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Abstract
Continental shelf waves are examined for side band instability. It is shown
that a modulated shelf wave is described by a nonlinear Schrodinger equation,
from which the stability criterion is derived. Long shelf waves are stable to
side band modulations, but as the wavenumber is increased there are regions
of instability (in wavenumber space). A change of stability occurs at each
long wave resonance, defined by the condition that the group velocity of the
shelf wave equals a long wave speed. Equations describing the long wave
resonance are derived.

1. Introduction
It has recently been established that the passage of large scale meteorological
disturbances across a coastline will generate continental shelf waves (for example,
Gill and Schumann [4]). The dispersion in these waves is due to topography. The
simplest theories neglect this dispersion and use a long wavelength approximation;
the results are generally consistent with observations (Gill and Schumann [4];
Kundu, Allen and Smith, [11]). The nonlinear effects in this long wavelength
approximation have been described by Smith [14] and Grimshaw [6]. Nevertheless,
there have been some observations of shelf waves at shorter wavelengths (for
example, Cartwright [3]). The purpose of this paper is to examine the stability of
shelf waves due to nonlinear effects.

We let L be a length scale (typical of the shelf width),/"1 be a time scale where/
is the Coriolis parameter, and scale velocities by/L and the wave height by /x.2/z0.
Here h0 is the depth of the ocean beyond the shelf and /x2 =f2L?(gh0)-

1 is the
divergence parameter. Then the nonlinear shallow water equations are

(1.1)

Here x, y are the coordinates normal to and along the coast respectively, t is the
time, u, v are the x- and j-components of velocity respectively and £ is the wave
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14 R. Grimshaw [2]

height, h is the undisturbed depth, which we shall assume is a function of x only;
we choose the origin so that h(0) = 0 and we shall assume that h-> 1 as x^-co (see
Fig. 1). For simplicity we shall assume that |hx\ , 11 -h\ are O(exp(—Kx)) as x-»oo,

Fig. 1. A description of the coordinate system.

where K is a constant. We shall restrict attention to monotonic profiles so that
hx^0 for all x>0 and hx(fl) £ 0. The boundary conditions associated with (1.1)
are that hu->0 as x->0, and as x->oo. Equations (1.1) have been written with the
linear terms on the left-hand side, and the nonlinear terms on the right-hand side.
If we eliminate u, v from the left-hand side, we find that

L£ = M,
where L is the linear operator

0 O \ 10 \ O O I O \ cr O

' 8x' 8y) \dt2 / 8t 8t8x\ 8x) StdyP X8y'

and M is the nonlinear expression

(1.2)

(1.3)

To obtain the linearized wave equation we replace M by zero in (1.2); then we
seek a solution of the form

£ = aA<f>(x) exp(ii<y—icot), (1.5)

where A is a constant and a is a small parameter. It follows that

- a?) + K*h + c-1 h J <f>, '
where

c = COK~1.

(1.6)
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[3] The stability of continental shelf waves 15

It may be shown that if hJO)) ̂  0, then the boundary conditions for (1.6) are <£(0) is
finite, and <£->0 as x->-oo. Huthnance [10] has shown that (1.6), with the associated
boundary conditions, leads to the existence of dispersion relations (relating the
frequency o> to the wavenumber K) uniquely determining the frequencies of an
infinite discrete set of shelf waves, a single Kelvin wave and an infinite discrete set of
edge waves. A typical set of dispersion curves is shown in Fig. 2, [10]; the shaded

. The integers mFig. 2. A typical dispersion relation. The shaded region is
refer to the mode numbers.

region (Poincare's continuum) is the region in which ^2(1—w2) + /c2^0, and there
are no trapped waves in this region. Shelf waves are distinguished by the criterion
ta% < 1 for all K, and have negative phase velocities c. Typically we expect c to
decrease as K increases. A useful relation that follows from (1.6) is

- c - 1 [Xhx^dx = /*2(l-a>2) r<f>*dx+
Jo Jo J

(1.7)

The group velocity is V = dw/dK; on differentiating (1.7) with respect to K it may be
shown that

~x P°h r ['°h<l?dx+ [ . (1.8)

Typically, for shelf waves, V has the same sign as c for small wavenumbers, but the
opposite sign for large wavenumbers.

