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Abstract

This paper deals with discrete-time Markov decision processes (MDPs) under constraints
where all the objectives have the same form of expected total cost over the infinite time
horizon. The existence of an optimal control policy is discussed by using the convex
analytic approach. We work under the assumptions that the state and action spaces are
general Borel spaces, and that the model is nonnegative, semicontinuous, and there exists
an admissible solution with finite cost for the associated linear program. It is worth noting
that, in contrast to the classical results in the literature, our hypotheses do not require the
MDP to be transient or absorbing. Our first result ensures the existence of an optimal
solution to the linear program given by an occupation measure of the process generated
by a randomized stationary policy. Moreover, it is shown that this randomized stationary
policy provides an optimal solution to this Markov control problem. As a consequence,
these results imply that the set of randomized stationary policies is a sufficient set for
this optimal control problem. Finally, our last main result states that all optimal solutions
of the linear program coincide on a special set with an optimal occupation measure
generated by a randomized stationary policy. Several examples are presented to illustrate
some theoretical issues and the possible applications of the results developed in the paper.
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1. Introduction

The objective of this work is to study time-homogeneous Markov decision processes (MDPs)
with constraints when all the objectives have the same form of expected total cost over the infinite
time horizon. The class of MDPs is a general family of controlled stochastic processes suitable
for the modeling of sequential decision-making problems. The convex analytic approach has
proved to be a very efficient method for solving MDPs with constraints. We do not attempt to
present an exhaustive survey on this topic, but refer the interested reader to [1], [5], [13], and
the references therein for a detailed exposition of this technique. While the convex analytic

Received 10 October 2011; revision received 30 January 2012.
∗ Postal address: INRIA Bordeaux Sud-ouest, CQFD Team, 351 cours de la Libération, F-33400 Talence, France.
Email address: dufour@math.u-bordeaux1.fr
∗∗ Postal address: Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi,
Kanagawa-ku, Yokohama 221-8686, Japan. Email address: horiguchi@kanagawa-u.ac.jp
∗∗∗ Postal address: Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK.
Email address: piunov@liverpool.ac.uk

774

https://doi.org/10.1239/aap/1346955264 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1346955264


The expected total cost criterion for MDPs with constraints 775

formulation is available for a large variety of cost criteria, the expected total cost (ETC) criterion
has received less attention.

Most of the works on the ETC criterion deal with the dynamic programming approach and,
consequently, do not consider the cases with constraints; see, for example, the books [1], [3],
[9], and [14], and the survey [7]. Indeed, when the convex analytic technique is applied to the
ETC criterion, one mainly encounters two important difficulties, as pointed out in [5, pp. 357–
358] and [9, pp. 92–94]: the expected state-action frequency may not be finite for some or all
policies, and an admissible solution for the linear program (LP) may not correspond to any
expected state-action frequency of the process. By imposing suitable conditions on the model
such as the so-called transient and absorbing conditions, we can ensure that the expected state-
action frequency is finite for all stationary policies. Discounted models form a special class in
this area. It is important to point out that even in the transient case, some occupation measures
may not be generated by a stationary control policy as explained in [5, p. 358], meaning that
the sufficiency of stationary policies is under question. To the best of our knowledge, the book
[1] is the only reference in the literature in which the ETC criterion with constraints is analyzed
using the convex analytic approach under the hypotheses that the state and action spaces are
discrete and the model is transient or absorbing. We also mention the papers by Dufour and
Piunovskiy [6] and Horiguchi [10], [11], who studied the optimal stopping problems through
the ETC criterion with constraints.

In this paper we investigate the ETC criterion with constraints using the convex analytic
approach. We work under the assumptions that the state and action spaces are general Borel
spaces, and that the model is nonnegative, semicontinuous, and there exists an admissible
solution for the LP with a finite cost. We do not require the MDP to be transient or absorbing. It
is important to point out that our hypotheses are very weak and do not exclude the pathologies
previously described. In particular, the (optimal) occupation measures are not necessarily
finite and an admissible solution for the LP may not correspond to any occupation measure
of the controlled process. Moreover, it appears necessary to impose the condition that the
cost functions be nonnegative. Indeed, the first example in Section 5 shows that if the cost
functions can take negative values then the optimal solution of the LP may make no sense.
Consequently, our results appear to be very general compared to those in the existing literature.
We show in Theorem 4.1 that there exists a randomized stationary policyϕ∗ having the following
properties: there exists an optimal solution to the LP given by an occupation measure of the
process generated by the policy ϕ∗, and the policy ϕ∗ is optimal for the constrained control
problem. As a consequence, we show in Corollary 4.1 that the set of randomized stationary
policies is a sufficient set for solving the control problem under consideration. Although the
occupation measures are not necessarily finite, we prove the remarkable property that there
exists a special set on which the occupation measures are σ -finite. Finally, our last main result
(Theorem 4.2) states that all optimal solutions of the LP coincide on this special set with an
optimal occupation measure generated by a randomized stationary policy. A related approach
has been used in [6] in a considerably simpler context given by an optimal stopping problem.
As a result, the transition distribution of the process does not depend on the control, contrary
to the present work. This difference imposes the development of a radically different approach
to deal with this general framework.

The rest of the paper is organized as follows. In Section 2 we introduce some notation,
basic assumptions, and present the control problem that will be considered throughout this
work. Preliminary results are derived in Section 3. In particular, a special set is constructed
that will be crucial for the analysis of the constrained control problem. The LP is studied
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in Section 4 where we derive the main results of our paper. Finally, Section 5 is dedicated
to the presentation of several examples illustrating some theoretical issues and the possible
applications of the results developed in the paper.

2. Problem formulation

The purpose of this section is to present some standard notation and some basic definitions
as well as the discrete-time Markov control model that will be considered throughout the paper.

The following notation will be used in the paper: N denotes the set of natural numbers,
N0 = N ∪{0}, R denotes the set of real numbers, R+ denotes the set of nonnegative real
numbers, and R+ denotes R+ ∪{+∞}. For any q ∈ N, Nq is the set {1, . . . , q}. The term
measure will always refer to a countably additive, R+-valued set function. Let E be a Borel
space, and denote by B(E) its associated Borel σ -algebra. The set of measures defined on
(E,B(E)) is denoted by M(E)+. For two measures (γ1, γ2) ∈ M(E)2+, γ1 ≤ γ2 means
that γ1(�) ≤ γ2(�) for any � ∈ B(E). The setwise convergence of a sequence of measures
(γn)n∈N to a measure γ∞ is denoted by limn→∞ γn = γ∞. The set of bounded real-valued
continuous functions defined on E is denoted by C(E). Let f be a real-valued measurable
function, and let η ∈ M(E)+. The integral

∫
E
f (y)η(dy) is denoted by η(f ) provided it is

well defined. Let X and Y be Borel spaces. If W is a stochastic kernel on X given Y then,
for any real-valued measurable function f , the integral

∫
E
f (x)W(dx | y) for any y ∈ Y is

denoted by Wf (y) provided it is well defined. For any positive measure η on (Y,B(Y )), ηW
is the measure defined on (X,B(X)) by

ηW(�) =
∫
Y

W(� | y)η(dy) for any � ∈ B(X).

