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Abstract

Given two independent Poisson point processes ®(1), &) inR¥, the AB Poisson Boolean
model is the graph with the points of ®(!) as vertices and with edges between any pair of
points for which the intersection of balls of radius 2r centered at these points contains at
least one point of ®@. This is a generalization of the AB percolation model on discrete
lattices. We show the existence of percolation for alld > 2 and derive bounds for a critical
intensity. We also provide a characterization for this critical intensity when d = 2. To
study the connectivity problem, we consider independent Poisson point processes of
intensities n and trx in the unit cube. The AB random geometric graph is defined as above
but with balls of radius . We derive a weak law result for the largest nearest-neighbor
distance and almost-sure asymptotic bounds for the connectivity threshold.
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1. Introduction

The Bernoulli (site) percolation model on a graph G := (V, E) is defined as follows. Each
vertex v € V of the graph is retained with a probability p or removed with probability 1 — p,
along with all the edges incident to that vertex, independently of other vertices. The model
is said to percolate if the random subgraph resulting from the deletion procedure contains an
infinite connected component. The classical percolation model is the Bernoulli bond percolation
model with the difference being that the deletion procedure is applied to the edges instead of the
vertices. Grimmett (1999) is an excellent source for the rich theory on this classical percolation
model. A variant of the Bernoulli site percolation model that has been of interest is the AB
percolation model. This model was first studied in Halley (1980), Halley (1983), and Sevsek
et al. (1983). The model is as follows. Given a graph G, each vertex is marked independently
of other vertices as either A or B. Edges between vertices with similar marks (A or B) are
removed. The resulting random subgraph is the AB graph model. If the AB graph contains
an infinite connected component with positive probability, we say that the model percolates.
An infinite connected component in the AB graph is equivalent to an infinite path of vertices
in G with marks alternating between A and B. This model has been studied on lattices and
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some related graphs. The AB percolation model behaves quite differently as compared to the
Bernoulli percolation model. For example, it is known that AB percolation does not occur in Z?
(see Appel and Wierman (1987)), but occurs on the planar triangular lattice (see Wierman and
Appel (1987)), some periodic two-dimensional graphs (see Scheinerman and Wierman (1987)),
and the half close-packed graph of Z> (see Wu and Popov (2003)). It is also known that the
AB bond percolation does not occur in 72 for p= % (see Wu and Popov (2003)). See Wu and

Popov (2003) and Grimmett (1999) for further references.

The following generalization of the discrete AB percolation model has been studied on
various graphs by Kesten et al. (see Benjamini and Kesten (1995), Kesten et al. (1998), and
Kesten et al. (2001)). Mark each vertex or site of a graph G independently as either O or
1 with probability p and 1 — p, respectively. Given any infinite sequence (referred to as a
word) w € {0, 1}°°, the question is whether w occurs in the graph G or not. The sentences
1,0,1,0,...),(0,1,0,1,...) correspond to AB percolation and the sequence (1,1, 1,...)
corresponds to Bernoulli percolation. More generally, Kesten et al. answered the question of
whether all (or almost all) infinite sequences (words) occur or not. The graphs for which the
answer is known in the affirmative are Z¢ for large d, the triangular lattice, and ng, the close-
packed graph of Z?. Our results provide partial answers to these questions in the continuum.

Our aim is to study a generalization of the discrete AB percolation model to the continuum.
We study the problem of percolation and connectivity in such models. For the percolation
problem, the vertex set of the graph will be a homogeneous Poisson point process in R?. For
the connectivity problem, we will consider a sequence of graphs whose vertex sets will be
homogeneous Poisson point processes of intensity z in [0, 1]¢. We consider different models
while studying percolation and connectivity so as to be consistent with the literature. This
allows for easy comparison with, as well as the use of, existing results from the literature. We
will refer to our graphs, in the percolation context, as the AB Poisson Boolean model, and as
the AB random geometric graph while investigating the connectivity problem. The Poisson
Boolean model and random geometric graphs where the nodes are of the same type are the
topics of the monographs in Meester and Roy (1996) and Penrose (2003), respectively.

Our motivation for the study of AB random geometric graphs comes from applications to
wireless communication. In models of ad hoc wireless networks, the nodes are assumed to
be communicating entities that are distributed randomly in space. Edges between any two
nodes in the graph represent the ability of the two nodes to communicate effectively with each
other. In one of the widely used models, a pair of nodes share an edge if the distance between
the nodes is less than a certain cutoff radius » > 0 that is determined by the transmission
power. Percolation and connectivity thresholds for such a model have been used to derive,
for example, the capacity of wireless networks (see Franceschetti et al. (2007) and Gupta and
Kumar (2000)). Consider a transmission scheme called the frequency division half-duplex,
where each node transmits at a frequency f1 and receives at frequency f> or vice versa (see Tse
and Vishwanath (2005)). Thus, nodes with transmission—reception frequency pair (f1, f2) can
communicate only with nodes that have transmission—reception frequency pair ( f2, f1) that are
located within the cutoff distance r. Another example where such a model would be applicable is
in communication between communicating units deployed at two different levels, for example,
surface (or underwater) and in air. Units in a level can communicate only with those at the other
level that are within a certain range. A third example is in secure communication in wireless
sensor networks with two types of node, tagged and normal. Upon deployment, each tagged
node broadcasts a key over a predetermined secure channel, which is received by all normal
nodes that are within transmission range. Two normal nodes can then communicate, provided
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there is a tagged node from which both these normal nodes have received a key, that is, the tagged
node is within the transmission range of both the normal nodes. A somewhat complimentary
model has been proposed in this context, first in Haenggi (2008) and further developed in Pinto
and Win (2010). It is a model for secure communication in the presence of malicious nodes.
Legitimate nodes that have malicious nodes in their vicinity cannot communicate, or the edge
set will be determined by some information-theoretic criterion. The problem then is to obtain
the critical intensity of malicious nodes above which the network does not percolate.

The rest of the paper is organized as follows. Sections 2 and 3 provide definitions and
statements of our main theorems on percolation and connectivity, respectively. Sections 4
and 5 contain the proofs of these results.

2. Percolation in the AB Poisson Boolean model

2.1. Model definition

Let @ = {X;};>; and ®@® = {¥;};>; be independent Poisson point processes in R?,
d > 2, with intensities A and u, respectively. Let the Lebesuge measure and the Euclidean
metric on R? be denoted by || - || and | - |, respectively. Let B, (r) denote the closed ball of
radius r centered at x € R,

By percolation in a graph, we mean the existence of an infinite connected component in the
graph. The standard continuum percolation model (introduced in Gilbert (1961)), also called
the Poisson Boolean model or Gilbert disk graph, is defined as follows.