In this paper we shall consider the stability of a single shelf wave mode <j>m, of
wavenumber K phase velocity cm(«), and group velocity Vm{i<). Here m is a positive
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16 R. Grimshaw [4]

integer designating the mode number; we shall assume that com(/c) = KCJJC)

decreases as m increases (cf. Fig. 2). We shall consider a nearly monochromatic
shelf wave, and subject it to the influence of weak nonlinearity and frequency
modulation. Specifically we allow the amplitude OLA to depend on o?t and
«(y-vmt).

It is now well known that in these circumstances the nonlinear Schrodinger
equation governs the evolution of the wave amplitude (Benney and Newell [1 ]),
and so it is no surprise that we obtain a nonlinear Schrodinger equation in the
present case. Indeed, the theory developed in Sections 2, 3, 4 is very similar to the
corresponding theory for internal gravity waves in a channel (Grimshaw [5], [8]).
In Section 2 we develop the theory of a modulated shelf wave, and in Section 3 we
discuss the mean flows generated by a modulated shelf wave. The equation govern-
ing the evolution of A is obtained in Section 4, and the stability of the wave to side
band modulations deduced. We show that long shelf waves (KXO) are stable to
these side band modulations, but that as \K\ is increased regions of instability (in
wave number space) will be encountered. In Section 5 we discuss long wave
resonance which occurs when Vm(ie)xca(0) for some integer s; there is then an
interaction between the modulated shelf wave and a long wave of mode number s.
This interaction takes place on a time scale O(a~*), and the equations describing the
long wave resonance are derived. We show that the modulated shelf wave is
unstable to this interaction with a long wave. Long wave resonance was first
observed by Mclntyre [12] for internal gravity waves in a channel, and the equations
describing the resonance for that case were derived by Grimshaw [5], [8]; the
equations are very similar to those obtained in the present case. The Appendix
contains the derivation of a compatibility condition needed in Section 2.

2. Modulated waves

In order to describe a modulated wave, we introduce the long length and time
scales

Y=e(y-Vmt), T=e*t. (2.1)

Here e is a small parameter, chosen so that £~x is the appropriate length, or time,
scale for the modulations. In the sequel e will be determined by the nonlinear
terms. We are anticipating that, to leading order, the wave travels at the group
velocity Vm. We let a. be an appropriate measure of wave amplitude, and we shall
use a to measure nonlinear effects. To leading order in both e and a,

£ = *A(Y,T)<{>m(x)exp(iKy-ia>mt) + c.c., (2.2)

where c.c. denotes complex conjugate. Here A is 0(1) with respect to e, a. The
primary aim of the subsequent analysis is to find an equation describing the
evolution of A.
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[5] The stability of continental shelf waves

We seek a solution of (1.1) (or equivalently (1.2)) of the form

where

17

= Ky-u>mt and

(2.3)

u, v are given by similar expansions. To leading order £x is given by (2.2), and we
anticipate that £0, £2 are O(a2), while £n is O(an) for n > 2.

On substituting (2.3) into (1.2) and (1.3), it follows that

(2.4)where

We may write the nonlinear term in the form

M=SMnexp(//j0), (2.5)

and we anticipate that Mo, M2 are O(a?), Mlt M3 are 0(<x3) and the other Mn are of
higher order in a. It follows that

Ln£n=.Mn. (2.6)

Consider first the case n = 1. It is shown in the Appendix that a necessary and
suflBcient condition for (2.7) to have a solution is the compatibility condition (A.9),

Jo
(2.7)

Since, as we shall verify a posteriori, Mx is O(o?) it follows that £x satisfies (2.6)
within an error of O(p?); it may then be shown that

