leq 1$) semiprimary ring with radical M such that $M^{n+1} = 0, M^n \neq 0$.

Proof. Assume $A^{(n)} \neq 0$. Then there exist elements $a_1, \ldots, a_n \in A$ and primitive idempotents $e_1, f_1, \ldots, e_n, f_n \in \Gamma$ such that

$$e_1a_1f_1\otimes\ldots\otimes e_na_nf_n\neq 0$$

in $A^{(n)}$. Since $e_i a_i f_i \otimes e_{i+1} a_{i+1} f_{i+1} = e_i a_i \otimes f_i e_{i+1} a_{i+1} f_{i+1}$ it follows that $f_i e_{i+1} \neq 0$ for $i = 1, \ldots, n-1$. Thus $f_i \approx e_{i+1}$ for $i = 1, \ldots, n-1$ and therefore $(e_1, f_1, f_2, \ldots, f_n)$ is a connected sequence of idempotents in Γ , in the sense of the preceding section (with Λ replaced by Σ). Thus, by Proposition 2, gl.dim $\Sigma \ge n$.

Now assume $A^{(n+1)} = 0$. Then \mathcal{Q} is semi-primary with radical M and $M^{n+1} = 0$. Since M is projective as a left \mathcal{Q} -module it follows that gl.dim $\mathcal{Q} \leq 1$, i.e. \mathcal{Q} is hereditary. By Corollary 11 of [3] we have gl.dim $\mathcal{L} = \text{gl.dim} (\mathcal{Q}/M^2) \leq n$. This concludes the proof.

§3. Ring in split form

Let Λ be a semi-primary ring with radical N. A *splitting* for Λ is a direct sum decomposition

$$\Lambda = \Gamma + A + N^2$$

70

such that

$$\Gamma\Gamma \subset \Gamma$$
, $\Gamma A \subset A$, $A\Gamma \subset A$, $A + N^2 = N$.

We have $1 \in \Gamma$. Indeed let 1 = r + (1 - r) with $r \in \Gamma$, $1 - r \in N$. Then $r = 1r = r^2 + (1 - r)r$ with $r^2 \in \Gamma$ and $(1 - r)r \in N$. Thus (1 - r)r = 0. Consequently $(1 - r)^2 = 1 - r$. Since $1 - r \in N$ it follows that 1 - r = 0 i.e. $1 = r \in \Gamma$. Thus Γ is a subring of Λ which may be identified with the semi-simple ring Λ/N , and Λ is a two-sided Γ -module which may be identified with N/N^2 . The ring Λ/N^2 may be identified with the split extension $\Sigma = \Gamma + \Lambda$.

THEOREM 5. Let Λ be a semi-primary ring with radical N such that Λ admits a splitting and

gl.dim
$$(\Lambda/N^2) = n < \infty$$
.

Then there exist a hereditary semi-primary ring Ω with radical M and a ring epimorphism $\varphi : \Omega \to \Lambda$ such that $\varphi^{-1}(N^2) = M^2$ i.e. φ induces an isomorphism

$$\Omega/M^2 \approx \Lambda/N^2$$

The pair (Ω, φ) is determined uniquely up to an isomorphism. Moreover, the ring Ω admits a splitting, $M^{n+1} = 0$, and $N^{n+1} = 0$.

COROLLARY 6. With Λ as in Theorem 5

gl.dim $(\Lambda/a) < \infty$

for every two-sided ideal a in A. If $a \subset N^2$ then

gl.dim $(\Lambda/a) \leq n$.

Inparticular,

gl.dim $\Lambda \leq n$.

If l is the number of simple components of $\Gamma = \Lambda/N$ then n < l.

Proof. Let $\Lambda = \Gamma + A + N^2$ be a splitting for Λ . Let Ω be the ring constructed in §2 using the ring Γ and the two-sided Γ -module A. Since $\Sigma = \Lambda/N^2$ we have gl.dim $\Sigma = n < \infty$. Thus, by Proposition 4, Ω is a semi-primary ring with radical M and $M^{n+1} = 0$. Define the ring homomorphism $\varphi : \Omega \to \Lambda$ by setting $\varphi(\gamma) = \gamma$ for $\gamma \in \Gamma$ and $\varphi(a_1 \otimes \ldots \otimes a_k) = a_1 \ldots a_k$ for $a_1 \otimes \ldots \otimes a_k \in A^{(k)}$, k > 0. We have $A \subset \varphi(M) \subset N$. It follows that $N = \varphi(M) + N^2$. There-

fore $N = \varphi(M)$ and φ is an epimorphism. Clearly Ω admits a splitting $\Omega = \Gamma + A + M^2$, and $\varphi^{-1}(N^2) = M^2$.

