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PSEUDO-HOMOGENEOUS COORDINATES 
FOR HUGHES PLANES 

PETER MAIER AND MARKUS STROPPEL 

ABSTRACT. Among the projective planes, the class of Hughes planes has received 
much interest, for several good reasons. However, the existing descriptions of these 
planes are somewhat unsatisfactory. We introduce pseudo-homogeneous coordinates 
which at the same time are easy to handle and give insight into the action of the group 
that is generated by all elations of the desarguesian Baer subplane of a Hughes plane. 
The information about the orbit decomposition is then used to give a description in terms 
of coset spaces of this group. Finally, we exhibit a non-closing Desargues configuration 
in terms of coordinates. 

1. Introduction. In [13], D. R. Hughes constructed a class of finite projective 
planes P̂ with the following property: 

(H) There exists a desarguesian Baer subplane (8 of T such that every axial collinea-
tion of <B is induced by an axial collineation of T. 

In particular, these planes are semi-translation planes in the sense of T. G. Ostrom [18], 
compare [6, p. 136]. Among the finite projective planes, there are two classes of proper 
projective planes (in the sense of C. Hering [12]: the group of collineations fixes neither 
a point nor a line); namely, the Figueroa planes (see [10] and the references given there), 
and the Hughes planes (including the desarguesian planes). Moreover, the group that is 
generated by the set of all axial collineations of *B is quite large, compared to the order 
of fP, and it contains a large simple subgroup (generated by the set of all elations). This 
group may be used for characterizations of Hughes planes, see [8], [15], [23], [28]. The 
finite Hughes planes are self-dual, see [21], [19], [20]; therefore, they contain interesting 
ovals and unitals, cf. [22]. Thus there are several reasons for the interest in the class of 
Hughes planes. 

For his construction, D. R. Hughes used a finite nearfield N with the property that 
the kernel K of N coincides with the center of TV, and that dim^TV = 2; recall that the 
distributive law a(x+y) = ax+ay implies that TV is a right vector space over the skewfield 
K. The latter condition is equivalent to the existence of some a e N\K such that N — 
K + aK. Subsequently, the construction was generalized until R Dembowski claimed in 
[7] that one obtains a projective plane whenever starting with a nearfield N of dimension 2 
over its kernel K. However, M. Biliotti [3] observed that, if K is not contained in the center 
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of TV, an additional condition is necessary (and sufficient), namely, that there exists some 
t G N such that TV — K + Kt. This condition follows immediately from the assumption 
that dim^TV = 2 if AT is contained in the center of TV, or if TV is finite. In the general 
case, however, the dimension assumption alone is not sufficient: There exist skewfield 
extensions (TV, K) where the dimension of TV is 2, if TV is considered as a right vector 
space over K, but the dimension is different if TV is considered as a left vector space [4], 
see [5, 11.5] for an overview and [25] for exhaustive results. 

In order to give a relatively easy (and elegant) description of the Hughes planes, and 
to give a lucid proof of the fact that the Hughes planes are projective planes, we intro
duce "pseudo-homogeneous" coordinates over TV, and we study the action of the groups 
GL3K and SL^K, where K is a suitable sub-skewfield of the kernel of TV. Recall that 
the special linear group S L ^ is the (normal) subgroup of GLnK that is generated by 
the set of all transvections. The special linear group may also be described by means 
of J. Dieudonné's determinant function, which takes its values in the commutator factor 
group of the multiplicative group of K, see [2, Ch. IV, §1], [9, Ch. II, §1], [5, 11.2] or 
[16,Kap. 12]. 

Pseudo-homogeneous coordinates provide a convenient general construction which 
exhibits many common features for the class of planes that comprises the planes orig
inally constructed by D. R. Hughes as well as the generalizations to the infinité case 
and to the case where K is not contained in the center of TV. We believe that there is no 
more reason to distinguish between Hughes planes and "generalized Hughes planes", as 
it was done by P. Dembowski [7]. Note that there is still a more general notion of "Hughes 
plane", which just requires condition (H). For special situations (e.g., compact connected 
planes), this point of view has proved to be fruitful, compare [24, Section 86]. However, 
this leads to planes which can no longer be described by coordinates over a nearfield; one 
has to employ rather involved group theoretical arguments in order to show that these 
planes are projective planes. 

The present article developed from a treatment of the Hughes planes in a series of 
lectures by the second author. Among other sources, these lectures drew some inspiration 
from [ 1 ], although this happened in a rather sub-conscious manner. Improvements of both 
the results and the exposition were achieved in the first author's thesis [17]. 

2. Pseudo-homogeneous Coordinates. Recall that a nearfield TV = (TV, +, 0, -, 1) 
satisfies all axioms for a skewfield except that we stipulate only one of the distributive 
laws, namely 

(D) a(x + y) = ax + ay for all a,x,y £ TV. 

The kernel K(N) of TV is formed by all elements h G TV that satisfy 

(Dk) (x +y)k = xk+yk for all x,y £ N. 

