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Abstract
We present and thoroughly study natural Polish spaces of separable Banach spaces. These spaces are defined
as spaces of norms, respectively pseudonorms, on the countable infinite-dimensional rational vector space. We
provide an exhaustive comparison of these spaces with admissible topologies recently introduced by Godefroy and
Saint-Raymond and show that Borel complexities differ little with respect to these two topological approaches.
We investigate generic properties in these spaces and compare them with those in admissible topologies, confirming
the suspicion of Godefroy and Saint-Raymond that they depend on the choice of the admissible topology.
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1. Introduction

Banach spaces and descriptive set theory have a long history of mutual interactions. Explicit use of
descriptive set theory to Banach space theory can be traced back at least to the seminal papers of
Bourgain ([9, 8]), where it has become apparent that descriptive set theory is an indispensable tool for
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universality problems. That is a theme that has been investigated by researchers working with Banach
spaces ever since (see, e.g., [2, 14] and references therein).

As it eventually turned out, ‘Descriptive set theory of Banach spaces’ is an interesting and rich
subject and has received considerable attention in recent years. One of the starting points was the idea of
Bossard of coding separable Banach spaces in [6, 7]. His approach, which can be considered standard,
was to choose some universal separable Banach space X, such as 𝐶 (2N), and consider the Effros-Borel
space 𝐹 (𝑋). Recall that this is the set of closed subsets of X equipped with a certain 𝜎-algebra that
makes 𝐹 (𝑋) a standard Borel space: that is, a measurable space that is isomorphic, as a measurable
space, to a Polish space equipped with the 𝜎-algebra of Borel sets. It is then not too difficult to show
that the subset 𝑆𝐵(𝑋) ⊆ 𝐹 (𝑋) consisting of all closed linear subspaces is a Borel subset and therefore
a standard Borel space itself.

Although this approach has found numerous significant applications in Banach space theory, its
drawback is that there is no canonical or natural (Polish) topology on 𝑆𝐵(𝑋). So although one can
ask whether a given class of Banach spaces is Borel or not, the question about the exact complexity of
that particular class is meaningless. Let us specify this. Many of the applications may be interpreted
as computing co/analytic sets of Banach spaces and deriving consequences from this; this concerns
especially various universality results (see, e.g., [14, Chapter 7] and [23]). Having a topology allows us
to separate two classes of Banach spaces, which are both known to be Borel (we comment more on this
issue in the sequel [13]).

Moreover, one of the active and ongoing research streams is to find out whether for a particular
Banach space its isomorphism class is Borel or not (see, e.g., [25, 18] or the survey [17] and references
therein): spaces with Borel isomorphism classes are rare and can be considered simply definable (up
to isomorphism). It is then desirable, for spaces whose classes are Borel, to have a finer description of
how simply definable they are (see, e.g., [18, Problem 3]).

A recent work [19] of Godefroy and Saint-Raymond addresses this general issue of associating a
natural topology to the set of codes of Banach spaces. They still work with the space 𝑆𝐵(𝑋), but among
the many Polish topologies on 𝑆𝐵(𝑋) giving the Effros-Borel structure, they select some particular
subclass that is called admissible topologies. Although no particular admissible topology is canonical,
the set of requirements put on this class guarantees that the exact Borel complexities vary little.

This paper presents an alternative approach by considering a concrete and natural Polish space (and
some variants of it) of separable Banach spaces, which is convenient to work with. We have three
main reasons and advantages for that in mind. The first one, which was our original motivation, is to
further push the programme initiated by Godefroy and Saint-Raymond on computing precise Borel
complexities of various classes of Banach spaces. It turns out that in our new space, the computations of
Borel complexities are usually as straightforward as they could be, and besides many new results, we are
also able to improve several estimates already obtained in [19] (see also [16] for additional results in this
direction). Most of these results are contained in the sequel to this paper [13]. It should also be mentioned
that computing exact Borel complexities has been a traditional research topic in analysis and topology
of independent interest (see [21, Chapter 23] for a comprehensive but already outdated list of examples),
and among our contributions in that regard, presented in [13], are new elegant characterizations of the
Hilbert space ℓ2. Briefly, ℓ2 is the unique (up to isometry) infinite-dimensional separable Banach space
with a closed isometry class, and it is the unique (up to isomorphism) infinite-dimensional separable
Banach space with an 𝐹𝜎 isomorphism class. Recall that Bossard [7, Problem 2.9] originally asked
whether ℓ2 is the unique space with a Borel isomorphism class. Although this is now known to be false,
we can show that no other Banach space can have such a simple isomorphism class.