Let Ω' be another hereditary semi-primary ring with radical M' and let $\varphi' : \Omega' \to \Lambda$ be a ring epimorphism such that $\varphi'^{-1}(N^2) = M'^2$. There results for Ω' a splitting $\Omega' = \varphi'^{-1}(\Gamma) + \varphi'^{-1}(A) + M'^2$. If we identify $\varphi'^{-1}(\Gamma)$ with Γ and $\varphi'^{-1}(A)$ with A using the mapping φ' we obtain a splitting $\Omega' = \Gamma + A + M'$ and φ' is the identity on $\Gamma + A$. If we replace Λ by Ω' in the construction above we obtain an epimorphism $\psi : \Omega \to \Omega'$ such that $\psi^{-1}(M'^2) = M^2$. Since the ring homomorphisms $\varphi, \varphi'\psi : \Omega \to \Lambda$ coincide on $\Gamma + A$, it follows that $\varphi = \varphi' \phi$. There remains to be shown that ψ is an isomorphism. Let a be the kernel of ψ . Then $\Omega/a \approx \Omega'$ and $a \subset M^2$. It follows then from Theorem I of [4] (or [3], Proposition 10 and Remark there) that a = 0. Since $M^{n+1} = 0$ and $N = \varphi(M)$ we have $N^{n+1} = 0$. This concludes the proof of the theorem.

The last statement of the corollary follows from Corollary 3 applied to the ring $\Sigma = \Gamma + A = A/N^2$.

Let *a* be any two-sided ideal in Λ and let $b = \varphi^{-1}(a)$. Then $\Lambda/a \approx \Omega/b$ so that by [3], Theorem 8, gl.dim $(\Lambda/a) < \infty$.

If $a \subset N^2$ then $b \subset M^2$ and the conclusion that $gl.\dim(A/a) \leq n$ is then a consequence of

PROPOSITION 7. Let Ω be a hereditary semi-primary ring with radical M such that $M^{n+1} = 0$. For any two-sided ideal $b \subset M^2$

gl.dim
$$(\Omega/b) \leq n$$
.

Proof. Assume *n* even, n = 2i. We may assume i > 0 since if i = 0 then M = 0, b = 0 and $\mathcal{Q} = \mathcal{Q}/b$ is semi-simple. Since $b \subset M^2$ and $M^{2i+1} = 0$ it follows that $b^i M = b^{i+1} = 0$. Thus [3] Proposition 9, condition (iii') implies gl.dim(\mathcal{Q}/b) $\leq n$.

Let *n* be odd, n = 2i + 1. We may assume i > 0 since if i = 0 then n = 1, $M^2 = 0$, b = 0 and gl.dim $(\Omega/b) =$ gl.dim $\Omega \leq 1$ by hypothesis. Since $b \subset M^2$ and $M^{2i+2} = 0$ it follows that $b^{i+1} = 0$. Thus [3] Proposition 9, condition (iii) implies gl.dim $(\Omega/b) \leq n$.

Next we consider a semi-primary ring Λ , with radical N and admitting a splitting $\Lambda = \Gamma + A + N^2$, which satisfies

gl.dim
$$(\Lambda/N^2) = \infty$$

contrary to Theorem 5. Again construct Ω as in §2 using the ring Λ and the two-sided Λ -module A, and let M have the same significance as before. Let $N^{h} = 0$. Then Λ is a homomorphic image of Ω/M^{m} for every $m \ge h$. We want to show

PROPOSITION 8. (Under our assumption gl.dim $(\Lambda/N^2) = \infty$) the semi-primary ring Ω/M^m has gl.dimension ∞ for infinitely many m.

Proof. By our assumption $gl.\dim(\Lambda/N^2) = \infty$, there exists a connected sequence $(e_0, e_1, \ldots, e_{k-1}, e_0)$ $(k \neq 0)$ of primitive idempotents in Γ , with respect to Λ/N^2 , whose first and last terms coincide. We contend that gl.dim $(\mathcal{Q}/M^{2k}) = \infty$. To see this, consider the left (\mathcal{Q}/M^{2k}) -module $(\mathcal{Q}/M^k)e_0$. We have the exact sequence

$$0 \longrightarrow (M^k/M^{2k})e_0 \longrightarrow (\Omega/M^{2k})e_0 \longrightarrow (\Omega/M^k)e_0 \longrightarrow 0.$$