Definition 2.1. Define the Poisson Boolean model G (A, r) := (&1, E(1, r)) to be the graph
with vertex set ®( and edge set

Er) ={(Xi, X)) Xi, X; € @V, |X; — X;| < 2r).
For fixed r > 0, define the critical intensity of the Poisson Boolean model as follows:
Ae(r) :=sup{r > O: P(G(A,r) percolates) = 0}. 2.1

The edges in all the graphs that we consider are undirected, that is, (X;, X;) = (X;, X;).
We will use the notation X; ~ X; to denote existence of an edge between X; and X ; when
the underlying graph is unambiguous. For the Poisson Boolean model (see Meester and Roy
(1996)), it is known that 0 < A.(r) < oo. Topologically, percolation in the Poisson Boolean
model is equivalent to existence of an unbounded connected subset in | Jy g1 Bx (r). Also,
by the zero-one law, we can deduce that the probability of percolation is either O or 1.

A natural analogue of this model to the AB setup would be to consider a graph with vertex
set @1 where each vertex is independently marked either A or B. We will consider a more
general model from which results for the above model will follow as a corollary.

Definition 2.2. The AB Poisson Boolean model G(A, ., r) := (®V, E(x, p, r)) is the graph
with vertex set @) and edge set

EO,u,r) = (X, Xj): Xi, X; € @D |X; Y| < 2r, |X;—Y| < 2r, forsome ¥ € ®@}.

Let O(A, u,r) = P(G(%, u, r) percolates). For a fixed A, r > 0, define the critical intensity
/“LC()"v r) by
pe(r,r) :=sup{u > 0: 0(A, u,r) =0}. (2.2)

It follows from the zero-one law that (A, w, r) € {0, 1}. We are interested in characterizing
the region formed by (A, w, r) for which 8 (A, u,7) = 1.
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2.2. Main results

~ The AB Poisson Boolean model G (A, u, r) is a subgraph of the Poisson Boolean model
G (A + w, r) with the vertex set @1 U ®®_ This simple coupling will be used to obtain the
following lower bounds for the critical intensity puc(A, ).

Proposition 2.1. Fix A, r > 0. Let L. (r) and (1, r) be the critical intensities as in (2.1) and
(2.2), respectively. Then

1. e(A, 1) = Ac(r) — A ifAcQ2r) < A < Ac(r), and
2. pe(A,r) =00 if A < Ac(2r).

The second part of Proposition 2.1 holds for A = A.(2r) provided that G (Ae(2r), 2r) does
not percolate. This has been proven for d = 2 (see Meester and Roy (1996, Theorem 4.5))
and for all but at most finitely many d (see Tanemura (1996)). The next question is whether
ne(X, r) < ocoif A > Ac(2r). We answer this in the affirmative for d = 2.

Theorem 2.1. Letd = 2 andr > 0 be fixed. Then, forany . > Ac(2r), we have pc(h, r) < oo.

The proof of Theorem 2.1 will adapt the idea used in Dousse et al. (2006) of coupling the
continuum percolation model to a 1-dependent discrete percolation model on Z2. We will use
Peierl’s argument to show that the discrete percolation model percolates and coupling will yield
the percolation of the corresponding AB Poisson Boolean model.

The AB Poisson Boolean model thus exhibits a phase transition in the plane. However,
Theorem 2.1 does not tell us how to choose a i for a given A > A.(2r) for d = 2 such that
AB percolation happens, or if indeed there is a phase transition for d > 3. We obtain an upper
bound for p.(X, r) as a special case of a more general result which is the continuum analog
of word percolation on discrete lattices described in Section 1. In order to state this result, we
need some notation.

Definition 2.3. Foreach d > 2, define the critical probabilities p.(d) and the functions a(d, r)
as follows.

1. Ford = 2, consider the triangular lattice T (part of which is shown in Figure 1) with edge
length r/2. Let p.(2) be the critical probability for the Bernoulli site percolation on this
lattice. Around each vertex place a ‘flower’ formed by the intersection (see Figure 1) of
the six circles, each of radius r/2 and centered at the midpoints of the six edges incident
on the vertex. Let a(2, r) be the area of a flower.

FIGURE 1: A piece of the triangular lattice and a flower (shaded area) in R? with area a(2,r). The arcs
forming the flower have been darkened while the dotted circles are of radius /2 and centered at the
midpoints of the six edges incident on the vertex.
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2. For d > 3, let p.(d) be the critical probability for the Bernoulli site percolation on
7 = (24, F* = {(z,21): |2 — Z1]oo = 1}), Where | - | stands for the lso-norm.
Define a(d, r) = (r/2v/d)".

It is known that p.(2) = % and p.(d) < 1 ford > 3 (see Grimmett (1999)).

Definition 2.4. For i = 1, ..., k, let ®© be independent Poisson point processes in R? of
intensities A; > 0. Fix (r1,...,7) € RA. A word o 1= {w;}i>1 € {1,2,..., k)" is said
to occur if there exists a sequence {X;};>1 of distinct elements such that X; € Wi and
|X; — Xiq1] < ru; + 1y, fori > 1.

We will define a suitable coupling of the AB Poisson Boolean model with an independent
percolation model on the triangular lattice in d = 2 and the Euclidean lattice in d > 3 such that
percolation in these latter models imply percolation of the AB Poisson Boolean model. Once
this coupling is obtained (as we will in the proofs), the next proposition and the following two
corollaries will follow easily.

Proposition 2.2. For any d > 2, let p.(d) and a(d, r) be as in Definition 2.3. Fixk € N, and
let (r1,...,11) € Rﬁ. Also, fori =1,...,k, let W pe independent Poisson point processes
in R4 of intensities A; > 0. Set ro =inf1<; j<i{ri +7r;}. If]_[fle(l — e hiald.ro)y 5 pe(d)
then, almost surely, every word occurs.

The following corollary, the proof of which is given in Section 4, gives an upper bound for
U (A, r) for large A.

Corollary 2.1. Suppose thatd > 2, r > 0, and A > 0 satisfies

log(1 = pe(d))
a(d,2r)

A >

b

where p.(d) and a(d, r) are as in Definition 2.3. Let p.(\, 1) be the critical intensity as in

(2.2). Then
! pe(d)
a(d,2r) IOg[l - (m)] 2.3)

Though Corollary 2.1 and Proposition 2.1 together give upper and lower bounds for . (A, r),
we believe that these bounds can be improved.

I’LC()\'ar) < -

Remark 2.1. A simple calculation (see Meester and Roy (1996, p. 88)) gives a(2, 2) ~ 0.8227
and

—(a(2,2) M og(1 — pe(2)) ~ 0.843.
Using these, it follows from Corollary 2.1 that ©(0.85, 1) < 6.2001.

Remark 2.2. It can be shown that the number of infinite components in the AB Boolean model
is at most 1, almost surely. The proof of this fact follows along the same lines as the proof in
the Poisson Boolean model (see Meester and Roy (1996, Propositions 3.3 and 3.6)), since it
relies on the ergodic theorem and the topology of infinite components, but not on the specific
nature of the infinite components.