We let

Too

D(O),K)= <f>nL(-iw,iK)4>mdx.
Jo

From (1.6) it may be shown that

• / 2 2 f " ,

I m Jo

(2.8)

(2.9)

. (2.10)
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18 R. Grimshaw [6]

Putting D = 0 recovers the dispersion relation a> = o>m(i<). It may be shown that
(2.7) becomes

(2.11)

Expanding (2.11) it may be shown that

where

idvm_id*a>m
2 BK 2 BK? '

(2.12)

The second group of terms on the right-hand side describes the effects of frequency
modulation. From (2.10) it follows that

(2-13)

Comparing (2.13) with (1.8) we see that D^ can vanish only when the group
velocity Vm is infinite; since typical dispersion curves (Fig. 2) have finite group
velocities for all K, we shall assume that Da is not zero. It remains to evaluate the
nonlinear term Mv Since we require Mx only to O(o?), it will be sufficient to consider
only the contributions from the interactions of the harmonic n = 1 (£x etc.) with the
harmonics n = 2 and n = 0.

In the remainder of this section we shall calculate £2 and its contribution to Mv

First we note that, from (1.1).

where

and

: iotAgm+O(pce), v1 = ocAhm+ O(ae),

(2.14)

Now to 0(<*2) M2 may be calculated using £lf ulf vx ((2.2) and (2.14)). We find that,
using (1.1) and (1.4),

M2 = / a M 2 ^ 2 , (2.15)
where

and
= Sm Smx + KSm (2.16)
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[7] The stability of continental shelf waves 19

Provided there is no second harmonic resonance (cm(*) ^ CS(2K) for any integer s),
it is shown in the Appendix that we may solve (2.6) uniquely for £2 and we find that

where (2.17)

Also, fi2 = i<x2 A2 <%% and t>2 = o?A2i/'2i where tfl% and "f~2 are real expressions
defined in terms of Z2, « "̂2 and ^ 2 (see Grimshaw [7], where further details of these
calculations are given).

We shall use a superscript " 2 " to denote the contribution to Mx due to the
interaction of the harmonics n = 2 and n = 1. We find that

(2.18)

where .^J 2 ' is a complicated real expression involving <f>m and Z2 (see [7]). Finally,
the contribution of (2.18) to the right-hand side of (2.12) is

where (2.19)

Since ^ 2 > is real (all quantities in script variables are real) and Da (2.13) is pure
imaginary, it follows that y2 is real.

3. Wave-induced mean flow

The equation which determines £0 is (2.6) with n = 0. However, it is preferable to
observe that this equation is just that obtained by averaging with respect to the
phase 6, and an alternative procedure is to average (1.1).

To leading order, the nonlinear terms may be evaluated using only £ls wx and vv

We find that

o ° ~dx 0>

(3.1)
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Here, to leading order, the nonlinear terms are given by, using (2.2) and (2.14)
(with the terms of 0(ae) included),

+ Kgm) | (<f>m hmx - Oigm </>mx

r7
/ i 2 \ v ' in •

V1 co7n*

and

Eliminating w0, t>0 from (3.1) it follows that

( 88
8T m 81

where ^

Note that ^ does not occur in ^0. Hence we find that, to leading order,

where

Consider the homogeneous equation

(3.2)

(3.3)

(3.4)

(3.5)

with the boundary conditions that <f> is finite at x = 0 and <f>^-Oas x-+co. This is the
equation for long shelf waves, and has a complete set of long wave modes <^0),
with long wave speeds cl

s
0) = cs(0). Using a procedure similar to that used in the

Appendix to solve (2.6), it may be shown that (3.4) has a unique solution O0,
provided that Vm =£ cs(0) for any ^ = 1,2,3,.... Alternatively, let

where

Jo

(3.6)
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[9] The stability of continental shelf waves

Here we have used the orthogonality relation

= 0 for s^r.
Jo

21

(3.7)

Then, on multiplying (3.4) by <£(
s
0) and integrating with respect to x from 0 to oo, it

follows that

( 3-8 )

Hence (3.6) gives the unique solution for <D0, provided that Vm i=- c<0), for any
s = 1,2,3,.... The long wave resonance which occurs when Vm = cl°) will be
discussed in Section 6. Finally, it follows from (3.1) that

u0 = eo?—| A f{Vm %x -% (3.9)

Note that w0 (the mean onshore velocity) is O(e) smaller than v0 (the mean along-
shore velocity).