Letµ be a measure in M(X×Y )+; the marginal ofµ onX is denoted byµY : µY (�) = µ(�×Y )
for any � ∈ B(X).

In order to define an MDP, we consider, as in Section 2 of [8], a four-tuple (X,A,Q, r)
consisting of

(a) a Borel space X which is the state space,

(b) a Borel space A, representing the control or action set,

(c) a stochastic kernel Q on X given X × A which stands for the transition law of the
controlled process,

(d) a measurable function r0 : X × A → R representing the running cost,

(e) measurable functions ri : X × A → R for i ∈ Nq representing the constraints.

Definition 2.1. The set of all stochastic kernels ϕ on A given X is denoted by�, and F stands
for the set of all measurable functions f : X → A.

To introduce the optimal control problem we are concerned with, it is necessary to define
different classes of control policies.

Definition 2.2. Define H0 = X and Ht = X × A × Ht−1 for t ≥ 1. A control policy is
a sequence π = (πt )t∈N0 of stochastic kernels πt on A given Ht . Let � be the class of all
policies. A policy π = (πt )t∈N0 is said to be

• a randomized stationary policy if there exists ϕ ∈ � such that πt (· | ht ) = ϕ(· | xt ),
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• a deterministic Markov policy if there exists a sequence (ft )t∈N0 ⊂ F such that
πt (· | ht ) = δft (xt )(·),

• a deterministic stationary policy if there exists f ∈ F such that πt (· | ht ) = δf (xt )(·),
where ht = (x0, a0, . . . , xn−1, at−1, xt ).

According to the standard convention, we identify F and�with the classes of all deterministic
and randomized, respectively, stationary policies. Therefore, F ⊂ � ⊂ �. Ifπ is a randomized
stationary policy generated by ϕ ∈ � (according to Definition 2.2), we will write ϕ instead
of π ; similarly if π is a deterministic stationary policy generated by f ∈ F, we will write f
instead of π .

Let (
,F ) be the canonical space consisting of the sample path 
 = (X × A)∞ and the
associated σ -algebra F . For any policy π ∈ � and any initial distribution ν on X, we can
define a probability, labeled Pπν , and a stochastic process ((xt , at ))t∈N0 , where (xt )t∈N0 is the
state process and (at )t∈N0 is the control process satisfying, for any B ∈ B(X), C ∈ B(A), and
ht ∈ Ht with t ∈ N0, Pπν (x0 ∈ B) = ν(B), Pπν (at ∈ C | ht ) = πt (C | ht ), and Pπν (xt+1 ∈
B | ht , at ) = Q(B | xt , at ); see, for example, [8, Chapter 2] for such a construction. The
expectation with respect to Pπν is denoted by Eπν . If ν = δx for x ∈ X, we write Pπx for Pπν and
Eπx for Eπν .

Next, we define our Markov control problem. Suppose that we are given an initial distribution
ν on X, and constraint limits (R1, . . . , Rq) ∈ Rq . The optimization problem we consider
consists in minimizing the cost function

v(ν, π) = Eπν

[ ∞∑
t=0

r0(xt , at )

]
(2.1)

over the set of feasible control policies, labeled �c, defined by the set of policies π ∈ � such
that

vi(ν, π) = Eπν

[ ∞∑
t=0

ri(xt , at )

]
≤ Ri (2.2)

for i ∈ Nq . The optimal value function is denoted by

V ∗(ν) = inf
π∈�c

v(ν, π). (2.3)

For a policy π ∈ �, let us introduce the following expected state-action frequency or
occupation measure induced by π ∈ �:

µπ(�) =
∞∑
t=0

Pπν ((xt , at ) ∈ �) for any � ∈ B(X × A). (2.4)

In this paper, we make the following assumptions on the parameters of the MDP.

Assumption 2.1. Assume that the following hypotheses hold.

(i) The control space A is compact.

(ii) The mappings r0 and ri for all i ∈ Nq are nonnegative and lower semicontinuous.

(iii) The kernelQ is weakly continuous, that is,Qf is continuous onX×A for any f ∈ C(X).
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Remark 2.1. Note that Assumption 2.1 is a standard and weak hypothesis in the literature
on MDPs. Moreover, from (iii) of Assumption 2.1, it is easy to see that Q(� | ·, ·) is lower
semicontinuous for any open set � ∈ B(X).

3. Preliminary results

The main goal of this section is to derive preliminary results that will be used in Section 4
to obtain the main results of our paper. In particular, a special set, labeled Vr , is constructed
with remarkable properties; see Proposition 3.2 for its definition. It is proved in Theorem 3.2
that on the complement of Vr all the occupation measures of interest are σ -finite. Another key
characteristic of the set Vr is that, roughly speaking, its complement is stochastically closed.
More precisely, this means, see Proposition 3.2, that Vr is topologically closed and that if the
process starts from a point in Vr then there exists an action that keeps the process in Vr with
an associated cost being equal to 0. These properties will play a crucial role in showing in
Theorem 3.3 and Corollary 3.1 that, for any admissible solution for the LP, we can construct a
randomized stationary policy, giving a better value for the cost. We conclude this section by
deriving two technical results (Lemmas 3.4 and 3.5) that will be used in Section 4 to show that
any optimal solution of the LP coincides with an optimal occupation measure generated by a
randomized stationary policy on V cr .

In this section we will denote by r a lower-semicontinuous nonnegative function defined on
X × A and we will suppose that the following assumption holds.

Assumption 3.1. There exists a measure η ∈ M(X × A)+ satisfying ηA = ν + ηQ and
η(r) < ∞.

Remark 3.1. Note that we do not require the measure η to be finite. Actually, η can take the
value +∞ and it is not necessarily σ -finite.

Remark 3.2. Since the function r is lower semicontinuous and the whole space X × A is
closed, parts (i) and (iii) of Assumption 2.1 imply that we deal with a semicontinuous model
according to Definition 8.7 of [4]. Therefore, according to Corollary 9.17.2 of [4], the cost
function associated to r defined by

r∗(x) = inf
π∈�Eπν

[ ∞∑
t=0

r(xt , at )

]
is a lower-semicontinuous function on X satisfying the optimality equation

r∗(x) = inf
a∈A[r(x, a)+Qr∗(x, a)].

Moreover, there exists a measurable mapping f ∗ ∈ F such that the deterministic stationary
policy f ∗ is optimal, that is,

r∗(x) = Ef
∗

ν

[ ∞∑
t=0

r(xt , at )

]
= r(x, f ∗(x))+Qr∗(x, f ∗(x)) (3.1)

for any x ∈ X.

Let us first show a technical result that will be used repeatedly without reference.
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Lemma 3.1. Let g be a lower-semicontinuous function on X × A. For α ∈ R, the set

{x ∈ X : for all a ∈ A, g(x, a) > α}
is an open set and so belongs to B(X).