Proposition 2.2 can be used to show the existence of AB percolation in the natural analogue
of the discrete AB percolation model (refer to the two sentences above Definition 2.2). Recall
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that ) is a Poisson point process in R of intensity A > 0. Let {m;};> be a sequence of inde-
pendent and identically distributed (i.i.d.) marks distributed as m € {A, B}, with P(m = A) =
p =1 —P(m = B). Define the point processes ®* and ®Z as

A= (XiedWim; =4y,  oF =0\ ol

Definition 2.5. For any A,r > O and p € (0, 1), let &4 and ®? be as defined above. Let
G(k p.r) = (P4, E(A p,r)) be the graph with vertex set &4 and edge set

E(A,p,r) =X, Xj): Xi, X € o4, |X; = Y| <2r, |X; —Y| <2r, forsomeY € CDB}.
Corollary 2.2. Let é\(k, p,r) = P(a (X, p, r) percolates). Then, for any A satisfying

_2log(1 — Vpe(@)
a(d, 2r)

there exists a p(A) < % such that é\()», p,r)=1forall p € (p(A),1 — p(A)).

’

3. Connectivity in AB random geometric graphs

3.1. Model definition
The setup for the study of connectivity in AB random geometric graphs is as follows. Let
{P nl) In>1, {Pn PP }n>1 be independent sequences of homogeneous Poisson point processes in

U = [0, l]d , d > 2. The processes J’,fl), i = 1,2, have intensity n. We also nullify some
of the technical complications arising out of boundary effects by choosing to work with the
toroidal metric on the unit cube, defined as

d(x,y) :=inf{lx — y +z|: z € Z%}, x,yeU. 3.1

Definition 3.1. For any m, n > 1, the AB random geometric graph G, (m, r) is the graph with
vertex set J M and edge set

En(m,r) = {(Xi, X;): X;, X; € PV, d(X;,Y) <r, d(X;,Y) <r, forsome ¥ € £}

Our goal in this section is to study the connectivity threshold in the sequence of graphs
G,(tn,r)asn — oo for t > 0. The constant T can be thought of as a measure of the relative
denseness or sparseness of 0(1) with respect to J ,,% (see Remark 3.1 below). We will also
prove a distributional convergence result for the critical radius required to eliminate isolated
nodes. To this end, we introduce the following definition.

Definition 3.2. For each n > 1, let W,(r) be the number of isolated nodes, that is, vertices
with degree 0 in G, (tn, r), and define the largest nearest-neighbor radius as

M, = sup{r > 0: W, (r) > 0}.
3.2. Main results

Let 6; := ||Bo(1)]| be the volume of the d-dimensional unit closed ball centered at the
origin. For any 8 > 0 and n > 1, define the sequence of cutoff functions,
log(n/B)\"/¢
a(z, ) = (—g /P ) , (32)
t™nby
and let
rn(T) = rp(z, 1). (3.3)
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Lete; := (1,0, ...,0) € R? be the unit vector in the first coordinate direction. For d > 2 and

u,s > 0, define
1Bo ') OV Byija,, u'/9)]|

n(u,s) = 7 3.4)
au
For s < 2u, we have (see Goldstein and Penrose (2010, Equation (7.5)) and Moran (1973,
Equation (6)))
0,1 (s/u)l/d 2\@d=D/d
nu,s)=1— —— 1—— dz. 3.5)
s Jo 4

If s > 2u then n(u, s) = 0. Since, the intersection Bo (u'/9) N Bgija,, (ul/?) always contains
a ball of diameter (2u'/¢ — s/4), we obtain the following lower bound:

1/ s\ /d\d
n(u,s) > (1 - E(;) ) . (3.6)

The next theorem gives asymptotic bounds for a strong connectivity threshold in AB random
geometric graphs. Asymptotics for the strong connectivity threshold was one of the more
difficult problems in the theory of random geometric graphs. Since the strong connectivity
threshold is insensitive to the parameter 8, it will be more convenient to take 8 = 1 in (3.2)
and work with the cutoff functions r, (t) as defined in (3.3). Subsequent to this result we will
consider the critical radius required to eliminate isolated nodes for which we will revert back
to an arbitrary 8. Define the function o : Ry — R by

a(t) :=inf{a: an(a, v) > 1}. 3.7

From (3.5), it is clear that, for fixed T > 0, n(a, 7) is increasing in a for a > t/2 and converges
to 1 as a — o0 and, hence, a(tr) < oo. From the bound (3.6), we obtain (1 + tl/d/Z)d X
n((1+1'4/2)4 1) > 1ford > 2. Thus, we have the bound a(7) < (1 +1'/9/2)? ford > 2.

Theorem 3.1. Let a(t) be as defined in (3.7) and r,(t) be as defined in (3.3). Define o (1) 1=
inf{a: G,(tn, a'?r,(v)) is connected}. Then, for any T > 0, almost surely,

1 <liminfe;(7) <limsupa,(7) < a (7). (3.8)
n—00 n—00

As is obvious, the bounds are tight for small enough r. We derive the lower bound by
covering the space with disjoint balls and showing that, almost surely, in the limit, at least one
of these balls contains an isolated node. For the upper bound, we show that, almost surely,
asymptotically the AB random geometric graph contains a random geometric graph with a
certain radius R,. By means of such a coupling and ensuring that R, is greater than the
connectivity threshold for the random geometric graph (see Theorem 5.1), we conclude that,
almost surely, the AB random geometric graph is connected eventually.

In order to derive the asymptotic distribution of the critical radius required to eliminate
isolated nodes, we need to first find conditions on the parameters T and 8 in (3.2) so that the
expected number of isolated nodes will stabilize in the limit. This is the content of Lemma 3.1
below.

Set n(s) := n(l, s), and note that n(u, s) = n(s/u) by (3.5). Define the constant 7 as

1
sup{r: n)+— > 1} ifd =2,

70 = T
1 ifd > 3.

(3.9)
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From (3.5), it is clear that n(t) + 1/t is decreasing in 7. Hence, 1 < 19 < 4 ford = 2 as
n(l) > 0 and n(4) = 0. The first part of Lemma 3.1 shows that, for t < 1, the above choice
of radius stabilizes the expected number of isolated nodes in G, (tn, r,(z, B)) asn — oo. The
second part shows that the assumption T < 7¢ is not merely technical. The lemma also suggests
a phase transition at some T € [1, 2"], in the sense that the expected number of isolated nodes
in G, (tn, ry(t, B)) converges to a finite limit for t < 7 and diverges for T > 7.