We remark that the element — 1 is always contained in K(N), since it is even central in 
TV, cf. [14]. With the induced operations, the subset K(N) forms a skewfield, and TV is a 
right vector space over K(N). See [14] for an account of the theory of nearfields. 
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DEFINITION 2.1. Assume that TV is a nearfield, and that À' is a smb-skewfield of K(N). 
The pair (TV, K) is called H-suited, if the following hold. 

(A) There exists some a G N\K such that N — K+aK. This means that TV, considered 
as a right vector space over K, has dimension 2. 

(B) There exists some t £N\K such that N = K + Kt. 

REMARK 2.2. (1) If (A) and (B) are satisfied, then the representation* = £ + £'f, 
where £, £7 G A", is of course unique for every x G TV. 

(2) Using (D), one easily infers that if condition (B) is valid for some t G N\ K, then 
it is valid for every s G N\K. 

LEMMA 2.3. Condition (B) of 2.1 is equivalent to the following. 
(B7) For every pair (a1', ft) G K2 there exists a pair (a, ft G K2 such that(a + taf)t = 

(3 + 0. 

PROOF. Assume first that (B) holds. Then we find a, (3 G K such that t(3' = -(3 + a/, 
and assertion (B7) holds for the case where a1 = 0. If cd ^ 0, put s: = (f — a7"1ft) - 1 . 
Since s £ N\K, there are 7, 7 ; G AT such that fa7 = 7 + l's, cf. 2.2. For a: = - 7 and 
/?: = 7 / _ 7 Q / - ,

/ 3 /
 We obtain that a + tat = a + 7 + 7 ^ = (/3 - a a / _ 1 f t K and therefore 

(a + ta')(t - a'~x(3f) = (3 - aa'~](3f. Using (D) and (D^-.^), we obtain (B7). 
Now assume that (B7) holds. Considering pairs of the form (0, ft), we infer that tK Ç 

K + Kt. Since AT + Kt is closed with respect to addition, we infer that TV = K + tK Ç 
K + Kt Ç N, whence N = K + Kt. m 

DEFINITION 2.4. Let TV be a nearfield, let AT be a sub-skewfield of K(N), and fix an 
element t e N\K.WQ consider the action u ofGL3K on TV3 \ {0} that is obtained from 
the restriction of the usual linear action of GL3K on TV3 (from the right), and the action 
of the multiplicative group 7VX on TV3 \ {0} via ((x, >\ z),f) 1—> (f~lx,f~]y,f~lz). The 
orbit of (x, y, z) under the latter action will be denoted by [x, y, z\. For every matrix 

G K3x2 \ {0}, 

define 

M == 
j (X\ 

Oil 

[a3 

A 

ft] 
ft 
ft J 

/<*i ft 
= «2 ft 

\<*3 ft 

"•= {[*1,*2, := {[xi,x2,x3] J E/xJ/zCfy + ( E , ^ f t ) f = 0} 
IL or3 ft J] 

We write 

P:= {[x,7,z]|(jc,^,z)G7V3\{0}} a n d £ : = { ^ ] | ^ G K3x2 \ {0} }, 

andset//(W,/Q:=(P, X). 
Our aim is to show that for every H-suited pair (TV, K) the incidence structure H(N, K) 

is a projective plane with the property (H). 
As an immediate consequence of the definitions, we observe the following. 
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Tot] 

a2 

1^3 

0 i ] 
ft 
ft J 

REMARK 2.5. The action u of r := GL^K is in fact an action by collineations of 
//(TV, K). The application of M G GL3/: to a line is given by plf := [[M"1^ J. 

We shall mainly be interested in the restriction of a; to the subgroup A := SL3AT. 

NOTATION 2.6. Forx = (jti,x2,x3) G N2, and a = (aj, a2, a3\ f3 = 08i5/82,/33) £ 
A^3, we use the simplified notation 

3 

XOL=YJ
 XVaV a î l d [a> f3} = 

In particular, we have [[a, /3J] = {[x] | cca + (x/3)/ = 0 }. By (ej, e2, e3) we denote the 

standard basis ((1, 0, 0), (0, 1, 0), (0, 0, 1)) ofK3. 
Note that, for every/ G N, we have that (fx)a = f(xa) by (D). Therefore, the 

incidence relation [x] G fia, (3 J does not depend on the representative x. Note also that, 
in general, the equation {XOL)K = X(OLK) is valid only for K G (̂AO-

The following observation is due to M. Biliotti [3]. 

PROPOSITION 2.7. Assume that N is a nearfield, and that K is a sub-skewfieldofK(N) 
such that assertion (A) of 2.1 is valid. If H(N, K) is a projective plane, then condition 
(B) of 2.1 is also satisfied; i.e., (N, K) is an H-suitedpair. 

PROOF. Assume that //(TV, AT) is a projective plane. As in the Proof of 2.3, it suffices 
to show that n G K + Kt for arbitrary 7 G Kx. We consider the points [1, t, 0] and 
[0, w91] together with their joining line [[a, /3J1. 
(i) If ^2 = 0, we obtain the equations 

<x\ + ta2 + /?i t = 0 and /7a2 + a3 + /?3f = 0. 