Proof. From item (b) of Proposition D.5 of [8], there exists a measurable functionφ : X → A

such that infa∈A g(x, a) = g(x, φ(x)) and g(x, φ(x)) is lower semicontinuous on X.
Consequently, {x ∈ X : infa∈A g(x, a) > α} = {x ∈ X : g(x, φ(x)) > α} is an open set in X.
For any x ∈ X, g(x, ·) is lower semicontinuous and so {x ∈ X : for all a ∈ A, g(x, a) > α} =
{x ∈ X : infa∈A g(x, a) > α}, proving the result.

Lemma 3.2. Let g be a lower-semicontinuous function on X × A. Then,⋃
p∈N

{
x ∈ X : for all a ∈ A, g(x, a) > 1

p

}
= {x ∈ X : for all a ∈ A, g(x, a) > 0}.

Proof. It is easy to see that⋃
p∈N

{
x ∈ X : for all a ∈ A, g(x, a) > 1

p

}
⊂ {x ∈ X : for all a ∈ A, g(x, a) > 0}.

Now take an arbitrary y ∈ {x ∈ X : for all a ∈ A, g(x, a) > 0}. Since g(y, ·) is lower
semicontinuous on the compact set A, there exists u ∈ A such that, for all a ∈ A, g(y, a) ≥
infa∈A g(y, a) = g(y, u) > 0, implying that there exists p ∈ N such that y ∈ {x ∈
X : for all a ∈ A, g(x, a) > 1/p}.
Proposition 3.1. Suppose that Assumption 3.1 holds, and assume that there exists an increasing
sequence of open sets (Bj )j∈N ⊂ B(X) such thatηA is finite onBj . Then there exists a sequence
of open sets (Ei)i∈N ⊂ B(X) such that {x ∈ X : for all a ∈ A, Q(

⋃
j∈N

Bj | x, a) +
r(x, a) > 0} = ⋃

i∈N
Ei and ηA is finite on Ei for any i ∈ N.

Proof. Introduce for j ∈ N and p ∈ N the following sets:

B
p
j =

{
(y, a) ∈ X × A : Q(Bj | y, a)+ r(y, a) >

1

p

}
,

C
p
j =

{
y ∈ X : for all a ∈ A,Q(Bj | y, a)+ r(y, a) >

1

p

}
.

Since ν is a probability measure, we have ηQ(Bj ) < ∞ and so

η(B
p
j ) ≤

∫
B
p
j

p[Q(Bj | y, a)+ r(y, a)]η(dy × da) ≤ p[ηQ(Bj )+ η(r)] < ∞.

Consequently, ηA is finite onCpj . Since, for any j ∈ N,Bj is open,Q(Bj | ·, ·)+r(·, ·) is lower

semicontinuous on X×A. From Lemma 3.1, it follows that the set Cpj is open. Therefore, we
will obtain the result if we show that⋃

j∈N

⋃
p∈N

C
p
j =

{
x ∈ X : for all a ∈ A, Q

(⋃
j∈N

Bj

∣∣∣∣ x, a) + r(x, a) > 0

}
. (3.2)
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However, from Lemma 3.2 we have⋃
p∈N

C
p
j = {x ∈ X : for all a ∈ A, Q(Bj | x, a)+ r(x, a) > 0}, (3.3)

and so ⋃
j∈N

⋃
p∈N

C
p
j ⊂ {x ∈ X : for all a ∈ A, Q(B | x, a)+ r(x, a) > 0}, (3.4)

where B = ⋃
j∈N

Bj . Let us show the reverse inclusion. Consider y ∈ X such that
Q(B | y, a) + r(y, a) > 0 for all a ∈ A. Since Bi is open, {Q(Bi | y, ·) + r(y, ·)}i∈N is
an increasing sequence of lower-semicontinuous functions on A. Consequently, Lemma 2.1 of
[16] gives

lim
i

inf
a∈A[Q(Bi | y, a)+ r(y, a)] = inf

a∈A lim
i

[Q(Bi | y, a)+ r(y, a)]
= inf
a∈A[Q(B | y, a)+ r(y, a)].

The set B being open,Q(B | y, ·)+ r(y, ·) is lower semicontinuous on the compact set A and
so infa∈A[Q(B | y, a)+r(y, a)] > 0. Therefore, y ∈ {x ∈ X : for all a ∈ A, Q(Bj | x, a)+
r(x, a) > 0} for some j ∈ N and so by using (3.3) we obtain the reverse inclusion:

{x ∈ X : for all a ∈ A, Q(B | x, a)+ r(x, a) > 0} ⊂
⋃
j∈N

⋃
p∈N

C
p
j . (3.5)

Combining (3.4) and (3.5), we obtain (3.2) and the result follows.

Theorem 3.1. Suppose that Assumption 3.1 holds. Define the set

W =
⋃
j∈N

Wj,

where W1 = {y ∈ X : for all a ∈ A, r(y, a) > 0} and, for any j ∈ N,

Wj+1 =
{
x ∈ X : for all a ∈ A, Q

( j⋃
i=1

Wi

∣∣∣∣ x, a) + r(x, a) > 0

}
.

Then the set Wj is open for any j ∈ N and the measure ηA is σ -finite on W .

Proof. From Lemma 3.2, W1 = ⋃
j∈N

Dj , where Dj = {y ∈ X : for all a ∈ A, r(y, a) >
1/j}. By using Lemma 3.1, Dj is open as well as W1. Moreover, the measure ηA is finite
on the set Dj . Indeed, η(Dj × A) ≤ ∫

Dj
jr(y, a)η(dy × da) ≤ jη(r) < ∞. Now, using

Proposition 3.1, it can be easily shown by induction that the set Wj is open for any j ∈ N and
ηA is σ -finite on Wj for all j ∈ N, implying that ηA is σ -finite on W .

Proposition 3.2. Define the set

Vr = {x ∈ X : r∗(x) = 0}.
The set Vr is closed. Moreover, a state x belongs to Vr if and only if there exists a ∈ A such
that r(x, a) = 0 and Q(Vr | x, a) = 1.
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Proof. From Remark 3.2, r∗ is lower semicontinuous on X and so Vr is closed, showing
the first statement of the proposition. Let x ∈ Vr . From (3.1), r∗(x) = r(x, f ∗(x)) +
Qr∗(x, f ∗(x)) = 0. Consequently, for a = f ∗(x), we have r(x, a) = 0 and Qr∗(x, a) = 0.
However,

Qr∗(x, a) =
∫
Vr

r∗(y)Q(dy | x, a)+
∫
V cr

r∗(y)Q(dy | x, a) =
∫
V cr

r∗(y)Q(dy | x, a).

Since on V cr the function r∗ is strictly positive, it follows that Q(V cr | x, a) = 0, showing the
first part of the result.

Now assume that y ∈ X satisfies r(y, a) = 0 and Q(Vr | y, a) = 1 for a ∈ A. Define the
deterministic Markov policy π = {ψt } by ψ0(x) = a for any x ∈ X and ψt = f ∗ for t ≥ 1. It
is easy to see that vπ(y) = 0, implying that r∗(y) = 0 and so y ∈ Vr .
Lemma 3.3. Let G be a closed set in B(X). Assume that, for any x ∈ G, there exists ax ∈ A
such that r(x, ax) = 0 and Q(G | x, ax) = 1. Then G ⊂ Vr .