Lemma 3.1. For any B,t > 0, let r,(t, B) be as defined in (3.2), and let W, (r,(z, B)) be
the number of isolated nodes in G,(tn, ry(t, B)). Let 1o be as defined in (3.9). Then, as
n— oo,

1. E(W, (rn(z, B))) — B fort < 10, and
2. E(Wy(ra(t, B))) — o0 fort > 24.

The second part of Lemma 3.1 follows by a coupling with the standard random geometric
graph, similar to that described for percolation at the beginning of Section 2.2. A node of J’,fl)
in the AB random geometric graph is isolated because there is no neighboring node from J’,(,%)
or the neighboring !Pf(ﬁ) nodes do not have any other neighbors from J’,fl). Thus, the number of
isolated nodes is upper bounded by the sum of J’,,(l) nodes with no neighboring J’,(%) node and
{Pf(%) nodes with at most one neighboring !P,gl) node. This bound is good enough to give the
convergence of E(W,,(r, (t, B))) for t < linall dimensions. For t > 1, we use the closed-form
expression obtained (by Palm calculus) for the above expectation as a Laplace transform of the
covered region of the Poisson Boolean model driven by J’n(l). However, to show convergence of
the expectation, we need to obtain bounds on the probability of the covered region not covering
the whole space and this estimate has so far been carried out only in two dimensions. This
explains why we have improved convergence results in d = 2.

For t < 719, having found the radius that stabilizes the mean number of isolated nodes, we
use the Stein—Chen method of Poisson approximation for locally dependent Bernoulli random
variables to show that the number of isolated nodes converge in distribution to Po(8), a Poisson
random variable with mean . Furthermore, we can conclude that the largest nearest-neighbor
radius in G, (tn, r,(t, B)) converges in distribution as n — oo. Let 2 denote convergence
in distribution.

Theorem 3.2. Let r,,(z, B) be as defined in (3.2) with B > 0 and 0 < v < 1v9. Then, as
n— oo,
Wa(ra (T, B)) = Po(B), (3.10)
P(M, < rp(z, B)) — e P. (3.11)
Remark 3.1. For any locally finite point process X (for example, ,73”(1) or J’n(z)), we denote
the number of points of X in A, A C R4, by X (A). Define

W= Y UL (By(r) =0},
Y,'E?T(,%)

that is, W,?(t, r) is the number of JPI(,%) nodes isolated from :Pn(l) nodes. From Palm calculus
for Poisson point processes (see Theorem 1.6 of Penrose (2003)) and the fact that the metric is
toroidal, we have

EW(z, rp(z, B))) = rn/ PPV (B, (r)) = 0) dx = tnexp(—nbyr,(t, B)9).
U
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Substituting for r, using (3.2) we obtain

0 ifr<l,
lim E(W) (. (. p)) =18 ifr=1
oo ift > 1.

Thus, there is a trade-off between the relative density of the nodes and the radius required to
stabilize the expected number of isolated nodes.

4. Proofs for Section 2

Proof of Proposition 2.1. 1. Recall from Definition 2.2 the graph G (A, u, r) with vertex set
&M and edge set E (X, i, r). Consider the graph G (A + w, r) (see Definition 2.1), where the
vertex set is taken tobe (1) U ®®@ and let the edge set of this graph be denoted by E (A + w, r).

If (X;, X;) € E(A, ju,r), there existsa ¥ € ®@ such that (X;, Y), (X;,Y) € EQ.+ . r).
It follows that G (A, u, r) has an infinite component only if G (A + u, r) has an infinite compo-
nent. Consequently, for any i > (X, r), we have u + X > A.(r), and, hence, uc(A, r) + X1 >
A (7). Thus, for any A < A.(r), we obtain the (nontrivial) lower bound ¢ (A, r) > Ac(r) — A.

2. Again, (X;, X;) € E()L,Lu, r) implies that |X; — X ;| < 4r. Hence, G(A, u, ) has
an infinite component only if G (A, 2r) has an infinite component. Thus, uc.(A,r) = oo if
A < Ac(2r).

Proof of Theorem 2.1. Fix A > A.(2r). Forl > 0, let /1.2 be the graph with vertex set 172,
the expanded two-dimensional integer lattice, and endowed with the usual graph structure, that
is, x, y € [Z? share an edge if |x — y| = [. Denote the edge set by /E 2. For any edge e € [E?,
denote the midpoint of e by (x., y.). For every horizontal edge e, define three rectangles
R.i, i =1,2,3, as follows: R, is the rectangle [x, — 3[/4, x, — /4] X [ye — /4, yo +1/4],
R is the rectangle [x, — [/4,x¢ + /4] X [ye — [/4, yo + [/4], and R.3 is the rectangle
[xe +1/4, x4+ 31/4] X [ye — /4, y, —1/4]. Let R, = Ul- R.;. The corresponding rectangles
for vertical edges are defined similarly. See Figure 2.

Owing to the continuity of A.(2r) (see Meester and Roy (1996, Theorem 3.7)), there exists
ri < r such that A > A:.(2r;). We will now define some random variables associated with
horizontal edges, the corresponding definitions for vertical edges are similar. Let A, be the
indicator random variable for the event that there exists a left-right crossing of R,, and top—
down crossings of R, and R.3 by a component of G(k, 2r1). Let C, be the indicator random

SES

A

e&le

[~

FIGURE 2: A horizontal edge e that satisfies the condition for B, = 1. The balls are of radius 2r, centered
at points of &) and the adjacent centers are of at most distance r1. The dots are the points of &),

https://doi.org/10.1239/aap/1331216643 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1331216643

300 SGSA S. K. IYER AND D. YOGESHWARAN

variable of the event that ®@® N By 2ryN By(2r) # o forall X, Y € ON R, such that
Bx(2r1) N By(2r;) # @. Let B, := 1{A.C, = 1} (see Figure 2). Declare an edge ¢ € IE?
to be open if B, = 1. We first show that, for A > A.(2r), there exist a u and [ such that L2
percolates (step 1). The next step is to show that this implies percolation in the continuum
model G (A, u, r) (step 2).