The remaining two reasons have different origins; one is functional analytic, and the other comes
from logic. For the former, the feature of the topology we work with is that basic open sets are essentially
definitions of finite-dimensional Banach spaces up to 𝜀-isomorphism, where 𝜀 > 0 is arbitrarily small.
This connects this topological approach with the local theory of Banach spaces. The basic manifestation
of this is that the finite representability of Banach spaces is expressed in elementary topological terms
and, for example, leads to a natural reformulation of the Dvoretzky theorem that the infinite-dimensional
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separable Hilbert space is contained in the closure of the isometry class of every infinite-dimensional
separable Banach space (see Corollary 2.11). Further applications to the local theory might be a subject
of future research.

Finally, our approach brings closer the two different interactions of logic with Banach space theory
that had not interacted significantly: that is, the descriptive set theory of Banach spaces and the continuous
model theory of Banach spaces. Continuous model theory, or model theory of metric structures, is a
generalization of classical model theory to structures that are inherently metric and has its origins,
motivations as well as most of the applications in Banach space theory. We refer the reader to [4] for
an introduction and more motivation. Our space of Banach spaces is closely related to how countable,
respectively separable models are coded in classical, respectively continuous model theory (see, e.g.,
[15, Section 3.6] for the classical case and [5, Section 4] for the metric case). Moreover, the exact Borel
complexities that our space allows us to compute are directly related to the López-Escobar theorem
from continuous infinitary logic, which connects such complexities with the complexities of formulas
that define the corresponding classes (we refer to [5, Section 6]). It may also be of interest for future
research to investigate the relation, for a given Banach space, between having an isometry class of low
Borel complexity and having an axiomatization in continuous first-order logic.

Having motivated our approach, let us now outline some more details and the main results contained
in this paper. Informally, the space we introduce is the space of all norms, respectively pseudonorms,
on the space of all finitely supported sequences of rational numbers – the unique infinite-dimensional
vector space over Q with a countable Hamel basis. This is also, in spirit, similar to how (for instance)
Vershik topologized the space of all Polish metric spaces ([26]), or how Grigorchuk topologized the
space of all n-generated, respectively finitely generated, groups ([20]).

This space has already appeared in previous works of the authors in [11] and [12] as a useful coding
of Banach spaces. Here we investigate it further.

Some of the main results of this paper are listed now. The first theorem below presents the main
part of the comparison of the space of norms with admissible topologies, whose proof is the core of
Section 3, where also all other comparison results are proved.

Theorem A. There is a 𝚺0
2-measurable mapping from the space of norms to any admissible topology

of Godefroy and Saint-Raymond that associates to each norm a space isometric to the space that the
norm defines, and vice versa.

Therefore, while the exact Borel complexities are more or less independent of our coding or the
choice of the admissible topology, some finer topological properties, such as being meager or comeager
(this is mentioned below), or the description of the topological closures, are not. We obtain a neat
characterization of topological closures in the spaces of norms and pseudonorms in terms of finite
representability; we refer the reader to Proposition 2.9.

Then, directly motivated by [19, Problem 5.5], we investigate the generic properties in the spaces of
norms and in admissible topologies. First we show the genericity of the Gurariı̆ space in the space of
norms and pseudonorms.

Theorem B. The isometry class of the Gurariı̆ space is a dense 𝐺 𝛿-set in the space of norms and
pseudonorms: that is, the Gurariı̆ space is the generic separable Banach space (see Theorem 4.1).

Then we continue with a similar investigation for admissible topologies, and among other things, we
show that the Gurariı̆ space is not always generic.

Theorem C. For any isometrically universal separable Banach space X, any admissible topology 𝜏 on
𝑆𝐵(𝑋) and any infinite-dimensional Banach spaces Y and Z such that 𝑌 ↩→ 𝑍 and 𝑍 �↩→ 𝑌 ⊕ 𝐹 for
every finite-dimensional space F, there exists a finer admissible topology 𝜏′ ⊇ 𝜏 such that the class of
Banach spaces isomorphic to Z is nowhere dense in (𝑆𝐵(𝑋), 𝜏′). In particular, there exists an admissible
topology in which the Gurariı̆ space is meager (see Theorem 4.12).