We shall use a superscript "0" to denote the contribution to Mx due to the
interaction of the harmonic n = 1 with the mean flow (the harmonic n = 0). We
find that

I^f(0) _ ;tJ&\ A\2 A //W\ (-1 1(Y\

where ^ J 0 1 is a complicated real expression involving </>m and O0 (see [7]). Finally,
the contribution of (3.10) to the right-hand side of (2.12) is

where ) (3.11)

i 4 mo J

Since * ^ j 0 ) is real, and Da (2.13) is pure imaginary, it follows that y0 is real.

4. The amplitude equation

We have now shown that the amplitude equation (2.12) is the nonlinear
Schrodinger equation

where
= 70 + 72-

(4.1)
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Here we have put e = a so that the nonlinear terms exactly balance the frequency
modulation terms. The properties of this equation are well known (Zakharov and
Shabat [15]). In particular, (4.1) has the plane wave solution

D, (4.2)

where C is a constant, which is unstable to side band modulations (Hasimoto and
Ono [9]) if

Ay<0. (4.3)

Indeed, if the plane wave (4.2) is perturbed by terms proportional to ex${iLY+pT),
then the growth rate p is given by

p1 = - AL2(2y | C |2 + AZ2). (4.4)

The instability, considered for fixed K, has a maximum growth rate given by
P = I y 11CI2 when XL2 = — y \ Cf. It is apparent from the typical dispersion curves
(Figure 2), for positive frequencies wm, that A = \dVJjdK. (2.16) will be negative for
the range of K of most interest (that is, values of K ranging from zero to the vicinity
of the turning point of the dispersion curve). Hence the waves will be unstable for
positive values of y.

We have been unable to obtain any general result concerning the sign of y.
However, for long waves (that is, K^-0), it will be shown below that y is always
negative (for positive frequencies), and hence long shelf waves are stable to side band
modulations. Of course, the assumptions of the present theory prohibit the limit
K->0; nevertheless, it is useful to use the approximation KXO in order to obtain
some information about the sign of y. The theory appropriate to the limit K ->0 was
developed by Grimshaw [6]. When *c.«0,

and

where

,.(0)2 Jo

(4.5)

Here <f>{£> is the mth long wave mode and c<£} is the mth long wave speed. Also, from
(2.14) it follows that

We shall now proceed to use these approximations to evaluate y.
First consider the calculation of Z2 from (2.17). From the procedure outlined in

the Appendix it may be shown that

(4-7)
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[11] The stability of continental shelf waves 23

Indeed, it is apparent that when K->0 in (2.17) the homogeneous part of the
equation for Z2 becomes the long wave equation and hence Z2 takes the form given
by (4.7). Further, it may be shown that

m Jo

Using (4.5) in (2.15) and (2.16), it follows that

where

Substituting (4.9) into (4.8), we find that

S

where

Indeed, S is identical to the coefficient obtained by Grimshaw [6] (equation (3.12))
in another context. Next it may be shown that

(4.11)
and hence it follows that

y2 = —cJ>dL + O(K). (4.12)

Here we have also used (2.13) to evaluate DM. Since K is negative for shelf waves of
positive frequency, we see that the second harmonic is destabilising as the contribu-
tion of y2 to Y is positive.