From f3\ — 0 we could deduce that ot\ = 0 = a2, and that a3 = /33 = 0, contradicting 
the fact that (a , /3) 7̂  (0, 0). Similarly, we infer that a2 7̂  0. We multiply the first of the 
equations by fof3\x from the left and subtract this from the second equation. This leads 
to 

H = ( / W ^ - a3)a2-1 +j33/?r1' ZK + Kt. 

(ii) If f32 7^0, we have 

(1) ax+tcc2 + (J3\ + f/J2)* = 0 and Ha2 + a3 + (ryfc + A V = 0. 

Putting A := /Ç1 a2, /i := a\ — /3\f32
la2 and v := a3 — ft/^1 a2, we obtain 

(2) 08, + f/32)A + /x = ^ + t(32)/32
la2 + a, - ft/JJ1^ = te2 + «i 

and 

(3) (H/32 + ft)A + F = (H/32 + ftW1 a2 + a3 - A/Ç1 a2 = Ha2 + a3. 

Substituting (2) and (3) in (1) and using (D), we infer 

0 = 081+ 02)(X + 0 + [i and 0 = (ry/?2 + ft)(A + 0 +1/. 
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This gives two expressions for À + t, and we obtain 

( î+zftrV-inft+ftr1^ 
which leads to 

M",(/3i+^2) = ^1 (n/32 + ft); 

recall that /x^O since (32 ̂  0. Now n = (y^~l/3\ - ft)/^] + v\Txt G K + Kt. m 
The next Lemma justifies our seemingly arbitrary choice of/, and shows that our line 

set contains the line set of the Hughes planes, as defined in [7]. Of course, this means 
that the definitions coincide, if//(TV, K) is a projective plane. 

LEMMA 2.8. If(N,K) is an H-suited pair, then the set L of lines is independent of 
the choice oft£N\K. 

PROOF. Let s be an element of N \ K. According to (B), there are a, a' G K such 
that s — a + a't. Now one computes easily that {[x] G P\xa + (x/3)s = 0} = 
(a + faPo'l 

Another easy computation yields the following. 

LEMMA 2.9. If(J3, l)eK2\ {0} and a G K3 \ {0}, then [a/3, alj = [a , 0] . 

The sets P° := {[(] | £ G K3 \ {0} } and L° := {[a , Oj | a € £ 3 \ {0} } of inner 
points and inner lines form an u-invariant substructure H°(N, K) of H(N, K). For every 
line / G L, we shall write /° := I DP0. Obviously, we have: 

THEOREM 2.10. The incidence structure H°(N, K) is a projective plane; it is iso
morphic to the desarguesian plane over K, and the action ofk is equivalent to the usual 
action. In particular, this action is twofold transitive both on P° and on L°. 

LEMMA 2.11. The sets P\P° and L\L° of outer points and lines are orbits under A. 

PROOF. If [x] is an outer point, we may assume that x\ = 1, and that x2 G N\K. 
We write x^ = £;i + t£f, where £/x, £'x G K. Then the matrix 

/ i 6 6 \ 
M:=\0 £ £ 

\ 0 0 i'2~
x I 

belongs to A, and [x] = [(1, /, 0)M] belongs to the A-orbit of the point [\,t, 0]. 
If Ll J is an outer line, then the columns of A are linearly independent by 2.9. There

fore, we find a matrix M € Asuchthat [JAf^'^J = [[e2, — e;]], and find that Ll]] belongs 

to the A-orbit of |e2, — e\ J. • 

NOTATION 2.12. In the sequel, we shall use the following points and lines: 

p:=[e(\, /> ' :=[e3] , q:=[l,t,0] 

g : = [ e 3 , 0 j , g ' : = [ e 2 , 0 j , h := [e2, - e, J . 

Note that /?, / / , g, g7 are inner elements, while q and h are outer. We remark that g = 
{[x] G P\x3 = 0},g7 = {[a?] G P |x 2 = 0} , and h = {[1, f,/] | / GiV}U {//}. In par
ticular, we have that/?, q G g,/?,/?7 G g7, and//, g G /z. 
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LEMMA 2.13. Every outer point is incident with exactly one of the inner lines. Du
ally every outer line I is incident with exactly one of the inner points. 

PROOF. By 2.11, it suffices to consider the point q and the line h. Assume that m = 
| a , Oj is an inner line through q. From condition (A) we infer that a\ = a2 = 0, and 
m = g.If£ e K3 describes a point [£] G h, then £2 — £11 — 0, whence £1 =£2 = 0 and 

LEMMA 2.14. If I and m are outer lines such that l Ç m, then I = m. 

PROOF. We may assume that m = h. By 2.13, we have that/?7 G /. If / = j a , /?]], 
this implies that #3 + fat = 0, whence a^ = fa = 0. Since / Ç //, every outer point of/ 
is of the form [1, / , / ] . This yields that a\ + ta2 + (J3\ + f/32)f = 0, and that I D h. m 

In order to show that joining lines and intersection points exist and are unique, we 
shall use the following Lemma, which is of course of its own interest as well. 

LEMMA 2.15. The stabilizer Aq acts transitively on P° \ g. Dually, the stabilizer A/, 
acts transitively on L° \Lp>. 