On the other hand, the isometry class of the Gurariı̆ spaceG, as a subset of 𝑆𝐵(G), is a dense 𝐺 𝛿-set
in the Wijsman topology (see Theorem 4.10).
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1.1. Notation

Let us conclude the introduction by setting up some notation used throughout the paper.
Throughout the paper, we usually denote the Borel classes of low complexity by the traditional

notation such as 𝐹𝜎 and 𝐺 𝛿 , or even 𝐹𝜎𝛿 (countable intersection of 𝐹𝜎 sets) and 𝐺 𝛿𝜎 (countable
union of 𝐺 𝛿-sets). However, whenever it is more convenient or necessary, we use the notation 𝚺0

𝛼,
respectively 𝚷0

𝛼, where 𝛼 < 𝜔1 (we refer to [21, Section 11] for this notation). We emphasize that open
sets, respectively closed sets, are 𝚺0

1, respectively 𝚷0
1, by this notation.

Moreover, given a class 𝚪 of sets in metrizable spaces, we say that 𝑓 : 𝑋 → 𝑌 is 𝚪-measurable if
𝑓 −1(𝑈) ∈ 𝚪 for every open set 𝑈 ⊆ 𝑌 .

Given Banach spaces X and Y, we denote by 𝑋 ≡ 𝑌 (respectively 𝑋 � 𝑌 ) the fact that those two
spaces are linearly isometric (respectively isomorphic). We denote by 𝑋 ↩→ 𝑌 the fact that Y contains
a subspace isomorphic to X. For 𝐾 ≥ 1, a K-isomorphism 𝑇 : 𝑋 → 𝑌 is a linear map with 𝐾−1‖𝑥‖ ≤

‖𝑇𝑥‖ ≤ 𝐾 ‖𝑥‖, 𝑥 ∈ 𝑋 . If 𝑥1, . . . , 𝑥𝑛 are linearly independent elements of X and 𝑦1, . . . , 𝑦𝑛 ∈ 𝑌 , we
write (𝑌, 𝑦1, . . . , 𝑦𝑛)

𝐾
∼ (𝑋, 𝑥1, . . . , 𝑥𝑛) if the linear operator 𝑇 : span{𝑥1, . . . , 𝑥𝑛} → span{𝑦1, . . . , 𝑦𝑛}

sending 𝑥𝑖 to 𝑦𝑖 satisfies max{‖𝑇 ‖, ‖𝑇−1‖} < 𝐾 . If X has a canonical basis (𝑥1, . . . , 𝑥𝑛), which is
clear from the context, we just write (𝑌, 𝑦1, . . . , 𝑦𝑛)

𝐾
∼ 𝑋 instead of (𝑌, 𝑦1, . . . , 𝑦𝑛)

𝐾
∼ (𝑋, 𝑥1, . . . , 𝑥𝑛).

Moreover, if Y is clear from the context, we write (𝑦1, . . . , 𝑦𝑛)
𝐾
∼ 𝑋 instead of (𝑌, 𝑦1, . . . , 𝑦𝑛)

𝐾
∼ 𝑋 .

Throughout the text, ℓ𝑛𝑝 denotes the n-dimensional ℓ𝑝-space: that is, the upper index denotes di-
mension. Finally, in order to avoid any confusion, we emphasize that if we write that a mapping is an
‘isometry’ or an ‘isomorphism’, we do not mean it is surjective if this is not explicitly mentioned.

2. The Polish spaces P∞ and B, and their basic properties

In this section we introduce the main notions of this paper: the Polish spaces of pseudonorms P (and
P∞) representing separable (infinite-dimensional) Banach spaces, and we recall the space of norms B
that has appeared in our previous works [11, 12]. We show some interesting features of these spaces,
such as the neat relation between finite representability and topological closures in these spaces; see
Proposition 2.9 and its corollaries.

Let us start with the following idea of coding the class of separable (infinite-dimensional) Banach
spaces. It is based on the idea already presented in our previous papers [11, 12], where the space B was
defined.

By V, we shall denote the vector space overQ of all finitely supported sequences of rational numbers:
that is, the unique infinite-dimensional vector space over Q with a countable Hamel basis (𝑒𝑛)𝑛∈N.

Definition 2.1. Let us denote by P the space of all pseudonorms on the vector space V. Since P is a
closed subset of R𝑉 , this gives P the Polish topology inherited from R𝑉 . The subbasis of this topology
is given by sets of the form 𝑈 [𝑣, 𝐼] := {𝜇 ∈ P : 𝜇(𝑣) ∈ 𝐼}, where 𝑣 ∈ 𝑉 and I is an open interval.

We often identify 𝜇 ∈ P with its extension to the pseudonorm on the space 𝑐00: that is, the vector
space over R of all finitely supported sequences of real numbers.

For every 𝜇 ∈ P, we denote by 𝑋𝜇 the Banach space given as the completion of the quotient space
𝑋/𝑁 , where 𝑋 = (𝑐00, 𝜇) and 𝑁 = {𝑥 ∈ 𝑐00 : 𝜇(𝑥) = 0}. In what follows, we often consider V as a
subspace of 𝑋𝜇: that is, we identify every 𝑣 ∈ 𝑉 with its equivalence class [𝑣]𝑁 ∈ 𝑋𝜇.