Proof. Assume without loss of generality that G 	= ∅. We have

inf
b∈A[r(x, b)+Q(Gc | x, b)] = 0 for x ∈ G.

Since Gc is open, the function r(x, ·)+Q(Gc | x, ·) is lower semicontinuous on the compact
setA. Therefore, it follows from Proposition D.5 of [8] that there exists a measurable mapping
ψG : G → A such that, for any x ∈ G, r(x, ψG(x))+Q(Gc | x,ψG(x)) = 0. Fix an arbitrary
u ∈ A, and define the measurable mapping ψ : X → A by ψ(x) = ψG(x) if x ∈ G and
ψ(x) = u otherwise. Then, for x ∈ G and the deterministic stationary policy ψ , vψ(x) = 0
and so x ∈ Vr , proving the result.

Proposition 3.3. The set Wc is included in Vr .

Proof. Consider x ∈ Wc. Then, by the definition ofW , it follows that, for any j ∈ N, there
exists aj ∈ A satisfying Q(

⋃j
i=1Wi | x, aj )+ r(x, aj ) = 0. This implies that

lim
j

inf
a∈A

[
Q

( j⋃
i=1

Wi

∣∣∣∣ x, a) + r(x, a)

]
= 0.

Clearly, {Q(⋃j
i=1Wi | x, ·)+ r(x, ·)}j∈N is an increasing sequence of lower-semicontinuous

functions defined on the compact setA since
⋃j
i=1Wi is open from Theorem 3.1. Consequently,

lim
j

inf
a∈A

[
Q

( j⋃
i=1

Wi

∣∣∣∣ x, a) + r(x, a)

]
= inf
a∈A lim

j

[
Q

( j⋃
i=1

Wi

∣∣∣∣ x, a) + r(x, a)

]
,

and so
inf
a∈A[Q(W | x, a)+ r(x, a)] = 0.

Again, from Theorem 3.1, W is open and so Q(W | x, ·) + r(x, ·) is a lower-semicontinuous
function defined on the compact set A. Consequently, for x ∈ Wc, there exists ax ∈ A such
that Q(W | x, ax) + r(x, ax) = 0. The set Wc being closed, we obtain the result by using
Lemma 3.3.
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Theorem 3.2. The measure ηA is σ -finite on V cr .

Proof. This result is a straightforward consequence of Theorem 3.1 and Proposition 3.3.

According to Theorem 3.2, there exists a partition (Uk)k∈N ⊂ B(X) of the set V cr such
that, for all k ∈ N, ηA(Uk) < ∞. From Proposition D.8 of [8], for any k ∈ N such that
ηA(Uk) > 0, there exists a stochastic kernel, labeled ϕk , onA givenUk satisfying η(�k×�A) =∫
�k
ϕk(�A | x)ηA(dx) with �k ∈ B(Uk) and �A ∈ B(A). Consider ϕ̃, an arbitrary kernel on

A given X. Define ϕ̂η, the kernel on A given V cr , by

ϕ̂η(�A | x) =
{
ϕk(�A | x) if x ∈ Uk with η(Uk) > 0,

ϕ̃(�A | x) otherwise,

for any �A ∈ B(A). Clearly, it is a stochastic kernel satisfying

η(� × �A) =
∫
�

ϕ̂η(�A | x)ηA(dx)

for any � ∈ B(V cr ) and �A ∈ B(A).

Definition 3.1. Suppose that Assumption 3.1 holds. Associated to η and r , we introduce the
stochastic kernel ϕη,r on A given X defined by

ϕη,r (� | x) = ϕ̂η(� | x)δx(V cr )+ δf ∗(x)(�)δx(Vr).

We say that the randomized stationary policy ϕη,r is induced by (η, r).

Remark 3.3. (i) The subscripts η and r in ϕη,r indicate the possible dependence of the policy
on the measure η and the function r . For notational ease, however, ‘r’ will be omitted if there
is no possibility of confusion, that is, it will be written ϕη instead of ϕη,r .

(ii) Note that, for any x ∈ Vr , r(x, f ∗(x)) = 0.

Theorem 3.3. Suppose that Assumption 3.1 holds. Then the randomized stationary policy ϕη

induced by η and r satisfies µϕ
η

A (�) ≤ ηA(�) for any � ∈ B(V cr ), and, if the measures µϕ
η

A

and ηA coincide on V cr , then the measures µϕ
η

and η coincide on V cr × A. Moreover,

Eϕ
η

ν

[ ∞∑
t=0

r(xt , at )

]
≤ η(r).

Proof. Introduce the sequence of measures (ηnA)n∈N ⊂ M(V cr )+ by η1
A equal to the restric-

tion of ηA to V cr and ηn+1
A = SηηnA, where Sη : M(V cr )+ → M(V cr )+ is given by

Sηγ (�) = ν(�)+
∫
V cr

∫
A

Q(� | x, a)ϕη(da | x)γ (dx)

for γ ∈ M(V cr )+ and � ∈ B(V cr ). Let us show that

η2
A = Sηη1

A ≤ η1
A. (3.6)

Indeed, for any � ∈ B(V cr ),

Sηη1
A(�) = ν(�)+

∫
V cr

∫
A

Q(� | x, a)ϕη(da | x)η1
A(dx). (3.7)
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Observe that, for any � ∈ B(V cr ),∫
V cr

∫
A

Q(� | x, a)ϕη(da | x)ηA(dx) =
∫
V cr

∫
A

Q(� | x, a)η(dx × da) ≤ ηQ(�), (3.8)

by the definition of ϕη. However, we have ηA = ν+ ηQ, and so combining (3.7) and (3.8), we
obtain Sηη1

A(�) ≤ ν(�)+ ηQ(�) = η1
A(�) for any � ∈ B(V cr ).

Using (3.6) and the fact that Sη is monotone, it is easy to show by induction that ηn+1
A ≤

ηnA ≤ η1
A. Therefore, the limit, labeled η∞

A , of the decreasing sequence (ηnA)n∈N as n tends to
∞ exists and satisfies, for any � ∈ B(V cr ),

η∞
A (�) ≤ ηA(�). (3.9)

Define the mapping T η : M(X)+ → M(X)+ by

T ηµ(·) = ν(·)+
∫
X

∫
A

Q(· | x, a)ϕη(da | x)µ(dx).

The occupation measure µϕ
η

A is the minimal positive solution of µ = T ηµ for µ ∈ M(X)+.
The mapping T η is monotone and so it can be easily shown thatµϕ

η

A is the limit of the increasing
sequence of measures (µn)n∈N ⊂ M(X)+ defined by µ1 = ν and µn+1 = T ηµn for n ∈ N.
Now consider the sequence of measures (νn)n∈N ⊂ M(V cr )+ defined by νn(�) = µn(�)

for � ∈ B(V cr ) and n ∈ N. Therefore, (νn)n∈N is an increasing sequence of measures that

converges to ν∞ defined by ν∞(�) = µ
ϕη

A (�) for any � ∈ B(V cr ). However, note that, for any
� ∈ B(V cr ) and any measure µ ∈ M(X)+, we have

T ηµ(�) = ν(�)+
∫
V cr

∫
A

Q(� | x, a)ϕη(da | x)µ(dx). (3.10)

Indeed, for any � ∈ B(V cr ),

T ηµ(�) = ν(�)+
∫
V cr

∫
A

Q(� | x, a)ϕη(da | x)µ(dx)

+
∫
Vr

∫
A

Q(� | x, a)ϕη(da | x)µ(dx).