Next we shall use the approximations (4.5) in the calculation of the mean flow.
It is apparent from (3.8) that

<J>0 = am<j>^> + O(l), (4-13)

where am is O(K~2). Also it may be shown that

Hence it follows from (3.8) that

/c2 am = - 2a+O(K2). (4.15)

Also it may be shown that

(4.16)
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24 R. Grimshaw [12]

and hence it follows from (3.11) that

^ . (4.17)

Finally, since y = yo+y2> we find that

6/cc'1''
(4.18)

where we have used (4.10). Since K is negative, y is negative and long shelf waves are
stable to side band modulations. Using (4.5) in (2.12) we see that A = 3KC™ + 00c3),
while (4.18) shows that y is O^c"1) as /c->-0. Thus nonlinear effects are enhanced as
the wavenumber becomes small; the present theory remains valid provided that
a-4 K2, which is the criterion for ignoring the higher harmonics n = 3, etc. Grimshaw
[6] computed values of 8 for various profiles. In particular it was shown that for a
profile used by Buchwald and Adams [2] to model the East Australian coast
8 = 2.2 for the first shelf wave mode, with larger values of 8 for the higher modes;
for the same profile c<*> = 1.3, while cj°> = —0.4.

The theory appropriate for the limit K-+0 was developed by Grimshaw [6]. It
was shown there that in this limit

£~Z(/, ,)$»>(*), r,=y-c™t, (4.19)

where Z satisfies the Korteweg-de Vries equation

-Zj+SZZ,+c«J>Zm = O. (4.20)

Here if the length scale is O(e-1) (that is, K is O(e)), then the time scale is ^(e"3),
and the amplitude is O(e2) (that is, the amplitude a is comparable with K2). If, in
(4.20), we seek time harmonic solutions,

Z = <xA(T, T)exp(iKy-icot) + c.c, (4.21)

then it may readily be shown that A will satisfy the nonlinear Schrodinger equation
(4.1) with y given by (4.18) and A = 3/cc^\ Thus the long wave theory agrees with
the present theory in their common region of validity.

As | K\ is increased from zero, it is clear from (3.8) that <X>0 will be approximately
given by (4.13) until the first long wave resonance occurs. Since Vm decreases as K
increases, this occurs at that value of K for which Fm(/c) = cm+1(0). In the vicinity of
this value of K, <I>0 will be approximately given by 0m+i^m+i where, from (3.8),
am+1 is proportional to (Vm(i<)—cm+1(0))~x; also y0 will then be approximately
proportional to am+1, and is infinite at the long wave resonance. As |/c| increases
through the resonant value y0 will change sign and become positive. Since y will be
dominated by y0 for K near the resonant value, y will also change sign and become
positive. Thus as \K\ increases through the resonant value, the wave becomes
unstable to side band modulations. As \K\ increases further, other long wave
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[13] The stability of continental shelf waves 25

resonances will be encountered, and at each such encounter there will be a change in
stability behaviour. Similar remarks may be made about the second harmonic
resonance (cm(/c) = CS(2K)). At the first such resonance encountered as |*c| is
increased y2 will change sign and become negative. Thus if the first second harmonic
resonance is encountered before the first long wave resonance y will remain
negative, and there will be no change in the stability behaviour. Finally, we note
that for the Buchwald and Adams [2] model of the East Australian coast, the long
wave resonance between the modes m = 1 and s = 2 occurs at /c = —1.7; this
corresponds to a dimensional wavelength of 300 km, a group velocity of 110 km/
day, and a period of approximately 2 days.

5. Long wave resonance

When Vm{i<) — cs(0) there is a resonant interaction between the wave, of wave-
number K and mode number m, and a long wave of mode number s. This resonance
was observed by Mclntyre [12] for internal gravity waves, and the equations
governing this resonance were obtained by Grimshaw [5], [8]; recently Plumb [13]
has discussed a similar resonance for Rossby waves. For typical dispersion curves
for a shelf wave (Fig. 2), as K varies from zero to the value at the turning point,
Fm(/c) varies from cm(0) to 0, and hence an infinity of long wave resonances are
possible with s = m+l,m + 2,.... Once K has passed the value at the turning point,
no long wave resonances are possible. To leading order there are now two free
waves present; one is the wave of wavenumber K and is described by (2.2), while the
other is the long wave