By P∞, we denote the set of those 𝜇 ∈ P for which 𝑋𝜇 is infinite-dimensional Banach space. As we
did in [11, 12], by B, we denote the set of those 𝜇 ∈ P∞ for which the extension of 𝜇 to 𝑐00 is an actual
norm: that is, the vectors 𝑒1, 𝑒2, . . . are linearly independent in 𝑋𝜇.

We endow P∞ and B with the topologies inherited from P.

Our first aim is to show that the topologies on P∞ and B are Polish (see Corollary 2.5). This can be
easily verified directly: here, we obtain it as a corollary of the fact that the relation 𝐾

∼ defined before is
open in P, a very useful fact that will prove important many times in the paper.
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We need the following background first. Given a metric space (𝑀, 𝑑), 𝜀 > 0 and 𝑁, 𝑆 ⊆ 𝑀 , we say
that N is 𝜀-dense for S if for every 𝑥 ∈ 𝑆 there is 𝑦 ∈ 𝑁 with 𝑑 (𝑥, 𝑦) < 𝜀 (let us emphasize that we do
not assume 𝑁 ⊆ 𝑆). For further references, we recall the following well-known approximation lemma;
for a proof, see for example [1, Lemma 12.1.11].

Lemma 2.2. There is a function 𝜙1 : [0, 1) → [0, 1) continuous at zero with 𝜙1(0) = 0 such that
whenever 𝑇 : 𝐸 → 𝑋 is a linear operator between Banach spaces, 𝜀 ∈ (0, 1), 𝑀 ⊆ 𝐸 is 𝜀-dense for 𝑆𝐸
and

∀𝑚 ∈ 𝑀 : |‖𝑇𝑚‖ − 1| < 𝜀,

then T is a (1 + 𝜙1(𝜀))-isomorphism between E and 𝑇 (𝐸).

The following definition precises the notation 𝐾
∼ defined in the introduction.

Definition 2.3. If 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 are given, for 𝜇 ∈ P, instead of (𝑋𝜇, 𝑣1, . . . , 𝑣𝑛)
𝐾
∼ 𝑋 , we shall write

(𝜇, 𝑣1, . . . , 𝑣𝑛)
𝐾
∼ 𝑋 .

Lemma 2.4. Let X be a Banach space with {𝑥1, . . . , 𝑥𝑛} ⊆ 𝑋 linearly independent, and let 𝑣1, . . . , 𝑣𝑛 ∈

𝑉 . Then for any 𝐾 > 1, the set

N((𝑥𝑖)𝑖 , 𝐾, (𝑣𝑖)𝑖) = {𝜇 ∈ P : (𝜇, 𝑣1, . . . , 𝑣𝑛)
𝐾
∼ (𝑋, 𝑥1, . . . , 𝑥𝑛)}

is open in P.
In particular, the set of those 𝜇 ∈ P for which the set {𝑣1, . . . , 𝑣𝑛} is linearly independent in 𝑋𝜇 is

open in P.

Proof. Pick some 𝜇 ∈ N((𝑥𝑖)𝑖 , 𝐾, (𝑣𝑖)𝑖). By definition, the linear map T sending 𝑣𝑖 to 𝑥𝑖 ∈ 𝑋 , 𝑖 ≤ 𝑛, is a
linear isomorphism satisfying max{‖𝑇 ‖, ‖𝑇−1‖} < 𝐿 for some 𝐿 < 𝐾 . Let 𝜙1 be the function provided
by Lemma 2.2, and pick 𝜀 > 0 such that 𝐿(1 + 𝜙1(2𝜀)) < 𝐾 . Let 𝑁 ⊆ 𝑉 be a finite 𝜀-dense set for the
sphere of span{𝑣1, . . . , 𝑣𝑛} ⊆ 𝑋𝜇 such that 𝜇(𝑣) ∈ (1 − 𝜀, 1 + 𝜀) for every 𝑣 ∈ 𝑁 . Then

𝑈 := {𝜈 ∈ P : ∀𝑣 ∈ 𝑁 : |𝜈(𝑣) − 𝜇(𝑣) | < 𝜀}

is an open neighborhood of 𝜇, and 𝑈 ⊆ N((𝑥𝑖)𝑖 , 𝐾, (𝑣𝑖)𝑖). Indeed, for any 𝜈 ∈ 𝑈, we have that
𝑖𝑑 : (span{𝑣1, . . . , 𝑣𝑛}, 𝜇) → (span{𝑣1, . . . , 𝑣𝑛}, 𝜈) is a (1 + 𝜙1(2𝜀))-isomorphism; hence, the linear
map T considered as a map between (span{𝑣1, . . . , 𝑣𝑛}, 𝜈), and span{𝑥1, . . . , 𝑥𝑛} satisfies ‖𝑇 ‖ <
𝐿(1 + 𝜙1(2𝜀)) < 𝐾 , and similarly ‖𝑇−1‖ < 𝐾; hence, 𝜈 ∈ N((𝑥𝑖)𝑖 , 𝐾, (𝑣𝑖)𝑖).