However, by the definition ofϕη,
∫
A
Q(� | x, a)ϕη(da | x) = Q(� | x, f ∗(x)) for anyx ∈ Vr .

Since � ∈ B(V cr ) and x ∈ Vr , we have, from Proposition 3.2, Q(� | x, f ∗(x)) = 0 and so∫
Vr

∫
A
Q(� | x, a)ϕη(da | x)µ(dx) = 0, showing (3.10).

Using (3.10), we can therefore equivalently define the sequence (νn)n∈N ⊂ M(V cr )+ as ν1

equal to the restriction of ν on V cr and νn+1 = Sηηn for n ∈ N. However, the mapping
Sη is monotone, and since ν1 ≤ η1

A, we have νn ≤ ηnA, so µϕ
η

A (�) = limn→∞ νn(�) ≤
limn→∞ ηnA(�) = η∞

A (�) for any � ∈ B(V cr ). From (3.9) we obtain µϕ
η

A (�) ≤ ηA(�)

for any � ∈ B(V cr ). When the measures µϕ
η

A and ηA coincide on V cr , the measures µϕ
η

and
η coincide on V cr × A according to the definition of the policy ϕη induced by η and r . This
shows the first statement of the theorem.

Now, let us show the last statement of the theorem. We have∫
V cr

∫
A

r(x, a)ϕη(da | x)µϕηA (dx) ≤
∫
V cr

∫
A

r(x, a)ϕη(da | x)ηA(dx),
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and so

η(r) ≥
∫
V cr

∫
A

r(x, a)ϕη(da | x)µϕηA (dx).
However, by the definition of ϕη we have∫

Vr

∫
A

r(x, a)ϕη(da | x)µϕηA (dx) =
∫
Vr

r(x, f ∗(x))µϕ
η

A (dx),

implying that ∫
Vr

∫
A

r(x, a)ϕη(da | x)µϕηA (dx) = 0

since r(x, f ∗(x)) = 0 for x ∈ Vr . Combining the two previous inequalities, we obtain

η(r) ≥
∫
X

∫
A

r(x, a)ϕη(da | x)µϕηA (dx) = Eϕ
η

ν

[ ∞∑
t=0

r(xt , at )

]
,

proving the result.

Corollary 3.1. Under the conditions of Theorem 3.3, let r̃ ≤ r be a nonnegative real-valued
function defined on X × A. Then

Eϕ
η

ν

[ ∞∑
t=0

r̃(xt , at )

]
≤ η(̃r).

Proof. Observe that r̃(x, a) = 0 if (x, a) ∈ Vr . Consequently, similar arguments as those
used at the end of the proof of Theorem 3.3 can be applied to get the result.

Lemma 3.4. Define the set
W̃ =

⋃
j∈N

W̃j ,

where W̃1 = {x ∈ V cr : for all a ∈ A, r(x, a) > 0} and, for j ∈ N,

W̃j+1 =
{
x ∈ V cr : for all a ∈ A, Q

( j⋃
i=1

W̃i

∣∣∣∣ x, a) + r(x, a) > 0

}
.

Then W̃ = V cr .

Proof. Combining Lemma 3.1 and Proposition 3.2, it can be easily shown by induction that
the set W̃j is open for any j ∈ N. Clearly, by the definition of W̃ we have W̃ ⊂ V cr . Now let
us take x ∈ W̃ c. Then, for any j ∈ N, there exists aj ∈ A such that Q(

⋃j
i=1 W̃i | x, aj ) +

r(x, aj ) = 0, implying that, for any j ∈ N, infa∈A[Q(⋃j
i=1 W̃i | x, a)+ r(x, a)] = 0. Note

that (Q(
⋃j
i=1 W̃i | x, ·)+ r(x, ·))n∈N is an increasing sequence of lower-semicontinuous

functions on the compact set A since
⋃j
i=1W̃i is open. Therefore, it follows from Lemma 2.1

of [16] that

inf
a∈A[Q(W̃ | x, a)+ r(x, a)] = inf

a∈A lim
n→∞

[
Q

( j⋃
i=1

W̃i

∣∣∣∣ x, a) + r(x, a)

]

= lim
n→∞ inf

a∈A

[
Q

( j⋃
i=1

W̃i

∣∣∣∣ x, a) + r(x, a)

]
= 0.
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However, W̃ being open, Q(W̃ | x, ·) + r(x, ·) is a lower-semicontinuous function on the
compact set A and so reaches its infimum on A, showing that there exists a ∈ A satisfying
Q(W̃ | x, a) + r(x, a) = 0. Lemma 3.3 implies that x ∈ Vr , showing the reverse inclusion:
W̃ c ⊂ Vr .

Lemma 3.5. Suppose that γ ∈ M(V cr × A)+ satisfies γA ≥ γQ with γA(V cr ) > 0. Then∫
V cr

∫
A

r(x, a)γ (dx × da) > 0.

Proof. Let us show by induction that if γA(
⋃j
i=1 W̃i) > 0 then∫

⋃j
i=1 W̃i

∫
A

r(x, a)γ (dx × da) > 0.

This is clearly true at step j = 1 because of the definition of W̃1. Now assume that if
γA(

⋃j
i=1 W̃i) > 0 then

∫⋃j
i=1 W̃i

∫
A
r(x, a)γ (dx × da) > 0. Consider γA(

⋃j+1
i=1 W̃i) > 0.

Then either γA(
⋃j
i=1 W̃i) > 0 or γA(W̃j+1) > 0. In the first case, we obtain the claim

by using the induction hypothesis. In the latter case, we have γA(W̃j+1) > 0, implying by the
definition of W̃j+1 that either

∫
W̃j+1

∫
A

r(x, a)γ (dx × da) > 0 or
∫
W̃j+1

∫
A

Q

( j⋃
i=1

W̃i

∣∣∣∣ x, a)γ (dx × da) > 0.

In the latter case, using the fact that γA ≥ γQ, we have γA(
⋃j
i=1 W̃i) > 0 and so, by the

induction hypothesis,
∫⋃j

i=1 W̃i

∫
A
r(x, a)γ (dx × da) > 0. Consequently, in either case we

obtain
∫⋃j+1

i=1 W̃i

∫
A
r(x, a)γ (dx × da) > 0. Now, by using Lemma 3.4, it follows that there

exists k ∈ N such that γA(
⋃k
i=1 W̃i) > 0 since γA(V cr ) > 0, implying that∫

V cr

∫
A

r(x, a)γ (dx × da) ≥
∫

⋃k
i=1 W̃i

∫
A

r(x, a)γ (dx × da) > 0.

This proves the lemma.