PROOF. Every point in P° \ g is of the form [£], and every line / G L° \Lp> has the 
form [[£, O], where £ = (£1, £2, 1) € K\ The group 

O : = | f o 1 o ) k , , É 2 e * l 

acts transitively on P° \ g, and the transposed group O r < Ah acts transitively on 
L°\£y. 

LEMMA 2.16. The stabilizer Ap acts transitively both on L° and on Lp\ L°. Dually, 
the stabilizer Ag acts transitively both on g° and on g\g°. 

PROOF. Transitivity of Ap on L°p and of Ag on g° is obvious from 2.10. 

For | a , / 3 | G Lp\ £°, we have that a\ — f3\ = 0, and that a and (3 are linearly 
independent, see 2.9. Thus there exists a matrix A' G GL2K such that the matrix A := 
/ 7 0 0 \ A 

0 , I satisfies [[a, /3J] = §e2, e3 J, and we may choose 7 G AT such that ,4 G 

\o / 
SL3# = A. 

If [x] is an outer point of g, then we find a representation [x] = [1, £ + /£', 0], where 
/1 ç 0 \ 

£, £' e X and £' 7̂  0. Then the matrix 0 £' 0 belongs to Ag, and maps q to 

\o 0 r'/ 
[X]. 

LEMMA 2.17. The set h\{p'} contains a set of representatives for the orbits under 
Aq in P \ (P° Ug). Dually the set Lq \ {g} contains a set of representatives for the orbits 
under A/, in L \ (L° U i y )• 

PROOF. Every point [x] G P \ (P° U g) has a representation [#] = 

[£l +1£i, 6 + *£2,1 ] ' w h e r e &> £/ € * a n d (€ I, £2) ^ (°> °)- According to (B), there exist 

https://doi.org/10.4153/CMB-1996-040-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-040-9


336 PETER MAIER AND MARKUS STROPPEL 

fol+^i)"1]^-

elements 771, 7/2 G K such that (7/1 + t£\)t = 7/2 + /£2- This implies that 7/1 + t£\ 7̂  0. 
/ 1 0 0 \ 

Now A = I 0 1 0 G A, gives [JC]"1 = [7/1 + *£',, ?/2 + ^ 2 , 1] = [1, /, 
?7i-£i r / 2 - 6 1/ 

.rh 

For every line [ a , / 3 ] e I \ ( I ° U £p/) we have that (a3, /33) ^ (0, 0). We discuss 
the two cases: 

/ 1 0 n 
(i) If ft = 0, then crç jt 0, and we may achieve by matrices of the form 0 1 i/ 

\ 0 0 1/ 
in A/, that a\ = a2 = 0. We find 1,1' <E K such that 7 + n' = (ft + 02)taJl, 

(\ 0 7 \ 
and put ,4 := 0 1 7' G AA. Then [ a , pf 

\ 0 0 1 / 
(ii) If ft 7̂  0, we may assume that ft = ft = 0. We find 7, l' <E K such that 

/ l 0 7 \ 
7 + ry' = (ai+to2)(a3+/330~ l.Again,^ = 0 1 7' G AA, and | a , ^ J 1 = 

\ 0 0 1 / 

"7 «3 

7^3 
a 3 

01 1 
ft 
0 J 

e ^ . 

ari - 7 a 3 
a2 - 7'a3 

a3 

-7ft 1 
-7'ft 

ft J 
eL„. 

THEOREM 2.18. Assume that the pair (N, K) is H-suited. Then H(N, K) is a projective 
plane. 

PROOF. The existence of joining lines and intersection points for pairs of outer points 
resp. outer lines is a consequence of 2.11 and 2.17. If one of the elements in question is 
inner, we obtain the existence from 2.10 or 2.15. Since every partial linear space is also 
a dual partial linear space, it suffices to show uniqueness of joining lines. 

Let a and x be two points. If both a and* are inner, then every joining line is inner by 
2.13, and unique by 2.10. So assume that JC is an outer point. 

If a is inner, then either there is an outer joining line, and we may assume by 2.11 and 
2.15 that (#, x) = (p\ q), or there is an inner joining line, and we may assume by 2.10 
that a—p, and then by 2.16 that x G g. If a is an outer point, we infer from 2.13 that for 
the problem of uniqueness we need only consider the case where there exists an outer 
joining line. In this case, we may assume that a — q and x G h \ {//, q}. Thus it remains 
to consider the following three cases. 

(i) Let / = [fa, (3Tj be a line throughpf and q. Then / is an outer line in view of 2.13. 
Sincep' G /, we have that a3 = /33 = 0. Now q G / yields that h Ç /, and h — / by 2.14. 

(ii) L e t / = | a , / 3 | be a line joining pandx G g \ P ° . Then ai = [3\ = 0. Since x is 
an outer point, we have that x - [f, 1, 0], where/ G N\K. This leads to a2 = /32 = 0, 
and / = g by 2.9 and 2.13. 