The ‘In particular’ part easily follows, because 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 are linearly independent if and only if
there exists 𝐾 > 1 with (𝜇, 𝑣1, . . . , 𝑣𝑛)

𝐾
∼ ℓ𝑛1 . �

Corollary 2.5. Both P∞ and B are 𝐺 𝛿-sets in P.

Since we are interested mainly in subsets of P closed under isometries, we introduce the following
notation.

Notation 2.6. Let Z be a separable Banach space, and let I be a subset of P. We put

〈𝑍〉I≡ := {𝜇 ∈ I : 𝑋𝜇 ≡ 𝑍} and 〈𝑍〉I� := {𝜇 ∈ I : 𝑋𝜇 � 𝑍}.

If I is clear from the context, we write 〈𝑍〉≡ and 〈𝑍〉� instead of 〈𝑍〉I≡ and 〈𝑍〉I� , respectively.

The important feature of the topology of the spaces P, P∞ and B is that basic open neighborhoods
are defined using finite data: that is, finitely many vectors. That suggests that the topological properties
of the aforementioned spaces should be closely related to the local theory of Banach spaces. This
is certainly a point that could be investigated further in future research. Here we just observe how
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topological closures are related to finite representability; see Proposition 2.9. In order to formulate our
results, let us consider the following generalization of the classical notion of finite representability.

Definition 2.7. LetF be a family of Banach spaces. We say that a Banach space X is finitely representable
in F if, given any finite-dimensional subspace E of X and any 𝜀 > 0, there exists a finite-dimensional
subspace F of some 𝑌 ∈ F that is (1 + 𝜀)-isomorphic to E.

If the family F consists of one Banach space Y only, we say that X is finitely representable in Y rather
than in {𝑌 }.

If F ⊆ P, by saying that X is finitely representable in F, we mean it is finitely representable in
{𝑋𝜇 : 𝜇 ∈ F}.

The following is an easy observation that we will use further; the proof follows, for example,
immediately from [1, Lemma 12.1.7] in the case that F contains one Banach space only. For the more
general situation, the proof is analogous.

Lemma 2.8. Let F be a family of infinite-dimensional Banach spaces and 𝜇 ∈ P∞. Let {𝑘 (𝑛)}∞𝑛=1 be a
sequence such that {𝑒𝑘 (𝑛) : 𝑛 ∈ N} is a linearly independent set in 𝑋𝜇 and span{𝑒𝑘 (𝑛) : 𝑛 ∈ N} = 𝑋𝜇.
Then 𝑋𝜇 is finitely representable in F if and only if for every 𝑛 ∈ N and 𝜀 > 0, there exists a finite-
dimensional subspace F of some 𝑌 ∈ F that is (1 + 𝜀)-isomorphic to (span{𝑒𝑘 (1) , . . . , 𝑒𝑘 (𝑛) }, 𝜇).

Proposition 2.9. Let F ⊆ B be such that 〈𝑋𝜇〉B≡ ⊆ F for every 𝜇 ∈ F. Then

{𝜈 ∈ B : 𝑋𝜈 is finitely representable in F} = F ∩ B.

The same holds if we replace B with P∞ or P.
In particular, if X is a separable infinite-dimensional Banach space, then

{𝜈 ∈ B : 𝑋𝜈 is finitely representable in 𝑋} = 〈𝑋〉B≡ ∩ B,

and similarly also if we replace B with P∞ or with P.