4. Linear program

In this section we present the main results of the paper, supposing that the assumption on
the parameters of the MDP presented in Section 2 is satisfied and assuming that there exists an
admissible solution for the LP with finite cost. Our first main result, Theorem 4.1, consists of
showing that there exists a feasible randomized stationary policy ϕ∗ ∈ �c which generates an
optimal solution µϕ

∗
to the LP and which is optimal in the optimization problem (2.1)–(2.3).

As a consequence, we show that the set of randomized stationary policies is a sufficient class
of policies for the control problem under consideration. Our second main result states that any
optimal solution of the LP on the complement of a special subset Vr coincides with an optimal
occupation measure generated by the induced randomized stationary policy.

The constrained LP is defined as

(LP)
{

minimize µ(r0) subject to µ ∈ L,
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where
L = {µ ∈ M(X × A)+ : µA = ν + µQ and µ(rn) ≤ Rn for n ∈ Nq}.

A measure µ is said to be admissible for the LP if µ ∈ L, and a measure µ is said to be
optimal for the LP if µ is admissible and if µ(r0) ≤ γ (r0) for any γ ∈ L.

For notational convenience, let gt : 
 → X×A be defined by gt (ω) = (xt (ω), at (ω)), and
denote by h0(ω) = x0(ω) and ht (ω) = (g0(ω), . . . , gt−1(ω), xt (ω)) for ω ∈ 
 and t ≥ 1.
Denote by P the set of probability measures on (
,F ) and by P π the set of probability
measures on (
,F ) induced by the control policies π ∈ �. Now introduce Oπ as the set of
occupation measures µπ ∈ M(X × A)+ defined by (2.4). Let the mapping O : P π → Oπ be
defined by O(P πν ) = µπ .

The w-topology on P is defined as the coarsest topology rendering the mappings

P →
∫



f (ht (ω)) dP(ω)

continuous, where f ∈ C((X × A)t × X). The set P π is endowed by the induced topology.
From items (i) and (iii) of Assumption 2.1, it is easy to see that Conditions (1) and (2) of (W)
in [16, Section 5] are satisfied. Therefore, according to Theorem 5.6 of [16], P π is compact.
The topology on Oπ is defined as the finest topology for which the mapping O is continuous
(the final topology on Oπ associated to the mapping O).

Before stating our first main result, we need the following technical lemma.

Lemma 4.1. For any nonnegative lower-semicontinuous function r defined onX×A and any
R ∈ R+, define the set Oπ

r,R by

Oπ
r,R = {µπ ∈ Oπ : µπ(r) ≤ R}.

The set Oπ
r,R is compact and the mapping J : Oπ → R+ defined by J(µπ) = µπ(r) is lower

semicontinuous.

Proof. Let us show that the set P π
R = {Pπν ∈ P π : ∑∞

t=0

∫


r(gt (ω)) dPπν (ω) ≤ R} is

compact in thew-topology. Since r is lower semicontinuous and nonnegative, by the definition
of the w-topology, the mappings Hn : P π → R+ defined by

Hn(P
π
ν ) =

n∑
t=0

∫



r(gt (ω)) dPπν (ω)

are lower semicontinuous and so the mapping H : P π → R+ defined by

H(P πν ) =
∞∑
t=0

∫



r(gt (ω)) dPπν (ω)

is lower semicontinuous because r ≥ 0. However, P π
R = H−1([0, R]), and so it is closed and

compact. Since O(P π
R ) = Oπ

r,R , the set Oπ
r,R is compact as a continuous image of a compact

set, showing the first part of the result.
Now, observe that J ◦ O = H. Consequently, for any M ∈ R+, the set O−1(J−1((M,∞]))

is an open set of P π and so J−1((M,∞]) is open in the topology of Oπ , showing that J is
lower semicontinuous, giving the last part of the result.
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The following hypothesis states that there exists an admissible solution for the LP with finite
cost.

Assumption 4.1. There exists a measure µ ∈ L such that µ(r0) < ∞.

In the next theorem we show that the LP is solvable, leading to the existence of an optimal
randomized stationary policy for the constrained control problem (2.1)–(2.3).

Theorem 4.1. Under Assumptions 2.1 and 4.1, there exists a randomized stationary policy
ϕ∗ ∈ �c such that

inf
γ∈L

γ (r0) = µϕ
∗
(r0) = inf

π∈�c
v(ν, π) = v(ν, ϕ∗).

Proof. According to Assumption 4.1, the constant R0 = µ(r0) is finite. Therefore, we
clearly have

inf
γ∈L

γ (r0) ≤ inf
γ∈⋂q

n=0 Oπ
rn,Rn

γ (r0), (4.1)

since
⋂q
n=0 Oπ

rn,Rn
⊂ L. Let γ be any measure in L satisfying γ (r0) ≤ R0. Applying

Corollary 3.1 with r = ∑q
n=0 rn and R = ∑q

n=0 Rn, it follows that there exists a randomized
stationary policy ϕγ such that

Eϕ
γ

ν

[ ∞∑
t=0

r0(xt , at )

]
= µϕ

γ

(r0) ≤ γ (r0) and Eϕ
γ

ν

[ ∞∑
t=0

rn(xt , at )

]
= µϕ

γ

(rn) ≤ γ (rn)

for all n ∈ Nq . Therefore, it follows that
⋂q
n=0 Oπ

rn,Rn
is a nonempty set and

inf
γ∈L

γ (r0) ≥ inf
γ∈⋂q

n=0 Oπ
rn,Rn

γ (r0). (4.2)

Now, by using the same arguments as in the proof of Lemma 4.1,
⋂q
n=0 Oπ

rn,Rn
is nonempty and

compact, and the mapping J0 : Oπ → R+ given by J0(µ
π) = µπ(r0) is lower semicontinuous.

Consequently, there exists π∗ ∈ � such that µπ
∗ ∈ ⋂q

n=0 Oπ
rn,Rn

and

inf
µ∈⋂q

n=0 Oπ
rn,Rn

µ(r0) = µπ
∗
(r0). (4.3)

We have infπ∈�c v(ν, π) = infµ∈⋂q
n=0 Oπ

rn,Rn
µ(r0) and so, combining (4.1)–(4.3), we obtain

inf
γ∈L

γ (r0) = inf
π∈�c

v(ν, π) = µπ
∗
(r0). (4.4)

Again, by using Corollary 3.1 with r = ∑q
n=0 rn andR = ∑q

n=0 Rn, there exists a randomized
stationary policy ϕ∗ ∈ � such that

Eϕ
∗
ν

[ ∞∑
t=0

r0(xt , at )

]
= µϕ

∗
(r0) ≤ µπ

∗
(r0) and Eϕ

∗
ν

[ ∞∑
t=0

rn(xt , at )

]
= µϕ

∗
(rn) ≤ µπ

∗
(rn)

for all n ∈ Nq , implying that ϕ∗ ∈ �c and, by using (4.4),

inf
γ∈L

γ (r0) = inf
π∈�c

v(ν, π) = µϕ
∗
(r0) = v(ν, ϕ∗),

proving the result.
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Corollary 4.1. The set of randomized stationary policies is a sufficient set of policies for the
optimization problem (2.1)–(2.3).

Proof. This result is a straightforward consequence of Theorem 4.1.