£o = ao,4o#o>(x) + C>(a2), (5.1)

where a0 is a parameter measuring the amplitude of the long wave. Both A, Ao

depend on Y, T, equation (2.1). The equation governing the evolution of A is again
(2.12). Now, however, the contribution of the second harmonic to the right-hand
side is O(p?) as before, while the contribution of the long wave is O(<XOL^. Thus (2.12)
becomes

OCB'

where (5.2)

We note that

v^o^A^ + O^2), (5.3)

while u0 is #(£<%). Clearly S is 0(010$), and so we choose a,, = e2. The equation
governing the long wave is (3.3). To leading order, £0 is a free solution of (3.3). We
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26 R. Grimshaw [14]

determine a by requiring that, at the next order, (3.3) describes a balance between
the time derivatives of £0 and the right-hand side. Hence ea,, = a2, and it follows
that

a. = e», 0 , ,= £2.

We seek a solution of (3.3) of the form

(5.4)

r=l

where (5.5)

Here ar is 0(<x2) for r # s, while as = a0y40. We put

Vm = cs(0)(l + <xe), (5.6)

so that CT is a measure of the amount by which the resonance is tuned. On multiply-
ing (3.3) by <£<

r
0), and integrating form 0 to oo, it follows that

(5.7)
For r # s, this equation confirms that ar is O(a2). However, for r = s, it becomes

VmdT

where

= r^0^dx.
Jo )

(5.8)

Next, substituting (5.1) and (5.3) into M{0) we find that (see [7])

S = vtx0A0,A
where

Jo

Hence, equation (5.2) for A is

.8A .8* A

(5.9)

(5.10)

The equations describing the long wave resonance are thus (5.8) and (5.10). They are
identical in form to those obtained by Grimshaw [5], [8] for long wave resonance
for internal gravity waves.
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[15] The stability of continental shelf waves 27

We have been unable to obtain the general solution of (5.8) and (5.10). However,
there is an envelope solution for which

A = tfexpjg(r-yJ)}sech{A:(r-jSD}, j (5 n )

where

(2)3
(5.12)

and

If we regard R,kas given, then these equations determine m, j3 and y. Of course this
solution requires that A(2j3F~1 + a)/xv be negative. This condition should be com-
pared with the instability condition (4.3), which, using (5.6), requires that AO/J,V be
negative (as when (5.6) holds, it may be shown that eayx/xv). For example, at the
first long wave resonance, s = m +1, the argument at the end of Section 4 indicates
that we expect y to be negative when a is positive, and so pv is negative. Thus, as A
is negative, the envelope solution requires that (2)3 K"1+a) be positive. In particular,
when a is negative (so that the wave is unstable to side band modulations), j8 and
Vm have the same sign, and the envelope solution propagates in the same sense as the
wave.

Equation (5.8) and (5.10) have the plane wave solutions

A = Cexp(-ivC0T), A0 = C0, (5.13)

where C, Co are constants. If this plane wave is perturbed by terms proportional to
exp(iX Y+pT), then the growth rate p is given by

(p-iaLVm)(p*+\*L*) + 2iiJLv\Vm\C\*L* = 0. (5.14)

This has purely imaginary solutions for p , indicating stability, if and only if,

2nv\Vm\C\*^&(oVmr-ioVm\*I* + -MoZ V2
m+3X2L2)K (5.15)