Let $1 = e_0 + \Sigma f_{\nu}$ be a decomposition of 1 into mutually orthogonal primitive idempotents in Γ . We have $M^k = \mathcal{Q} \otimes_{\Gamma} A^{(k)} = \mathcal{Q} \otimes_{\Gamma} e_0 A^{(k)} + \Sigma \mathcal{Q} \otimes_{\Gamma} f_{\nu} A^{(k)}$ (direct). Hence $M^k e_0 = \mathcal{Q} \otimes_{\Gamma} e_0 A^{(k)} e_0 + \Sigma \mathcal{Q} \otimes_{\Gamma} f_{\nu} A^{(k)} e_0$ (direct). As $M^{2k} = M^k \otimes_{\Gamma} A^{(k)}$, we have similarly $M^{2k} e_0 = M^k \otimes_{\Gamma} e_0 A^{(k)} e_0 + \Sigma M^k \otimes_{\Gamma} f_{\nu} A^{(k)} e_0$ (direct). Then we obtain readily

$$(M^k/M^{2k})e_0 \approx (\mathcal{Q}/M^k) \otimes_{\Gamma} e_0 A^{(k)}e_0 + \mathcal{L}(\mathcal{Q}/M^k) \otimes_{\Gamma} f_{\mathcal{V}} A^{(k)}e_0 \quad (\text{direct}).$$

Since $(e_0, e_1, \ldots, e_{k-1}, e_0)$ is connected, we have here $e_0 A^{(k)} e_0 \neq 0$. On taking a left $e_0 \Gamma e_0$ -basis of $e_0 A^{(k)} e_0$ we then obtain an isomorphism

$$(M^k/M^{2k})e_0 \approx (\Omega/M^k)e_0 + W$$
 (direct)

where W is a left (Ω/M^{2k}) -module whose structure does not concern us. Thus we have the exact sequence

$$0 \longrightarrow (\mathcal{Q}/M^k)e_0 + W \longrightarrow (\mathcal{Q}/M^{2k})e_0 \longrightarrow (\mathcal{Q}/M^k)e_0 \longrightarrow 0.$$

Now, suppose $r = 1.\dim_{\Omega/M^{2k}}(\Omega/M^k)e_0 < \infty$ and let

$$0 \longrightarrow X_r \longrightarrow \ldots \longrightarrow X_1 \longrightarrow X_0 \longrightarrow (\mathcal{Q}/M^k) e_0 \longrightarrow 0$$

be a shortest (\mathcal{Q}/M^{2k}) -projective resolution of $(\mathcal{Q}/M^k)e_0$; we have r > 0 since $(\mathcal{Q}/M^k)e_0$ is not (\mathcal{Q}/M^{2k}) -projective. We have then an exact sequence

$$0 \longrightarrow X_r + Y_r \longrightarrow \ldots \longrightarrow X_0 + Y_0 \longrightarrow (\Omega/M^{2k})e_0 \longrightarrow (\Omega/M^k)e_0 \longrightarrow 0,$$

where sums are all direct and where $0 \rightarrow Y_r \rightarrow \ldots \rightarrow Y_0 \rightarrow W \rightarrow 0$ is an

exact sequence such that all Y_{μ} except Y_r , perhaps, are (\mathcal{Q}/M^{2k}) -projective. Since $\lim_{\Omega/M^{2k}}(\mathcal{Q}/M^k)e_0 = r$, then necessarily the image of $X_r + Y_r$ in $X_{r-1} + Y_{r-1}$ is a direct summand. Hence the image of X_r in X_{r-1} is a direct summand. This in turn implies that $(\mathcal{Q}/M^k)e_0$ has a projective resolution, with respect to \mathcal{Q}/M^{2k} , of length r-1, contradicting the above assumption. Hence $\lim_{\Omega/M^{2k}}(\mathcal{Q}/M^k)e_0 = \infty$.

Here we may assume that k is arbitrarily large, since otherwise we have simply to repeat the given connected sequence of idempotents sufficiently many times. So this proves our proposition.

§4. Algebras

Let Λ be a semi-primary algebra over a field K, let N be the radical of Λ and let $\Gamma = \Lambda/N$. Assume dim $\Gamma = 0$, or equivalently that $\Gamma \otimes_{\kappa} \Gamma^*$ is semi-simple. Then (Rosenberg-Zelinsky [8]) necessarily ($\Gamma : K$) $< \infty$ and Γ is separable. It follows readily that Λ admits a splitting $\Lambda = \Gamma + A + N^2$, $A \approx N/N^2$. It is further known (Eilenberg [1]) that dim $\Lambda =$ gl.dim Λ . Similarly if a is any twosided ideal in Λ then dim (Λ/a) = gl.dim (Λ/a).

The same comments apply to the algebra Ω constructed in §2, provided M is nilpotent. The results of §3 may now be restated with "dim" replacing "gl.dim".