Condition 4.1. (Slater condition.) There exists a control policy π such that, for all n ∈ Nq ,
v(ν, π) < ∞ and vn(ν, π) < Rn.

Clearly, this condition implies Assumptions 3.1 and 4.1. Let us introduce the concept of a
strictly active constraint.

Definition 4.1. For n ∈ Nq , the nth constraint, that is, µ(rn) ≤ Rn, is called strictly active if,
upon excluding this constraint, the minimal value of µ(r0) in the LP becomes strictly smaller.

Before presenting our second main result, we need the following technical result.

Lemma 4.2. Suppose that the Slater condition is satisfied. Then the measure µ∗ ∈ L solves
the LP if and only if there exists a vector of (optimal) Lagrange multipliers λ∗ ∈ R

q
+ such that

q∑
n=1

λ∗
n(µ

∗(rn)− Rn) = 0

and

µ∗(r0)+
q∑
n=1

λ∗
n(µ

∗(rn)− Rn) = min
µ∈{γ∈M(X×A)+ : γA=ν+γQ}

{
µ(r0)+

q∑
n=1

λ∗
n(µ(rn)− Rn)

}
.

Proof. Introduce the set

D = {(µ(r0), . . . , µ(rq)), µ ∈ M(X × A)+, µA = ν + µQ} ∩ R
q+1
+ .

Clearly, this set is convex and the LP can be rewritten as

minimize d0 subject to (d0, . . . , dq) ∈ D and dn − Rn ≤ 0 for all n ∈ Nq . (4.5)

According to the Kuhn–Tucker theorem (see [12, Proposition 4, Chapter 11] or [15, Section 28]),
a vector d∗ ∈ D solves the convex program (4.5) if and only if d∗

n ≤ Rn for all n ∈ Nq and
there is a vector λ∗ ∈ R

q
+ such that

q∑
n=1

λ∗
n(d

∗
n − Rn) = 0

and

d∗
0 +

q∑
n=1

λ∗
n(d

∗
n − Rn) = min

d∈D

{
d0 +

q∑
n=1

λ∗
n(dn − Rn)

}
,

proving the result.

The following theorem states that any optimal solution of the LP on the complement of
a special subset Vr coincides with an optimal occupation measure generated by the induced
randomized stationary policy.
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Theorem 4.2. Suppose that the Slater condition is satisfied and that all the constraints are
strictly active. Let µ∗ be an optimal solution to the LP, and let ϕ∗ ∈ � be the stationary policy
induced by µ∗ and r = ∑q

n=0 rn. Then µ∗ and µϕ
∗

coincide on V cr × A.

Proof. Note that λ∗
n > 0 for any n ∈ Nq . Indeed, if λ∗

n = 0 for some n then, according to
Lemma 4.2, µ∗ is a solution to the LP excluding the nth constraint, so the minimal value of
µ(r0) is equal to µ∗(r0), in contradiction to the fact that all the constraints are active. Now,
define r̃ = r0 + ∑q

n=1 λ
∗
nrn and R̃ = R0 + ∑q

n=1 λ
∗
nRn. Note that Vr = Vr̃ . Indeed, there

exist constants 0 < e1 < e2 < ∞ such that e1̃r < r < e2̃r . Consequently, it is easy to
show that, by definition (see Proposition 3.2), Vr ⊂ Ve1 r̃ and Ve2 r̃ ⊂ Vr . Moreover, we have
Vr̃ = Ve1 r̃ = Ve2 r̃ and so Vr = Vr̃ . Since Vr = Vr̃ , the stationary policy induced by µ∗ and r̃
is given by ϕ∗; see Definition 3.1 and the associated construction.

According to Theorem 3.3, µ∗
A ≥ µ

ϕ∗
A on V cr̃ . Suppose by contradiction that µ∗

A(V
c
r̃ ) >

µ
ϕ∗
A (V

c
r̃ ). Since ϕ∗ is the stationary control policy induced by µ∗ and r̃ , µ∗(dx × da) =

ϕ∗(da | x)µ∗
A(dx) on V cr̃ × A and so the measure µ∗ satisfies, for any � ∈ B(V cr̃ ),

µ∗
A(�) = ν(�)+ µ∗Q(�)

= ν(�)+
∫
V cr̃

∫
A

Q(� | x, a)ϕ∗(da | x)µ∗
A(dx)+

∫
Ṽr×A

Q(� | x, a)µ∗(dx × da).

By the definition of ϕ∗, we have
∫
A
Q(� | x, a)ϕ∗(da | x) = Q(� | x, f ∗(x)) for any x ∈ Vr̃ .

For any� ∈ B(V cr̃ ) and x ∈ Vr̃ , we have, from the proof of Proposition 3.2,Q(� | x, f ∗(x)) =
0 and so ∫

Ṽr

∫
A

Q(� | x, a)ϕ∗(da | x)µϕ∗
A (dx) = 0.

Consequently, the measure µϕ
∗
A can be written as

µ
ϕ∗
A (�) = ν(�)+

∫
V cr̃

∫
A

Q(� | x, a)ϕ∗(da | x)µϕ∗
A (dx)

for any � ∈ B(V cr̃ ). Thus, the measure γ defined by γ (�) = µ∗(�) − µϕ
∗
(�) for any

� ∈ B(V cr̃ ×A) belongs to M(V cr̃ ×A)+ and satisfies γA ≥ γQwith γA(V cr̃ ) > 0. Therefore,
applying Lemma 3.5, we obtain∫

V cr̃

∫
A

r̃(x, a)µ∗(dx × da) >
∫
V cr̃

∫
A

r̃(x, a)µϕ
∗
(dx × da),

but recalling that r̃(x, f ∗(x)) = 0 for any x ∈ Vr̃ , we have∫
Ṽr

∫
A

r̃(x, a)µϕ
∗
(dx × da) =

∫
Ṽr

∫
A

r̃(x, f ∗(x))µϕ
∗
A (dx) = 0,

implying that µ∗(̃r) > µϕ
∗
(̃r). However, for any µ ∈ M(X × A)+, µ(̃r) = µ(r0) +∑q

n=1 λ
∗
nµ(rn) and, according to Lemma 4.2,

µ∗(̃r) = min
µ∈{γ∈M(X×A)+ : γA=ν+γQ}µ(̃r),

leading to a contradiction. This shows that µ∗
A = µ

ϕ∗
A on V cr̃ , and the measures µ∗ and µϕ

∗

coincide on V cr̃ × A owing to Theorem 3.3.
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Remark 4.1. If all the constraints are strictly active then λ∗
n > 0 for all n ∈ Nq ; however,

the opposite does not hold. Theorem 4.2 remains valid if λ∗
n > 0 for all n ∈ Nq and all the

constraints are not strictly active.

5. Examples

In this section we provide examples to illustrate some technical issues and pathologies. In
the first example we show that if the running cost r0 can take negative values then the convex
analytic approach to nonfinite models becomes problematic and the solutions to the LP can
have no meaning.