(iii) Finally, let / = [Ta, / 3 | be a line through q and x G h \ {//, q}. Then / is an outer 
line. If / 7̂  /z, then the unique inner point r of / is different from// by step (i). From (ii) 
we know that r is not contained in g. Therefore, r — [p\, p2, 1] for suitable pi, P2 £ K-
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is a line through r and q, and m = / by step (ii). Writing 
\L-P2 p] 

x — [M>/]> where/€ J V \ { 0 } , we obtain the equation//^ = t+(fp\ — \)t. If pi ^ 0, we 
sets :—fp\ — 1 and obtain s{p\l p2 —t) = t — pj] p2, which yields^ = —1 andpi = 0,a 
contradiction. If pi = 0, it follows immediately that p2 — 0. But this means that r = pf, 
again a contradiction. • 

3. Orbit Decompositions. Throughout this section, let (N, K) be an H-suited pair, 
and let t be an element of TV \ K. We also retain the names p,p', q, g, h for special points 
and lines in the projective plane H(N, K) as in 2.12. 

NOTATION 3.1. For every a G N, the mapping \a:x \-+ ax is an endomorphism 
of N, considered as a right vector space over K. With respect to the basis ( 1, t), this 
endomorphism is described by the matrix 

a j3' 

where a, a', /3, j3' G K are defined by a = a + ta' and a/ = /3 + t/3'. Consequently, 
La G GL2K if, and only if, a ^ 0. 

LEMMA 3.2. The stabilizer ofq in Y is 
0 

La = 

r* = 
Dually, we have 

La 

0 0 

0 

7 

7 

fletf\{0},^/GA:,7G/:\{0} 

a € N\{0}, & ? £ K,l e K\{0} 

PROOF. Quite obviously, the given sets are contained in Yq resp. Yh\ recall that h = 
{[U t,f\ | / G TV} U {/?'}. Conversely, assume that g is fixed by a matrix M G T. Then M /̂  ° 
fixes the unique inner line g through q, and we obtain that M is a block matrix 0 

\C 6 
where S G K \ {0}, C G £2 , and A G GL2/L such that (1, t)A = a(l, /) for some 
a G N \ {0}. This implies that ,4 = La. 

Since any matrix in Y h fixes the unique inner point p' of h, we obtain that such a matrix 

is of the form n . , and that A = La for some a e N\ {0}, as before. • 

LEMMA 3.3. The stabilizer Aq acts transitively both on Lq \ {g} and on g°. Dually, 
the stabilizer A/> acts transitively both on h\{pf} and on LZ. 

PROOF, (i) Let / be a line in Lq \ {g}, and let x be the unique inner point on /. Since 
x does not belong to g, we may write x = [£i, £2, 1] for suitable £i, £2 G K. Thus 

/ l 0 0 \ 
A = 0 1 0 G Aq maps /?' to x and, therefore, /) to /. 

U i 6 1 / 
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Ifx is a point of g°, thenx = [£i, £2, 0] for some (£1, £2) G ̂ 2 \ {0}. According to 
2.3, there exist 7/1, ?/2 G Â̂  such that (7/1 +^ , ) r = ?/2 + ^2- Putting z = 771 +f£i, we find 

( L. ° \ 
some £ G A" such that " 0 G A. Obviously, this matrix fixes q and maps [e2] 

\o 0 a 
tox. 
(ii) Ifx is a point on A \ {//}, then we find £, £' G K such that x == [1, t, £ + f£']. The 

/ 1 0 c \ 
matrix 0 1 £' G A/, maps g to x. 

\ 0 0 1 / 
Finally, let / be a line in L°pl. Then / = [ a , O] for a = (a, a7, 0) r G £ 3 \ {0}. Putting / L °\ 

a = a + /a7, we find 7 G K such that a 0 G A. Obviously, this matrix fixes h 
\ 0 0 7 / 

and maps /to Jei, 0 | . • 
Combining 3.3 with 2.11 and 2.13, we obtain the following. 

PROPOSITION 3.4. Each of the following sets is a A-orbit: 

{(x, y)\x G P°, y G P\P°, x V y G L° } , 

{(/, m) I / G Z,°, m G L \ L°, l A m G P° } , 

{(x,y)\xeP°,yeP\P0,xVy£L\L°}, 

{(l, m)\l e L°, m e L\ L°, I Am £ P\P°} . 

LEMMA 3.5. The stabilizer Ap,g acts transitively both on Lp\ L° and on g\ P°. 

PROOF, (i) Let / be a line in Lp \ L°. Then / meets m — | e 1, 0 II in an outer point x, 
since x ^ p and / is an outer line. It follows that x = [0, £ + f£', 1] for suitable £, £' G AT 

/£'-' 0 o\ 
such that £' ^ 0. The matrix ^ = 0 £' 0 e Apg maps the point [0, /, 1] to x. 

\ o c 1/ 
Therefore, the line / is mapped by ^ to the line that joins/? and [0, ?, 1]. 

Ii' o o \ 
(ii) Evervpointx G g \P° is of the fornix = [£ + *£', 1,0]. The matrix £ 1 0 G 

\o o r1 / 
APïg maps the point [/, 1, 0] to x. • 

The following assertion is, in general, no longer true if we replace Y by A; consider, 
e.g., the pair (N, K) = (Q(f), Q) for t = y/2. 