If we assume that $(\Lambda: K) < \infty$ then clearly Λ is semi-primary and the assumption dim $\Gamma = 0$ (i.e. the separability of Γ) follows automatically from dim $(\Lambda/N^2) < \infty$ (Ikeda-Nagao-Nakayama [7], Eilenberg [1]). It is further clear that in the splitting $\Lambda = \Gamma + A + N^2$ of Λ we have $(A:K) < \infty$. Since $\Omega = \Gamma + M$ we deduce that $(\Omega:K) < \infty$. Thus we have

THEOREM 9. Let Λ be an algebra over a field K with $(\Lambda: K) < \infty$. Let N be the radical of Λ . Suppose

$$\dim\left(\Lambda/N^2\right)=n<\infty.$$

Then there exist an algebra Ω over K with radical M and an algebra epimorphism $\varphi: \Omega \longrightarrow \Lambda$ such that $(\Omega: K) < \infty$, $\varphi^{-1}(N^2) = M^2$ and

 $\dim \Omega \leq 1.$

The pair (Ω, φ) is determined uniquely up to an isomorphism. $M^{n+1} = 0$ and $N^{n+1} = 0$. If a is a two-sided ideal of Λ then $\dim(\Lambda/a) < \infty$, and indeed $\leq n$ if

 $a \in N^2$. If l is the number of simple components in $\Gamma = \Lambda/N$ then n < l.

We close our note with a remark on Cartan matrices. Starting again with a semi-primary ring Λ , with radical N, let e_1, \ldots, e_l be a maximal set of non-isomorphic primitive idempotents in Λ . For each pair (i, j) of indices $1, 2, \ldots, l$ we choose a non-negative real number $\beta(i, j)$ so that

$$\beta(i, j) = 0$$
 or > 0 according as $e_i N e_j = 0$ or $\neq 0$,

and otherwise arbitrarily. Let us call the matrix $C(\Lambda) = I + (\beta(i, j))$ a generalized Cartan matrix of Λ , where I is the identity matrix of degree l.

PROPOSITION 10. The matrix $(C(\Lambda) - I)^{n+1} = (\beta(i, j))^{n+1}$ vanishes if and only if gl. dim $(\Lambda/N^2) \leq n$.

Proof. Since the entries $\beta(i, j)$ of $C(\Lambda) - I$ are all non-negative, that $(C(\Lambda) - I)^{n+1} \neq 0$ is equivalent to the existence of n+1 pairs $(i_0, j_0), \ldots, (i_n, j_n)$ such that

(i)
$$j_{\nu} = i_{\nu+1}(\nu = 0, \ldots, n-1), \ \beta(i_{\nu}, j_{\nu}) \neq 0 \quad (\nu = 0, \ldots, n).$$

By the definition of $\beta(i, j)$, this is equivalent to

(ii)
$$j_{\nu} = i_{\nu+1}(\nu = 0, \ldots, n-1), e_{i_{\nu}}Ne_{j_{\nu}} \neq 0 \quad (\nu = 0, \ldots, n).$$

Now, if $eN^t f \neq 0$ but $eN^{t+1}f = 0$, with a pair of primitive idempotents e, f in Λ , take t-1 primitive idempotents g_1, \ldots, g_{t-1} such that $Ng_1Ng_2 \ldots Ng_{t-1}Nf \neq 0$. Since $eN^{t+1}f = 0$, it follows that $g_{\mu}Ng_{\mu+1} \notin N^2$ for $\mu = 0, \ldots, t-1$, where we put $g_0 = e, g_t = f$. This observation shows that the existence of n+1 pairs (i_{ν}, j_{ν}) satisfying (ii) is equivalent to the existence of a connected sequence of length at least n+1 of primitive idempotents in $\Gamma = \Lambda/N$, with respect to Λ/N^2 , in the sense of §1. This is in turn equivalent to gl.dim $(\Lambda/N^2) \ge n+1$ by Proposition 2.

In case of an algebra Λ over a field K with $(\Lambda : K) < \infty$, the ordinary Cartan matrix of Λ is clearly a generalized Cartan matrix in the above sense.

References

- S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv. 28 (1954), 310-319.
- [2] S. Eilenberg, Homological dimension and syzygies, to appear in Ann. Math.
- [3] S. Eilenberg, H. Nagao and T. Nakayama, On the dimension of modules and algebras,

IV, Nagoya Math. J. 10 (1956), 87-95.

- [4] S. Eilenberg and T. Nakayama, On the dimension of modules and algebras, V, Nagoya Math. J. 11 (1957), 9-12.
- [5] G. Hochschild, On the structure of algebras with nonzero radical, Bull. Amer. Math. Soc. 53 (1947), 369-377.
- [6] G. Hochschild, Note on maximal algebras, Proc. Amer. Math. Soc. 1(1950), 11-14.
- [7] M. Ikeda, H. Nagao and T. Nakayama, Algebras with vanishing n-cohomology grops, Nagoya Math. J. 7 (1954), 115-131.
- [8] J. P. Jans, On segregated rings and algebras, Nagoya Math. J. 11 (1957).
- [9] A. Rosenberg and D. Zelinsky, Cohomology of infinite algebras, Trans. Amer. Math. Soc. 82 (1956), 85-98.

Yale University,

Nagoya University and

The Institute for Advanced Study

76