Step 1. The random variables {B,},. 2 are 1-dependent, that is, B.s indexed by two
nonadjacent edges (edges that do not share a common vertex) are independent. Hence, given
edgeseq, ..., e, € IE2, there exists {kj}’j’;1 c{l,...,n}withm > n/4such that{Bekj}lstm
are i.i.d. Bernoulli random variables. Hence,

P(B; =0, 1 <i<n) <P(By =0,1<j<m) <P(B=0"" @1

We need to show that, for a given ¢ > 0, there exist / and u for which P(B, = 0) < ¢ for any
e € IE?. Fix an edge e. Observe that

P(B,=0)=P(A, =0)+P(B,=0]| A. =D P(A, =1)
<P(A, =0)+P(B, =0 A, = 1). 4.2)

Since A > Ac(2r1), G(k, 2r1) percolates. Hence, by Meester and Roy (1996, Corollary 4.1)
we can and do choose a large enough [ so that

P(A, = 0) < % (4.3)

Now consider the second term on the right-hand side of (4.2). Given A, = 1, there exist
crossings as specified in the definition of A, in G (A, 2r1). Draw balls of radius 2r(> 2ry)
around each vertex. Any two vertices that share an edge in G (X, 2ry) are centered at a distance
of at most 4r;. The width of the lens of intersection of two balls of radius 2r whose centers
are at most 4r1 (< 4r) apart is bounded below by a constant, say b(r, 1) > 0. Hence, if we
cover R, with disjoint squares of diagonal length b(r, r1)/3 then every lens of intersection will
contain at least one such square. Let S;, j = 1,..., N(b), be the disjoint squares of diagonal
length b(r, r1)/3 that cover R,. Note that

P(B,=1]A4,=1)=P@7NS;#2,1<j<Nb)
< < pb(r, r1)2>>N”’>
=|l—-exp| ————
18
— 1 aspu — oo.

Thus, for the choice of / satisfying (4.3), we can choose a large enough  so that
P(B,=0| A, =1) < % (4.4)

From (4.2)—-(4.4), we obtain P(B, = 0) < ¢. Hence, given any ¢ > 0, it follows from (4.1) that
there exist / and p large enough so that P(B,, =0, 1 <i <n) < &"/*. That I1.2 percolates
now follows from a standard Peierl’s argument, as in Grimmett (1999, pp. 17, 18).

Step 2. By step 1, choose [ and  so that /IL? percolates. Consider any infinite component
in /2. Let e and f be any two adjacent edges in the infinite component. In particular,
B, = By = 1. This has two implications, the first being that there exist crossings I, and
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I; of R, and Ry, respectively, in G(&,2r1). Since e and f are adjacent, R,; = Ry; for
some i, j € {1,3}. Hence, there exists a crossing J of R,; in G(A 2r1) that intersects both
I, and Iy. Draw balls of radius 2r around each vertex of the crossings J, I, and ;. The
second implication is that every pairwise intersection of these balls will contain at least one
point of ®® . This implies that I, and I r belong to the same AB component in G(A, u, r).
Therefore, G (A, u, ) percolates when L2 does.

Proof of Proposition 2.2. Recall Definition 2.3. For d = 2, let T be the triangular lattice
with edge length ro/2, and let Q, be the flower centered at z € T, as shown in Figure 1. For
d >3, let

75— r_oZd,{, <r_ozd) (r_oZd); _ 2_0})
- <2ﬂ (z.21) € Wi x Wi llz = z1ll Wi

and let Q. be the cube of side length ro/2+/d centered at z € Z*d Note that the flowers or
cubes are disjoint. We declare z open if Q, ﬂ oD £ g 1<i< k This is clearly a Bernoulli
site percolation model on T (d = 2) or Z (d = 3) with probability ]_[121(1 e—Hiald.ro))
of z being open. By hypothesis, [[5_, (1 — e %4@70)) > p.(d), the critical probability for
Bernoulli site percolation on T (d = 2) or Z*d (d = 3) and, hence, the corresponding graphs
percolate. Let (z1, z2, ...) denote an 1nﬁn1te percolatmg pathin T (d = 2) or Z*d (d = 3).
Since it is a percolating path, almost surely, for all i > 1 and every j = 1 2,...,k,
CD(/)(QZl.) > 0, that is, each (flower or cube) O, contains a point of each of CID(I) . CIJ(k)
Hence, almost surely, for every word {w(i)};>1, we can find a sequence {X;}i>1 such that,
foralli > 1, X; € oW N Q. Furthermore, |X; — X; 1] < ro < ry) + rwi+1)- Thus,
almost surely, every word occurs.

Proof of Corollary 2.1. Apply Proposition 2.2 withk =2, A1 = A, Ay = u,r1 =ry =,
and so ro = 2r. It follows that, almost surely, every word occurs provided

(1 - e_)‘“(d*zr))(l _eHad2r)y o pe(d).

In particular, under the above condition, almost surely, the word (1, 2, 1, 2, ...) occurs. This
implies that there is a sequence {X;};>1 such that X»;_; € oM, Xy; € ®@ and | X2 —
X2j—1] < 2r, for all j > 1. But this is equivalent to percolation in G(A, u, r). This proves
the corollary once we note that there exists a < oo satisfying the condition above only if
(1 — e *d:2y 5 p(d), or, equivalently, a(d, 2r)A > log(1/(1 — pc(d))) and the least such
W is given on the right-hand side of (2.3).

Proof of Corollary 2.2. By the given condition (1 e 2a@dn/2y 5 /pe(d) and continuity,
there exists a &€ > 0 such that forall p € (5 —&, 2 + 8) we have (1 — e @1y > /p (d).
Thus, for all p € (2 g, 2 + ¢), we obtain

(1 _ e—kpa(d,r))(l _ e—k(l—p)a(d,r)) > Pc(d)

Hence, by invoking Proposition 2.2 as in the proof of Corollary 2.1 with A1 = Ap, A2 = A(1—p),
andr; =r, =r, weobtain @(A, p,r) = 1.

5. Proofs for Section 3

For the lower bound of the connectivity threshold, the following result analogous to Penrose
(2003, Theorem 7.1) will suffice.
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Proposition 5.1. Let M, and r,(t) be as defined in Definition 3.2 and (3.3), respectively. Then,
foranyt > 0anda < 1, P(M,, < a'/%r,(t) i.0.) = 0, where i.o. stands for infinitely often.

1/d

Proof. Fora < 1,setr, =a /“r,(t) and choose a ¢ > 0 such that

g/ 4 gl < (1— s)l/d.
For x € U, define the events
Ap(x) = (P (B ((1 — &)Yr, (1)) = 0} N {PV (By (7, (1))) > 1)

Choose points x7, . . ., Xg in U of maximal cardinality such that the balls Bxl(l ((1—e)Yr, (1)),

1 <i < oy, are disjoint. By Penrose (2003, Lemma 5.2) we can choose a constant 0 < k < 1

such that, for all large enough n,
n

op > K

. 5D
logn

If A, (x) occurs for some x € U then there exists a point X € {Pn(l) N By (Y%7, (1)) such that,

forall Y € J’r(,%),

d(X,Y) > (1 — &)/ —eyr,(2) > ar, (1),

by the choice of ¢. It follows that X is an isolated node in G, (tn, r;,) or, equivalently, M, > r,,.
Therefore,

(M, <12} C (U A,,(xi)) . 5.2)
i=1

For all large enough n, we have
PP (B (@) = ) =1-n"" >«
and
PP (Bx((1 = &) /Try (1)) = 0) = n° .
Since 3’,,(1> and J’T(,%) are independent, we obtain, for all large enough n,
P(A,(xM) > «kn®™!, 1 <i<oa,.