Proof. ‘⊆’: Fix 𝜈 ∈ B such that 𝑋𝜈 is finitely representable in F. Pick 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 and 𝜀 > 0. We
shall show there is 𝜇0 ∈ F with |𝜇0 (𝑣𝑖) − 𝜈(𝑣𝑖) | < 𝜀, 𝑖 ≤ 𝑛. Let 𝑚 ∈ N be such that {𝑣1, . . . , 𝑣𝑛} ⊆

spanQ{𝑒 𝑗 : 𝑗 ≤ 𝑚}. Put 𝐶 := max{𝜈(𝑣𝑖) : 𝑖 = 1, . . . , 𝑛} and 𝑍 := span{𝑒1, . . . , 𝑒𝑚} ⊆ 𝑋𝜈 . Since 𝑋𝜈
is finitely representable in F, there is 𝜇 ∈ F and a (1 + 𝜀

2𝐶 )-isomorphism 𝑇 : 𝑍 → 𝑋𝜇. Set 𝑥𝑖 := 𝑇 (𝑒𝑖),
𝑖 ≤ 𝑚, and extend 𝑥1, . . . , 𝑥𝑚 to a linearly independent sequence (𝑥𝑖)

∞
𝑖=1 whose span is dense in 𝑋𝜇.

Consider 𝜇0 ∈ P given by setting 𝜇0 (
∑
𝑖∈𝐼 𝛼𝑖𝑒𝑖) = 𝜇(

∑
𝑖∈𝐼 𝛼𝑖𝑥𝑖), where 𝐼 ⊆ N is finite and (𝛼𝑖)𝑖∈𝐼 ⊆ Q.

Clearly, 𝑋𝜇0 ≡ 𝑋𝜇 and 𝜇0 ∈ B, so 𝜇0 ∈ F. Finally, for every 𝑖 ≤ 𝑛, we have 𝑣𝑖 =
∑𝑚
𝑗=1 𝛼 𝑗𝑒 𝑗 for some

(𝛼 𝑗 ) ∈ R
𝑚, and so we have

𝜇0 (𝑣𝑖) = 𝜇(
𝑚∑
𝑗=1

𝛼 𝑗𝑥 𝑗 ) ≤ (1 + 𝜀
2𝐶 )𝜈(

𝑚∑
𝑗=1

𝛼 𝑗𝑒 𝑗 ) = (1 + 𝜀
2𝐶 )𝜈(𝑣𝑖),

and similarly 𝜇0 (𝑣𝑖) ≥ (1+ 𝜀
2𝐶 )

−1𝜈(𝑣𝑖) ≥ (1− 𝜀
2𝐶 )𝜈(𝑣𝑖). Thus, |𝜇0 (𝑣𝑖)−𝜈(𝑣𝑖) | ≤

𝜀
2 < 𝜀 for every 𝑖 ≤ 𝑛.

The case when we replace B with P∞ or P is analogous; this time, we do not require (𝑥𝑖)
∞
𝑖=1 to be

linearly independent.
‘⊇’: Fix 𝜈 ∈ F ∩ B. In order to see that 𝑋𝜈 is finitely representable in F, we will use Lemma 2.8.

Pick 𝑛 ∈ N and 𝜀 > 0. Let 𝜙1 be the function from Lemma 2.2, let 𝛿 > 0 be such that 𝜙1(2𝛿) < 𝜀 and
let 𝑁 ⊆ 𝑉 be a finite set that is 𝛿-dense for the sphere of (span{𝑒1, . . . , 𝑒𝑛}, 𝜈) and 𝜈(𝑣) ∈ (1− 𝛿, 1 + 𝛿)
for every 𝑣 ∈ 𝑁 . Pick 𝜇 ∈ F such that |𝜇(𝑣) − 𝜈(𝑣) | < 𝛿, 𝑣 ∈ 𝑁 . Then 𝑖𝑑 : (span{𝑒1, . . . , 𝑒𝑛}, 𝜈) →
(span{𝑒1, . . . , 𝑒𝑛}, 𝜇) is a (1 + 𝜙1(2𝛿))-isomorphism. Thus, 𝑋𝜈 is finitely representable in F. The case
when we replace B with P∞ or P is similar. �

This result has interesting consequences.
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Corollary 2.10. Let X be a separable Banach space such that every Banach space is finitely representable
in X. Then its isometry class is dense (in P, P∞ and also in B).

Proof. Follows immediately from Proposition 2.9. �

Corollary 2.11. Let X be a separable infinite-dimensional Banach space. Then 〈ℓ2〉
B
≡ ⊆ 〈B〉𝑋≡ ∩ B. The

same holds if we replace B with P∞ or P.

Proof. By the Dvoretzky theorem, ℓ2 is finitely representable in every separable infinite-dimensional
Banach space (see, e.g., [1, Theorem 13.3.7]). So we are done by applying Proposition 2.9. �

We conclude this subsection by showing another nice feature of the above topologies on examples.
We can show that the natural maps 𝐾 ↦→ 𝐶 (𝐾) and 𝜆 ↦→ 𝐿𝑝 (𝜆), where K is a compact metrizable
space, and 𝜆 is a Borel probability measure on a fixed compact metric space, are continuous.