LEMMA 3.6. The stabilizer Yq^ acts transitively on Lq \{g, h\ and on h\ {p1', q). 
PROOF, (i) Let / be a line in Lq \ {g, h}, and let x be the unique inner point of /. 

Thenx G P° \(gU{//}), whencex = [£i, £2, 1] for some (£i, £2) G K2 \ {0}. According 
to 2.3, we find ?/i, ?/? G /C such that (771 + f£i)f = 7/2 + ^2- Putting z = 7/1 + ^ j , w e find 

( L. \ 
that A = [ * 0 G L/ , maps [0, 1, 1 ] to x. Since A fixes q, we obtain that / is the 

\ 0 0 1 / 
image of the line that joins q and [0, 1, 1]. 
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(ii) Every point in h \ {//, q} is of the form [1, t, f] for some/ £ N\ {0}. This point is 

mapped to [1, /, 1] by the matrix -f 0 
\ 0 0 1 

Combining 3.6 and 2.11, we obtain the following. 

PROPOSITION 3.7. The following sets are Y-orbits: 

{(x,y)\x,y£P\P°,x^y,xVyeL\L°}, 

{(l,m)\l,meL\L°,l^m,lAmeP\P°}. 

THEOREM 3.8: ORBITS OF PAIRS OF POINTS OR LINES. Assume that the pair (N, K) 
is H-suited, and let Y — GL^K, A = SL3/C. Then the following hold in the Hughes plane 
H(N, K). 

(1) Ifp is an inner point, then the sets 

{ph P°\{pl {J{I\P°\IÏL;), UVXPlieLpXL*} 

are the point orbits under Ap. 
(2) If q is an outer point, and g is the unique inner line through q, then the sets 

{q}, g\(P°U{q}), P°\g, P\(P°Ug) 

form a Y q-invariant partition of P. The set P \ (P° Ug) is a Yq-orbit, the set P°\g 
is even a Aq-orbit. 

(1*) If g is an inner line, then the sets 

{g}, L°\{g}, {J{Ls\L°\seg°}, {J{Ls\L°\stg\P°} 

are the line orbits under Ag. 
(2*) If h is an outer line, andp' is the unique inner point on h, then the sets 

{A}, X^\(£°U{A}), L°\Lp,9 L\(L°UL^) 

form a Y ̂ -invariant partition ofL. The set L \ (L° U i y ) is a Yh-orbit, the set 
L° \ Lpi is even a A^-orbit. 

It is easy to find examples where Yq is not transitive on the set g \ (P° U {#}), and Y^ 
is not transitive on Lp> \ (L° U {/*}); e.g., consider the H-suited pair (C, IR), and put t = /. 

THEOREM 3.9: ORBITS OF FLAGS AND ANTI-FLAGS. Assume that the pair (N, K) is 
H-suited, and let Y — GL^K, A — S L ^ . Then the following hold in the Hughes plane 
H(N, K). 

(1) Ifp is an inner point, then the sets 

L°p, Lp\L°, L°\Lp, L\(L°ULp) 
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are the line orbits under Ap. 
(2) Ifq is an outer point, then the sets 

L°r Lq\L\ L°\Lq, L\(L°ULq) 

form a Y^-invariant partition of L. The sets L°, Lq\L°, and L°\Lq areAq-orbits. 
The set L \ (L° U Lq) is never an orbit under Yq. 

(1*) If g is an inner line, then the sets 

g°, g\P°, P°\g, P\(P°Ug) 

are the point orbits under Ag. 
(2*) If h is an outer line, then the sets 

h\ h\P\ P°\h, P\(P°Uh) 

form a Y ̂ -invariant partition of P. The sets h°, h \ P°, and P° \ h are A^-orbits. 
The set P \ (P° U h) is never an orbit under Y^. 

PROOF, (i) Assume first that (x, l) G P x L is a flag, i.e.,x G /. If x is an inner point, 
we may assume that x — /?, and obtain from 3.8(1) that Ap has the orbits L°p and Lp\L° 
in Lp. If x is an outer point, then we may assume that x — q. Since every element of 
Lq \ {g} is incident with exactly one point in P° \ g, we obtain from 3.8 (2) that the 
A^-orbits in Lq are Lq \ {g} and {g}. 
(ii) Now we consider the case where (x, I) is not a flag. Assume first that* is inner. From 
2.10, we infer that L° \ Lp is an orbit under A .̂ If / is an outer line, we may assume 
that I — h. Thenx and/?7 are joined by a unique inner line, and we may assume by 3.3 
that this line is |e2, Oj. This implies thatx is of the form [1, 0, £] for some £ G AT, and 
x G/A, see 3.2. 