By the above estimate, the independence of events A, (xf), 1 <i < ay,(5.1), and the inequality
1 —t <e™!, we obtain, for all large enough n,

P(( U A,,(x)) ) < P«Q A,,(xf)) ) < exp(—kann®~) < exp(—/czl:ggn>,

xeRd

which is summable in n. It follows by the Borel-Cantelli lemma and (5.2) that, fora < 1, with
probability 1, M, > r, for all large enough n.

We now prove Theorem 3.1. In the second part of this proof we will couple our sequence
of AB random geometric graphs with a sequence of random %eometric graphs. By a random
. . ()
geometric graph, we mean the graph G, (r) with vertex set &7, and edge set

(X:, X;): Xi, X; € 2V, d(X;, X)) <),

where d is the toroidal metric defined in (3.1). We will use the following well-known result
regarding strong connectivity in the graphs G, (r).

Theorem 5.1. (Theorem 13.2 of Penrose (2003).) For R, (Ap) = (Aglog n/nb)"?, almost
surely, the sequence of graphs G, (R, (Ay)) is connected eventually if and only if Ag > 1.
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Proof. Again, letr, = a'/r,(t), where r,(t) = r,,(t, 1) is as defined in (3.3). It is enough
to show the following for ¢ > 0:

fora <1, P(G,(tn,ry,)isconnectedi.o.) <P(M, <r,io0.) =0 5.3)

and
fora > a(r), P(G,(tn,r,) isnot connectedi.o.) = 0. 5.4)

Equations (5.3) and (5.4) give the lower and upper bounds in (3.8), respectively. Equation (5.3)
follows immediately from Proposition 5.1.

We now prove (5.4). Since a > «(t), by definition, an(a, t) > 1. By continuity we can,
and do, choose Ag > 1 such that an(a, Agt) > 1. Choose € € (0, 1) so that

(1 —¢)%an(a, Agr) > 1. (5.5)

Let R, = R,,(Ap), where R, (Ap) is as defined in Theorem 5.1. For each X; € J’,,(l), define the
event

A;(n,m,r, R) := {X; connects to all points of 5’,51) N Bx,(R) in G,(m, 1)},

and let
Bn,m,r,R) = U Ai(n,m,r, R).
xiepl
We want to show that the event that every point of 3’,,(1) is connected in G, (tn, r,) to all points
of 3’,51) that fall within a distance R, (Aq) for all large enough n, happens almost surely, or,
equivalently,
P(B(n, tn,r,, R,)i.0.) = 0.

We will use a subsequence argument and the Borel-Cantelli lemma to show this. Observe
that B(n,m,r, R) C B(ny,my,r1, Ry), provided n < ny,m > mi,r > ry, and R < Rj.
Letn; = jb for some integer b > 0 that will be chosen later. Since B(n, tn,r,, R;) C
B(njy1, TR, Tnjyys an),fornj <n=<njy,

nj+1

U B(n,tn,ry, Ry) C B(njy1,tnj, ra; y, Ru)). (5.6)

n=n;

Let pj = P(A; (41, T, Ty s Ra))O). Let Ny = P4 ([0, 11). From (5.6) and the union
bound, we obtain

nj+1
P( U B(n, tn, ry, Rn)> <PB®jt1,tnj,rnjy, Rnj))

n=n;
/ Nn

Jj+l1
S P( U Ai(nj+17 Tnja rn_/+1 ) an)c>
i=l1
nj+1+n%fl
< ) PA(1, Ty Py Rep))
i=l1
3/4
+P(|Nnj+1 —njtil > nj-i—l)

3/4
<2nj1pj +P(Nujy, —njal > ). (5.7)
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We now estimate p;. Lete; = (1,0,...,0) € R4, Conditioning on the number of points
of JPn_/. 41 1n Bo (R,,_].) and then using Boole’s inequality, we obtain

i+104RY.
3 00 (nj+19dR )k Nj+16d / e—rn_/-HBO(r,,jH)ﬂBx(rnj_H)H dx
et ! OuRs; JBo(k,)
o Rd
- i n1+19de )k —nj+16a Ry, k / Tl B DNBRy ey (DI g
- =0 ! GdR Bo(R,l)
d —rn,-@dr,,A n(rf{, ,R,‘f,)
=nj+19anje JHLTER LT (5.8)

where 7 (-, -) is as defined in (3.4). Since

an . Aglogn; tnjy164 l/d_) Aot 17d
Faj \ Oanj alognji ’

Jj+1

by the continuity of (-, -) (this follows from (3.5)), we have
N, Re) > (1= e)n(a, Agt) (5.9)

for all sufficiently large j. For all sufficiently large j, we also have (j/(j + D)? > (1 —¢).
Using (5.9) and simplifying by substituting for R,,; and r,;, in (5.8), for all sufficiently large

J» we have
, < Ut 1)? Agblog j ( i’ (1 — &)n(a, Agt)ablog(j + 1))
P < - T - 9 0
j I (j+ Db
Aoblog j
= (Ol—og)J exp(—(1 — &)*n(a, Agt)ablog(j + 1))
—¢
B Aoblog j
(= 8)(j + DI @A
Hence,

Apblog j
(1 —&)(j + 1)(=o?n(a.Agv)a=Db

nj+1Pj = (5.10)
Using (5.5), we can choose b large enough so that ((1 — 8)27’]((1, Agpt)a — 1)b > 1. It then
follows from (5.10) that the first term on the right-hand side of (5.7) is summable in j. From
Penrose (2003, Lemma 1.4), the second term on the right-hand side of (5.7) is also summable.
Hence, by the Borel-Cantelli lemma, almost surely, only finitely many of the events

nj+1
U B(ns Tn» rnv Rn)

occur, and, hence, only finitely many of the events B(n, tn, r,, R,) occur. This implies that,
almost surely, every vertex in G,(tn, r,) is connected to every other vertex that is within a
distance R, (Ao) from it for all large n. Since Ag > 1, it follows from Theorem 5.1 that, almost
surely, G, (tn, r,) is connected eventually. This proves (5.4).

https://doi.org/10.1239/aap/1331216643 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1331216643

Percolation and connectivity in AB random geometric graphs SGSA e 35

Towards a proof of Lemma 3.1, we first derive a vacancy estimate similar to Hall (1988,
Theorem 3.11). For any locally finite point process X C U, the coverage process is defined as

e.r) = Bx,». (5.11)
XieX
and we abbreviate G(J’,fl), r) by C(n, r). Recall that, for any A C R?, we write X(A) to be
the number of points of X that lie in the set A.