Example 5.1. We consider an unconstrained (q = 0) and uncontrolled model (A = {a},
dummy action). The state space is given by X = {0, 1, 2, . . .}, and the transition kernel is
defined by Q(0 | 0, a) = 1 and Q(i − 1 | i, a) = 1 for i ≥ 1, and

r0(x, a) =
{

−1 if x = 1,

0 otherwise.

Let ν(1) = 1. Obviously, v(ν, π) = −1 and the occupation measure (for the unique control
policy) is given by µπ(1, a) = 1, µπ(0, a) = +∞, and µπ(x, a) = 0 for x ≥ 2. Thus, µπ is
obviously admissible for the LP. However, for any d ≥ 0, the measure

µ(1, a) = 1 + d, µ(0, a) = +∞, µ(x, a) = d for x > 1

is also admissible, resulting in the value µ(r0) = −(1 + d). Thus, the solution to the LP
corresponds to d = +∞, and the minimal value of µ(r0) equals −∞. Observe that the
measures µ with d > 0 do not correspond to any control policy. In the case r0 ≥ 0, such
measures are ignored as they do not solve the LP.

In the next example we confirm that the requirement in Theorem 4.2, i.e. that all the
constraints are strictly active, is important.

Example 5.2. LetX = {. . . ,−2,−1, 0, 1, 2, . . .}, and let A = {a}, a dummy action, meaning
that the process is in fact not controlled. The transition kernel is given by Q(i + 1 | i, a) = 1
for i < 0, Q(j − 1 | j, a) = 1 for j > 0, and Q(0 | 0, a) = 1. We consider the case with
one constraint (q = 1): r0(j, a) = 1{j=1}, r1(i, a) = 1{i=−1}, R1 = 2. Finally, the initial
distribution is defined by ν(−1) = ν(1) = 1

2 .
By defining r = r0 + r1, we have Vr = {0} since r∗(0) = 0 and r∗(x) = 1 for all x 	= 0.

The (single) control policy π is admissible: v1(ν, π) = 1
2 < 2; V ∗(ν) = 1

2 . The corresponding
occupation measure µπ is as follows:

µπ(i, a) = 0 for all i ≥ 2 and i ≤ −2,

µπ(1, a) = µπ(−1, a) = 1
2 , µπ(0, a) = ∞.

On X × A, this measure obviously solves the LP. Since µπ(r1) = 1
2 < R1 = 2, the Lagrange

multiplier λ∗
1 = 0 and the conditions of Theorem 4.2 are violated. As a result, there exist other

solutions to the LP which do not correspond to any control policies. Indeed, let

µ(i, a) = d > 0 for i ≤ −2, µ(i, a) = 0 for i ≥ 2,

µ(1, a) = 1
2 , µ(−1, a) = d + 1

2 , µ(0, a) = ∞,
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where d > 0 is an arbitrary number. This measure satisfies µ(r0) = 1
2 and µ(r1) = 1

2 + d,
so the constraint µ(r1) ≤ R1 is satisfied if d ≤ 3

2 . However, the induced policy ϕ∗ coincides
with the unique control policy π in this model, and µ 	= µϕ

∗
on V cr × A if d > 0 because

µϕ
∗
(i, a) = 0 for all i ≤ −2 and µϕ

∗
(−1, a) = 1

2 .

The following meaningful example describes the process of selling a property.

Example 5.3. Suppose that a landlord plans to sell the house and, once a month, receives offers
from the random market, taking values in {1, 2, . . . ,M}. Accepting offer i results in a loss of
f (i) units (e.g. a thousand pounds). Such losses are the result of not accepting a perfect offer.
We assume that the offers change according to an (uncontrolled) Markov chain with transition
matrix P = (pij ), i, j = 1, 2, . . . ,M . If a tenant is currently renting the house, the landlord is
not allowed to sell it, but the tenant can leave before the next month with probability pl . If there
is no tenant and the landlord does not accept the current offer, the landlord can wait until the next
month or invite a new tenant to rent the house by the next month with probability pa . In either
case, the landlord must pay a maintenance cost of c ≥ 0, which is not applicable if a tenant is
present. Finally, assume that the expected time for the whole selling period does not exceed
a fixed constant R. The goal is to devise a selling policy that minimizes the total expected
cost under the imposed time constraint. A similar example was solved in [2, Example 10.3.1]
using the dynamic programming approach, but the problem was unconstrained and the authors
considered the finite horizon case.

To formulate the MDP, we introduce the state space

X = {(i, N), (j, Y ), i, j = 1, 2, . . . ,M} ∪ {�},
where component i represents the current offer, and the lettersN and Y respectively correspond
to an untenanted property and a tenanted property. The state � means the house is sold. The
action space is given byA = {s, t, w}, where smeans ‘accept the offer (sell the house)’, t means
‘invite a tenant’, and w means ‘wait’. The transition kernel is given by

Q(� | �, a) ≡ 1, Q(� | (i, l), a) =
{

1 if l = N, a = s,

0 otherwise,

Q((j, k) | (i, l), a) = pij ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

pl if l = Y , k = N ,

1 − pl if l = Y , k = Y ,

pa if l = N , a = t , k = Y ,

1 − pa if l = N , a = t , k = N ,

1 if l = N , a = w, k = N ,

0 otherwise.

The cost and constraint functions are defined by

r0(�, a) = r0((i, Y ), a) = 0,

r0((i, l), a) =
{
c if l = N , a 	= s,

f (i) if l = N , a = s.

r1(x, a) = 1{x 	=�} .
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Table 1.

x
a

(1, N) (2, N) (3, N) (4, N) (5, N) (1, Y ) (2, Y ) (3, Y ) (4, Y ) (5, Y )

s 0 0.219 0.622 0.131 0.028 0 0 0 0 0
t 2.350 1.650 0 0 0 0 0 0 0 0
w 0 0 0 0 0 1.628 2.304 0.830 0.196 0.042

Numerically solving the LP for M = 5 and f (i) = 5 − i, we obtain

P =

⎛⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0

1
4

1
2

1
4 0 0

0 1
4

1
2

1
4 0

0 0 1
4

1
2

1
4

0 0 0 1
2

1
2

⎞⎟⎟⎟⎟⎟⎟⎠ , pl = 2
5 , pa = 1

2 , c = 1
10 .

Suppose that ν((1, N)) = 1, i.e. initially there is no tenant and the first offer is 1. In any case,
for the optimal solution,µ∗

A(�) = ∞ andµ∗
A(x) < ∞ for x 	= �. IfR = 10 thenµ∗(r1) = 10

and µ∗(r0) = 2.432. The optimal policy is

• accept the offer if its value is 3, 4, or 5 and there is no tenant,

• if the value of the offer is 2 and there is no tenant, accept the offer with probability 0.12
or invite a tenant with the complementary probability 0.88,

• invite a tenant if the house is untenanted and the current offer is 1,

• wait otherwise.

The optimal occupation measure is presented in Table 1.
We note that this model, arising from a real-world situation, is not transient: for the policy

‘never accept the offer’, the expected time to the absorbtion at cemetery state � equals +∞.
Of course, this solution is far from optimal, the corresponding occupation measure equals +∞
at most of the state-action pairs, and all the performance functionals equal +∞. The theory
developed in [1] is not applicable here.
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