In order to prove assertions (1 ) and (2), it remains to consider the case where x is an 
outer point and / G L°\LX. In this case, we may assume thatx = q. According to 3.3, we 

u ° °" 
may assume that / meets g in the point/?. Then / is of the form / = A2 0 

A3 0 
where A2 

0 \ 
A3 G K and A2 ^ 0. Therefore, we find an element S G K such that A — ! /A2 0 ) 

\ A 3 0 6/ 
belongs to A. Now A G Aq, andlA = [[ej, Oj. 
(iii) The dual assertions (1*) and (2*) follow by the dual arguments, using the dual state
ments 3.8 (1*), (2*). • 

Even the group Y does not act transitively on the set 

{(x, /) I x G P \ P°, / G L \ ( L° U A- )} 

of antiflags consisting of outer elements. In fact, transitivity on this set would imply that 
Fq acts transitively on the set X of intersection points of g with lines from L \ (L° U Lq). 
This is impossible, since X contains both inner and outer points. Of course, the dual 
statement holds as well. 
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COROLLARY 3.10. The group A acts transitively on the following sets: 
( 1 ) Flags consisting of inner elements. 
(2) Flags consisting of outer elements. 
(3) Flags consisting of one inner and one outer element. 
(4) Anti-flags consisting of inner elements. 
(5) Anti-flags consisting of one inner and one outer element. 

Even the group T is not transitive on the set of anti-flags consisting of outer elements. 

4. Group-theoretical Description. In this section, we comment on the possibil
ity to reconstruct a Hughes plane H(N, K) from the action of the group S L ^ . Group-
theoretical descriptions of the Hughes planes were used in several papers in order to 
characterize certain subclasses of the class of Hughes planes; e.g., see [15], [8], [23], 
[28]. 

Let (A, B, I) be an incidence structure, and let a: G —> Aut(A,B,I) be an action of 
a group G on (A, B, I). We recall from [27] that the geometry (G, (A, B, /)) is called 
sketched, if there exist sets of representatives RA, RB for the G-orbits in A resp. B such 
that RA x RB forms a set of representatives for the G-orbits in /. (If one of the sets RA, RB 
has exactly one element, this is equivalent to conditions (R 1) and (R 2) in [26]). It has 
been shown in [27] that sketched geometries can be reconstructed from the group action 
as unions of coset spaces, if only the residues of different elements in RA and RB are 
different. For partial linear spaces (in particular, for subgeometries of projective planes), 
this latter condition is always satisfied. In the reconstructed geometry (A', B'\ elements 
a G A' and b E # ' are incident if, and only if, they have non-empty intersection. 

From 3.9, we infer the following. 

THEOREM 4.1. Assume that the pair (N, K) is H-suited, and let H(N, K) = (P, L) 
be the corresponding Hughes plane, with the action ofA = SL^K as in 2.5. Then the 
subgeometries (P°, L°), (P \ P°, L) and (P, L\L°) are sketched; in the notation of 2.12, 
suitable systems of orbit representatives are (\p), {g}), ({q}, {g, h})and({pf,q},{h}), 
respectively. Consequently, we have isomorphisms (P°9L°) = (—-, j-)> (F\P°, L) = 
(t>iU-th)and(P,L\L°)^(±U±±). 

According to [27, 2.7], it is pointless to try to extend the description in 4.1 to the 
whole plane H(N, K). In fact, this would imply that there exist sets of representatives Rp 
and R£ such that Rp x RL consists of flags. Since A is neither transitive on P nor on L, 
this would yield a pair of points with more than one joining line. However, there is the 
following description (generalized from a method used by H. Hâhl in [11,3.15], see [24, 
Section 86]). 

DEFINITION 4.2. Assume that the pair (N, K) is H-suited, and let p, p', q, g, h as 
/ 0 0 IX 

in 2.12. We write i = 0 —1 0 G A; note that/?' = p'. Using the corresponding 
\ 1 0 0 / 
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stabilizers in A, we define an incidence structure (f\ L) as follows. 

Ap A, 

- A A - A A 
P= —U —, £ = — U — . 

A p A q A g A h 

"Inner" elements Apè and Agl are incident if, and only if, Apb D Ag7 7̂  0. 
"Outer" elements Aqè and A/,7 are incident if, and only if, Aqb P) Ay,7 7̂  0. 
Elements Ag<5 and Aql are incident if, and only if, Aq6 D Ag7 ^ 0. 
Elements Ap5 and A/,7 are incident if, and only if, Ap8 = ApO, (i.e.,pb^ = / / ) . 

Note that, in order to define incidence of an inner point and an outer line, we have 
used two cosets of Ap rather than a coset of Ap and a coset of A/,. We could have defined 
incidence of outer points and inner lines similarly. However, we need this deviation from 
the method used in 4.1 only in one of the cases. 

THEOREM 4.3. Assume that the pair (TV, K) is H-suited. Then the incidence structures 
H(N, K) and (P, L) are isomorphic via the mapping ir: P U L —> P U L that is given by 
^ 1—» Axbforx G {p, q, g, h}. 

PROOF. We note first that the mapping ir is a bijection; in fact we need only to 
verify that the stabilizers Ap, Ag, Â  and A/, are all different. This is clear from 2.10 
and 3.2. It remains to show that 7r preserves and reflects incidence. From 4.1, we in
fer that 7T induces isomorphisms from (P°, L°) onto (P°, L°) and from (P \ P°9 L) onto 
(P\/>°, £). Therefore, it remains to show that// G h1 <=^ pb^ = p'. This equivalence 
is a consequence of the fact that/?7 is the unique inner point of h. m 

Theorem 4.3 will be used in a forthcoming paper for a study of dualities. 