Lemma5.1. Ford = 2 and 0 <r < %, define V(r) ;=1 — ||Bo(r)N C’(n,r)||/71r2, the
normalized vacancy in the r-ball. Then
PV(r)>0 <1+ nmr® + 4(n71r2)2) exp(—nrrrz).
Proof. Write P(V(r) > 0) < p1 + p2 + p3, where
pi =P(P"(Bo(r) = 0) = exp(—nzr?),

p2 =PV (Bo(r) = 1) = nar? exp(=nzr?),

p3 =P(PV(Bo() > 1, V(r) > 0).
We will now upper bound p3 to complete the proof. A crossing is defined as a point of
intersection of the boundaries of two balls (all the balls mentioned in this proof are assumed
to have a radius r) centered at the points of $#, *. A crossing is said to be covered if it lies
in the interior of another ball centered at a pomt of ,fl), otherwise it is said to be uncovered.
If there is more than one point of ) in Bo(r) then there exists at least one crossing in U.
If V(r) > 0 and there exists more than one ball centered at a point of J’n(]) in Bp(r), then

there exists at least one such ball with two uncovered crossings on its boundary. Denoting the
number of uncovered crossings by M, we have

p3<P<M>2><$

Note that balls centered at distinct points can have at most two crossings and, almost surely,
all the points of ﬂ’,,(l) are distinct. Thus, given a ball, the number of crossings on the boundary
of the ball is twice the number of balls centered at a distance within 2r. This number has
expectation 2 foz "2nmx dx = 8nmr?, where 2nmx dx is the expected number of balls whose
centers lie between x and x + dx of the center of the given ball. Thus,

E(M) = E(PV (Bo(r)))8nmr? P(a crossing is uncovered) = 8(nmr?)? exp(—nmr?).

Proof of Lemma 3.1. We first prove the second part of the lemma which is easier.
2. Let W (r) be the number of £ nodes for which there is no other ”( ) node within
distance r. Note that W,, @2r)y<Ww, (r). By this inequality and the Palm calculus, we obtain

E(W,(ra(z, B))) = E(W,(2ra(t, B)))
=n f P(PD (B (2ry (1, B))) = 0) dx
U
= nexp(—29n6,r%(z, B))
_ 2d I n
=new(~T1ee())
— 0

asn — oo since T > 24,
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1. We prove the cases d = 2 and d > 3 separately. Letd > 3, and fix T < 1. Define
W,,(r r) to be the number of P, (1) nodes for which there is no & ,(%) nodes within distance r,
and define W, (z, r) be the number of F O( ) nodes with only one ¥ "’( node within distance r.
Note that ~ _

Wa(T,r) < Wa(r) < Wa(z, 1) + Wy(z, ). (5.12)

By Palm calculus for Poisson point processes we have
E(Wu (1, ra(z. B))) = n / P(P (By (ra(t, B))) = 0) dx
= nexp(—tnbgri(z, B))
=B, (5.13)
E(W, (7, ra(t, ) = /U P(PV By (ra(z, B)) = 1) dx

=1n exp(—n@drff(t, ﬂ))né’dr,f(f, B)
-0, (5.14)

since T < 1. It follows from (5.12), (5.13), and (5.14) that E(W,, (r,(, B))) = Basn — o0
ifd>3andt <19 =1.

Now letd = 2, fix t < 19, Where 7 is as defined in (3.9), and let n be large enough so that
(T, B) < l Forany X € 4 ,fl), using (5.11), the degree of X in the graph G, (tn, r) can be

written as
deg,(tn. X):= > 1{(X;. X) € Ey(tn, 1)} = PV (@UPT N Bx(r)). r) \ {X)).
XjepM
Since

(POCUPE N Bx (), N\ (X)) = 0} = {7 (Bx(r) NC(PV\ {X},r) =0}, (5.15)
we have
Wu(r) =Y 1{deg,(tn, X;) =0}
X,'Ej)n(l)

> UPP By, NE@PV\ (X}, 1) =0). (5.16)
o)

XieP,

By Palm calculus for Poisson point processes (and the metric being toroidal) we have
E(W,(r) = n/ E(l{deg, (tn, x) = 0}) dx = n P(P (Bo(r) N C(n, 1)) =0), (5.17)

where C(n, r) = C(Py P , r). For any bounded random closed set F', conditioning on F and
then taking the expectation, we have

P(PL)(F) = 0) = E(exp(—tnl| ). (5.18)

Thus, from (5.17) and (5.18) we obtain
E(W,(r)) = nE(exp(—tn||Bo(r) N C(n, r)|))) = nE(exp(—tnmri(1 — V(r)))), (5.19)
where V (r) is as defined in Lemma 5.1. Let n(r) = n(l, t) be as defined in (3.4) and
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e1 = (1, 0). Since r,, (1, B)/ra(z, B) = t'/?, by (3.5) we have
|Bo(rn(t, B)) N By, (1,p)e; (rn (T, BN
wra(t, B)? N
Given T < 710, by continuity, we can choose an ¢ € (0, 1) such that
__IBo(ra(t, B)) N By, (1—¢,p)e, (rn (T, B
Ty (T, ,3)2

Let N, = PV(Bo(ra(1 — &, B))). Thus, we have

n(t).

1
N« (T, €) satisfies 74(7r,e) 4+ — > 1. (5.20)
T

E(Wy (ra(z, ))) = nE(e™ ™A=V @A) 1y (r, (z, ) = 0)
+ nE@e @A A=V @) 1y (. (z, B)) > 0, N, = 0})
T nE@e @A A=V @) 1V (5, (z, B)) > 0, Ny > 0)).  (5.21)
Consider the first term in (5.21). From Lemma 5.1 we obtain the bound,
P(V(ra(r. B)) > 0) < D(1 +logn + 4(logn)*)n~ /" (5.22)
for some constant D. Hence,
n E(e—mm%(r,ﬂ)(l—wrn(nﬁ))) 1V (ra(z, B)) = O
= nexp(—tnmry(t, B)*) P(V (ra(z. B)) = 0)
= BP(V(rn(z, B)) =0)
— B asn — oo.
The second term in (5.21) is bounded by
nP(N, =0) = nexp(—nmr,(1 — ¢, B)?) =n'~V1=0g1/0=8) . 0 asn — co0. (5.23)

We will now show that the third term in (5.21) converges to 0. On the event {N,, > 0}, we have

1 =V (ra(z, B)) > ni(z, 8). (5.24)
Using (5.24) first and then (5.22), the third term in (5.21) can be bounded by
ne= @A @O PV (1, (2, ) > 0, Ny > 0)
<n!"EAgEEAPY (1, (1, B)) > 0)
< Dn' 7OV (1 4 logn + 4(logn)?) B+
—0 asn—> o© (5.25)

by (5.20).
It follows from (5.21), (5.23), and (5.25) that E(W,,(r,(t, B))) — B asn — oo.