For large values of |CT|, (5.15) requires that Acr/iv be negative for instability, which
agrees with (4.3) (as when (5.6) holds, it may be shown that eoyxfiv). However, for
moderate values of | a\, it may be shown that there is always a range of values of L
for which (5.15) is not satisfied, and so the plane wave (5.13) is unstable. Indeed, as
A2!,2 -»• oo for fixed a ( > 0), (5.15) is satisfied. But if A2L2 is decreased the upper term
on the right-hand side of (5.15) (i.e. the term with the negative sign) has a maximum
of zero at \2L2 = a2 F2,, while the lower term has a minimum of zero at A2L2 = 0.
If Xfiva is negative, it is the latter term which determines the stability behaviour, and
the wave (5.13) is unstable for L2<L2

m, where A2L|, is the value of A2L2 for which
equality holds in (5.15) between the left-hand side and the lower term on the
right-hand side. If Xfiva is positive, it is the upper term which determines the
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stability behaviour; the wave is unstable for L\<l?<l\I, where Lo = 0 if
2fj.vXa\ C\2>-£f\ Vm\2o*; otherwise A2!2 and A2Z4 are the values of A2L2 for which
equality holds in (5.15) between the left-hand side and the upper term on the right-
hand side. For fixed a ( < 0), a similar analysis leads to the same conclusions regarding
stability, but the role of the upper and lower terms in (5.15) is interchanged.

Appendix
Derivation of the compatibility condition

In this Appendix we shall sketch the procedure for solving equation (2.6) for
n ^ 0. Expanding the operator on the left-hand side in powers of e, (2.6) may be
written in the form

Li-inu,m,iriK,-^J in = ^n. (A. 1)

Here !Fn contains Mn and terms of O(e£n) arising from the expansion of the
operator. If £n is expanded in powers of e (and a), we obtain a sequence of problems
of the type (A. 1) in each of which !Fn may be regarded as known. Although we
shall not carry out such an expansion explicitly, we may nevertheless proceed to
solve (A.I), r egard ing^ as known. Consider the homogeneous equation

-ina>m,inK,— U = 0,
(A.2)

or
= 0.)

We let fa be that solution of (A.2) which is finite at x = 0 (say ^(O) = 1), and let ip2

be an independent solution of (A.2). Frobenius theory shows that we may put

1/r2 = </r1l0gX + ^1) (A.3)

where ^ is finite at x = 0. Then the general solution of (A. 1) is

f V n fa dx - fa \X &n fa dx.
Jo Jo

ina>m Wln = Q ^ + C 2 fa+fa f V n fa dx - fa \ &n fa dx. (A.4)
Jo Jo

Here W' = h(fafax—fafax) is the Wronskian and is a non-zero constant (hx(Q)),
while Cx and C2 are arbitrary constants. Now !Fn is finite at x = 0, and since we
require £n to be finite at x = 0, it follows that C2 = 0.

We must also impose a condition as x^-oo. Let

y* = /*8(l-(«*,„)»)+ (!«)*. (A.5)

Huthnance [10] has shown that for shelf waves JU.2C2,<1, and so y is real and
positive. Hence, as x^-oo,

A X A X ) (A.6)
where
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Here j3u, etc. are constants, and forming the Wronskian it may be shown that

Q^i i fe - fe f ta ) is not zero. Substituting (A.6) into (A.4) it follows that

[j' j ' } (A.7)
Now !Fn vanishes as x-+co, and we require that £n should vanish as JC-»-OO. It

follows that

Ciflu = (j8uj922-jS2li812) fV n X l <&. (A.8)
Jo

If )212 is not zero, then this equation determines Q and hence £n uniquely; also, if

Mn is O(*n), it follows from (2.6) and (A.8) that £„ is 0(an) . However, if ]812

vanishes, then (A.8) becomes a compatibility condition on fFn. For n = 1, \fix is

clearly <j>n(x) and j312 is zero. Then (A.8) is the compatibility condition

r
Jo

(A.9)

Without any loss of generality, we may put Cx equal to zero and then (A.7) is the

required solution. For n > 2, we are not free to impose a compatibility condition

and so we must assume that j812 is not zero. Indeed, if j912 is zero, then <px is a shelf

wave for the wavenumber (n/c) and cm(/c) = CS(TIK) for some integer s and n > 2. We

shall assume that such nth harmonic resonances are absent and then (A 7) and (A 8)

determine £n uniquely for n ^ 2.
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