REMARK 4.4. In order to perform the description of a Hughes plane as in 4.2, it is 
not necessary to use exactly those representatives that were chosen. In fact, one only has 
to choose/?, q, g, h and 1 such that the following hold. 

(1) p and g are inner elements, q and h are outer elements, and 1 is an element of A. 
(2) (/?, g), (q, g), (g, h) and (//, h) are incident pairs. 

5. A non-closing Desargues Configuration. Using pseudo-homogeneous coordi
nates, we shall exhibit in this section a non-closing Desargues configuration for every 
Hughes plane H(N, K) defined by a H-suited pair (N, K) where N is not a skewfield. 
Thus we give a proof for the fact that these Hughes planes are non-desarguesian planes; 
a fact which was hitherto obtained by somewhat tedious arguments with ternary fields. In 
fact, the ternary field for H(N, K) with respect to an inner quadrangle has been completely 
determined in [17], the derived binary operations of addition and multiplication coincide 
with those of the nearfield N, but the ternary operation is not linear, However, we believe 
that the affine description via ternary fields does not fit well with proper projective planes 
(in the sense of C. Hering [12]). 

We start with a lemma that says that non-distributivity is apparent in rather nice cases 
already. 
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LEMMA 5.1. If N is a proper nearfield, then there exist elements w, s E N \ K(N) 
such that ( 1 + w)s ^ s + ws. 

PROOF. Since N is a proper nearfield, there exist elements w, v G TV \ {0} and s G 
N \ K(N) such that (u + v)s ^ us + vs, whence (1 + u~] v)s ^ s + u~] vs. Assume that 
(1 + w)s = s + ws for every w e N\ K(N). Then uo := u~xv G K(N), and 

( 1 + UJ + s)s — s + (LU + s)s = s + ( 1 + SLO~ ' )a;.s = s + a;s + s2 

in contradiction to 

(1 + CJ + 4 ? = (1 +o;)(l +(1 +LO)-]S)S = (\ +u)s + s2 

Therefore, there exists w G N \ K(N) such that (1 + w)s ^ s + ws. m 
The following is verified by a straightforward computation. 

LEMMA 5.2. Let (N, K) be H-suited. For every f G N\K, we define Tf, rj- G K by 
the equation rf +fr'f = ( 1 + /)" '. Thenfrj- + r/- - 1 + (/V/ + rf)t = 0. 

Let (N, K) be H-suited, and assume that w, 5 are elements of N\K such that (1 +w)s ^ 
s+ws. Since / may be chosen arbitrarily in N\K for the definition of H(N, K), see 2.8, we 
may assume that s = ( 1 + i)~]. We define a, /? G AT by the equation a + w/3 = s + ws, and 
setfl := s — a,b := (s —/3)"1. Then we infer that wb~] = ws — w(3 = ws — (ws+s — a) = 
—a, whence ab — —w. Therefore, we have that (1 — ab)s ^ s — abs. Finally, we put 
c := (\+w)s — a — w(3 ^ 0. We claim that the triangles (p\,pi,pi) and (q\, q2, #3) given 
by 

/>,=[6,1,1], p2 = [0,1,1], p3 = [6,0,1]; 
01 = [a/?, a, 1], q2 = [0,0, 1], 03 = [afe,c, 1] 

are in perspective from the line Je3, 0 J, but not in perspective from any point. In order 
to show this, we simply state descriptions for the lines g^ := p, V pj and hk — qi V qj, 
their intersection points s* = gk A /** and the lines /, = /?, A #,; here {/j, &} = {1,2,3}. 
Although it was quite tedious to find these descriptions, the verification is very easy; one 
just has to check incidence (using 5.2). 

g\ 1 - n -n 
n-

1-/3 
1 

a- 1 
s\ 

n 
gi 

1 
a 

r'b 

0 
-

1 

r'b 

0 
l n 

<a 
0 

Tab\ 

' g?> = 

il 

' ^ 1 

f[ 0 

1 

IL-i 
0 

< 
Ta -

01 
0 

oj 
; 

0 ] 
<\ 

I 7 a 1 

[6,-1,0], *2 

0 

= [0,1,0], J3 = [1,0,0]; 

0 
n 
0 

/2 
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Quite obviously, the points sk belong to the line | e 3 , Oj. The intersection point of l\ 

and h is z = [0, 0, 1]. The line ffe2, Oj joins z and /?3, but does not pass through q^. 

Therefore, the triangles (p\,p2,p?>) and {q\,qi,q^) are not in perspective from any point. 

We have proved 

THEOREM 5.3. If(N, K) is H-suited, and ifN is a proper nearfield, then H(N, K) is 
a non-desarguesian projective plane. 

Of course, H(N, K) is just a description of the projective plane over N, if (N, K) is 
H-suited and TV is a skewfield. However, if TV is a skewfield, but (TV, K) is not H-suited, 
then H(N, K) is the projective plane over N, with some lines missing, cf. 2.7. 
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