Example 2.12. (a) Let K([0, 1]N) denote the space of all compact subsets of the Hilbert cube [0, 1]N
endowed with the Vietoris topology. Then there exists a continuous mapping 𝜌 : K([0, 1]N) → P such
that 𝑋𝜌(𝐾 ) ≡ 𝐶 (𝐾) for every 𝐾 ∈ K([0, 1]N).

(b) Let L be a compact metric space, let 𝑝 ∈ [1,∞) be fixed, and let P𝑟𝑜𝑏(𝐿) denote the space of all
Borel probability measures on L endowed with the weak* topology (generated by elements of the Banach
space 𝐶 (𝐿)). Then there exists a continuous mapping 𝜎 : P𝑟𝑜𝑏(𝐿) → P such that 𝑋𝜎 (𝜆) ≡ 𝐿𝑝 (𝜆) for
every 𝜆 ∈ P𝑟𝑜𝑏(𝐿).

Proof. (a) Let { 𝑓𝑖 : 𝑖 ∈ N} be a linearly dense subset of 𝐶 ([0, 1]N). For every compact subset K of
[0, 1]N, we define 𝜌(𝐾) ∈ P by

𝜌(𝐾)

(
𝑛∑
𝑖=1

𝑟𝑖𝑒𝑖

)
= sup
𝑥∈𝐾

����� 𝑛∑
𝑖=1

𝑟𝑖 𝑓𝑖 (𝑥)

�����, 𝑛∑
𝑖=1

𝑟𝑖𝑒𝑖 ∈ 𝑉.

It is clear that 𝑋𝜌(𝐾 ) ≡ 𝐶 (𝐾), so we only need to check the continuity of 𝜌. It is enough to show that
𝜌−1(𝑈 [𝑣, 𝐼]) is an open subset of K([0, 1]N) for every 𝑣 ∈ 𝑉 and every open interval I (recall that
𝑈 [𝑣, 𝐼] = {𝜇 ∈ P : 𝜇(𝑣) ∈ 𝐼}). So let us fix 𝐾 ∈ 𝜌−1(𝑈 [𝑣, 𝐼]), and assume that 𝑣 =

∑𝑛
𝑖=1 𝑟𝑖𝑒𝑖 . Fix

𝑥0 ∈ 𝐾 such that ����� 𝑛∑
𝑖=1

𝑟𝑖 𝑓𝑖 (𝑥0)

����� = sup
𝑥∈𝐾

����� 𝑛∑
𝑖=1

𝑟𝑖 𝑓𝑖 (𝑥)

�����.
Also fix 𝜀 > 0 such that both numbers

��∑𝑛
𝑖=1 𝑟𝑖 𝑓𝑖 (𝑥0)

�� ± 𝜀 belong to I. Now find open subsets 𝑈,𝑉 of
[0, 1]N such that 𝑥0 ∈ 𝑈 and 𝐾 ⊆ 𝑉 and such that

inf
𝑥∈𝑈

����� 𝑛∑
𝑖=1

𝑟𝑖 𝑓𝑖 (𝑥)

����� >
����� 𝑛∑
𝑖=1

𝑟𝑖 𝑓𝑖 (𝑥0)

����� − 𝜀

and

sup
𝑥∈𝑉

����� 𝑛∑
𝑖=1

𝑟𝑖 𝑓𝑖 (𝑥)

����� < sup
𝑥∈𝐾

����� 𝑛∑
𝑖=1

𝑟𝑖 𝑓𝑖 (𝑥)

����� + 𝜀.
Then

U := {𝐾 ∈ K([0, 1]N) : 𝐾 ∩𝑈 ≠ ∅ and 𝐾 ⊆ 𝑉}

is an open neighborhood of 𝐾 such that 𝜌(U) ⊆ 𝑈 [𝑣, 𝐼].
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(b) This is similar to (a) but even easier. Let {𝑔𝑖 : 𝑖 ∈ N} be a linearly dense subset of 𝐶 (𝐿). For
every Borel probability measure 𝜆 on L, we define 𝜎(𝜆) ∈ P by

𝜎(𝜆)

(
𝑛∑
𝑖=1

𝑟𝑖𝑒𝑖

)
=

�	

∫
𝐿

����� 𝑛∑
𝑖=1

𝑟𝑖𝑔𝑖

�����𝑝 𝑑𝜆�
�
1
𝑝

,
𝑛∑
𝑖=1

𝑟𝑖𝑒𝑖 ∈ 𝑉.