The total variation distance between two integer-valued random variables ¢ and ¢ is defined
as

drv (¥, ¢) = sup [P(y € A) —P(; € A)|.
ACZ

The following estimate in the spirit of Theorem 6.7 of Penrose (2003) will be our main tool in
proving Poisson convergence of W, (r,(z, 8)). We denote the Palm version !P,fl) U {x} of JP,EI)

by 2.
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Lemma 5.2. Let 0 < r < 1, and let C(-, -) be the coverage process defined by (5.11). Define
the integrals I;,,(r), i = 1,2 andn > 1, by

Ii,(r) :=n / dxf dyP(PV(C(PP N B (r),r)) =0)
B (5r)NU
x P(PI(C(PE N By(r), 1)) = 0), (5.26)
by = [ ax [ p@E@d 080 =
 (5rNU
0=2""@P2 N B:r). r))). (5.27)

Then,

drv (W (r), Po(E(W,(r)))) =< min<3 )(lln(r) + 12y (r)). (5.28)

"E(Wa(r))

Proof. The proof follows along the same lines as the proof of Theorem 6.7 (see Penrose
(2003)). For every m € N, partition U into disjoint cubes of side length m~! with corners
at m—17Z4. Let the cubes and their centers be denoted by Hpu.1, Hn2, ... and am 1, am 2, - - .,
respectively. Define

Ly :={i e N: Hy; C [0, 1]d} and E, :={{i, j):i,j € I, 0 < llam,i — am,jll < 5r}.

The graph G,, = (1,5, E;,) forms a dependency graph (see Penrose (2003, Chapter 2)) for
the random variables {&,, ;};cs,,. The dependency neighborhood of a vertex i is Ny, ; = i U
{j: i, j) € En). Let

Emi = PV (Hp) = 11N (P “)(e(a )N By, (r).r) N HY, ) = 0}}.

Here&,, ; = 1 provided there is exactly one point of P, ) in the cube H, ; whichis not connected
to any other point of £, ( that falls outside H,y ; in the graph Gu(tn,r). LetW,, = Zle I Em.i.
Then, almost surely,
W,(r) = lim W,,.
m—0o0

Let py,i = E(n,i) and py. i j = E(&m,i&m, ;). The remaining part of the proof is based on the
notion of dependency graphs and the Stein—Chen method. By Penrose (2003, Theorem 2.1) we
have

drv (Wi, Po(E(Wn))) < min(3, )(bl(m) + ba(m)), (5.29)

E(Wn)

where

bim)=>""Y" pmipm; and bym)=Y > pui;.

i€ly jENp,i i€ly jE€NM,i/{i}

The result follows if we show that the expressions on the left- and right-hand sides of (5.29)
converge to the left- and right-hand expressions in (5.28), respectively.
Let w,, (x) = mdpm,i for x € Hp, ;. Then Zielm Pm,i = fU Wy, (x) dx. Clearly,

lim_wy (x) = n PP (CPE) N Bi(r)/{x).7)) = 0)

m

™

=nP(PD(CPY N B (r). 1) =0).
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Since wy, (x) < m? P(Py" (Hni) = 1) < n,
lim E(W,,) = n/ PPV (@ (P2 N By(r), 1) = 0)dx = E(W,(r)),
m— 00 U

where the first equality is due to the dominated convergence theorem and the second follows from
(5.15)—(5.17). Similarly, by letting u,, (x, y) = m** py i pm.j UIj € Np.i1} and vy (x, y) =
mdem,i,j 1{[j € Np,;/{i}]} forx € Hy ; and y € H,, ;, we can show that

bi(m) =/ o (s y) dx dy — Ty (r)
U

and

ba(m) =/ vn(x, y) dxdy = Dn(r).
U

Proof of Theorem 3.2. Equation (3.11) follows easily from (3.2) by noting that
P(M, <r) =P(W,(r) =0).

Hence, the proof is complete if we show (3.2), for which we will use Lemma 5.2. Let
Iin(ry(z, B)), i = 1,2, be the integrals defined in (5.26) and (5.27) with r taken to be r,, (7, B)
satisfying (3.2). From Lemma 3.1, E(W,,(r,,(z, B))) — B as n — 00. As convergence in fotal
variation distance implies convergence in distribution, by Lemma 5.2 and the conclusion in the
last statement, it suffices to show that I;, (r,(t, 8)) = Oasn — oo fori =1, 2.

Using (5.17) and Lemma 3.1, we obtain, for some finite positive constant C,

Ly (ra(z, B)) = / dx / dy(E(W,, (ra (z, B)))? < C(5ra(, B))Y = 0
U ' (Sry (T,8))NU

as n — oo. We now compute the integrand in the inner integral in I5,(r). Let I'(x,r) =
|Bo(r) N By (r)||. For x, y € U, using (5.18), we obtain

PP (PP N By(r), 1) = 0} N (2 (€ (P2 N B (r), 1) = 0))
=P(P2(By(r) N (C(n,r) U By(r)) = 0, P2 (B (r) N (C(n,r) U By(r))) = 0)
<P(PZ (By(r)NC(»n, 1) =0, PG (B.(r) N C(n,r)) =0)
=P(P((By(r)\ Bx(r) N C(n, 1) =0, P (B:(r) N C(n,r)) = 0)
= E(exp(—n||(By(r) \ Bx(r)) N C(n, r)|) exp(—tn| B (r) N Cn, N)).  (5.30)

We can and do choose an 1 > 0 so that, for any r > 0 and |y — x| < 5r (see Penrose (2003,
Equation 8.21)), we have

1B () \ By ()l = nrd ™" |y — xI.
Hence, if |y — x| < 5r, the left-hand expression in (5.30) will be bounded above by

E(exp(—fnnrd‘l y — B\ B () N @, 1]
1By(r) \ B+ ()]

) exp(—tn||Bx(r) N C(n, r)II))-
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Using the above bound, we obtain

Ly (ry(T, B))

<

n’ E(GXP(—MIIBO(M(L B)) NCn, ra(z, I

[(By(ra(z, B)) \ Bo(ra(z, f))) N C(n, ra(z, B))| )) dy
1By (ra(z, B)) \ Bo(ra(t, P '

/BO(SV,‘{’(T,/S))HU

x exp(—mnrn(r, Byl

Making the change of variable w = nr,(t, ,B)d_ly and using (5.19), we obtain

DIy (ru (T, B))

< / (nra(z, pYH' =4 E(n exp(—tnl|Bo (ra(t, B)) N C(n, (T, NI
BX(Snr,,(r,ﬁ)d)ﬂU
< I(Boyur, z.pyi=1)-1 ra (T, B\ Bo (rn (T, B))) N C(n, 1 (T, B)) | ))
x exp( —cnlwl dw
”Bw(nrn(r,ﬂ)d*l)*l (ru(z, B\ Bo(rn(z, Bl

< (nru(t, BYH' T E(W, (ra (7, B)))

— 0
as n — oo, since, by Lemma 3.1, E(W,, (r,,(z, 8))) — B and nr, (7, B)¢ — coasn — oo.
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