It is clear that 𝑋𝜎 (𝜆) ≡ 𝐿𝑝 (𝜆), so we only need to check the continuity of 𝜎. It is enough to show that
𝜎−1 (𝑈 [𝑣, 𝐼]) is an open subset of P𝑟𝑜𝑏(𝐿) for every 𝑣 ∈ 𝑉 and every open interval I. But this is clear
as, for 𝑣 =

∑𝑛
𝑖=1 𝑟𝑖𝑒𝑖 , we have

𝜎−1(𝑈 [𝑣, 𝐼]) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝜆 ∈ P𝑟𝑜𝑏(𝐿) : �	

∫
𝐿

����� 𝑛∑
𝑖=1

𝑟𝑖𝑔𝑖

�����𝑝 𝑑𝜆�
�
1
𝑝

∈ 𝐼

⎫⎪⎪⎪⎬⎪⎪⎪⎭. �

Remark 2.13. After the introduction of the spaces P, P∞ and B, one faces the question of which of
them is ‘the right one’ with which to work. For now, we leave the question undecided. Since we are
mainly interested in infinite-dimensional Banach spaces, we prefer to work mainly with P∞ and B. On
the other hand, it turns out that at least as far as one wants to transfer some computations performed in
the space of pseudonorms directly to admissible topologies, the space P is useful: Theorem 3.3 below
shows that whatever we compute in the space P also holds true in any admissible topology.

Regarding P∞ and B, in most of the arguments, it makes no difference whether we are working with
the former or the latter space. However, there are a few exceptions when it seems to be convenient to
work with the assumption that the sequence of vectors 〈𝑒𝑛 : 𝑛 ∈ N〉 ⊆ 𝑉 is linearly independent, and
then it might be more natural to work with B.

3. Choice of the Polish space of separable Banach spaces

The main outcome of this section is Theorem A (denoted here as Theorem 3.11). We also prove partial
converses to this result; see Theorem 3.3 and Proposition 3.6. Let us give some more details.

1. In the first subsection, we recall the coding 𝑆𝐵(𝑋) (and 𝑆𝐵∞(𝑋)) of separable (infinite-dimensional)
Banach spaces. We recall the notion of an admissible topology introduced in [19], which is a Polish
topology corresponding to the Effros-Borel structure of 𝑆𝐵(𝑋). We explore some basic relations
between codings P, P∞, B, 𝑆𝐵(𝑋) and 𝑆𝐵∞(𝑋). We show there is a continuous reduction from
𝑆𝐵(𝑋) to P, a 𝚺0

2-measurable reduction from P∞ to B, and a 𝚺0
4-measurable reduction from P to

𝑆𝐵(𝑋); see Theorem 3.3, Proposition 3.6, and Theorem 3.10. Here, by a ‘reduction’, we mean a map
Φ such that a code and its image are both codes of the same (up to isometry) Banach space.

2. The second subsection is devoted to the proof of Theorem 3.11, by which there is a 𝚺0
2-measurable

reduction from B to 𝑆𝐵∞(𝑋). Further, we note that the developed techniques also lead to a 𝚺0
3-

measurable reduction from P to 𝑆𝐵(𝑋), which is an improvement of the result mentioned above.

The importance of the reductions above is that there is not a big difference between Borel ranks when
considered in any of the Polish spaces mentioned above.

Let us emphasize that the existence of a Borel reduction from B to 𝑆𝐵∞(𝑋) has been essentially
proved in [24, Lemma 2.4]. Going through the proof of [24, Lemma 2.4], one may obtain a reduction
that is 𝚺0

3-measurable; however, the proof does not seem to give a 𝚺0
2-measurable reduction (which is

the optimal result). In order to obtain this improvement (see Theorem 3.11), we have to develop a whole
machinery of new ideas in combination with very technical results, and this is why we devote a whole
subsection to the proof.
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Since our reductions from 𝑆𝐵∞(𝑋) to P∞ and from B to 𝑆𝐵∞(𝑋) are optimal, it seems to be a
very interesting open problem whether there exists a continuous reduction from P∞ to B or at least a
𝚺0

2-measurable reduction from P∞ to 𝑆𝐵∞(𝑋); see Question 1 and Question 2.

3.1. Relations between codings P, P∞, B, 𝑆𝐵(𝑋) and 𝑆𝐵∞(𝑋)

Here we recall the approach to topologizing the class of all separable (infinite-dimensional) Banach
spaces by Godefroy and Saint-Raymond from [19], which was a partial motivation for our research.

Definition 3.1. Let X be a Polish space, and let us denote by F(𝑋) the set of all closed subsets of X. For
an open set 𝑈 ⊆ 𝑋 , we put 𝐸+(𝑈) = {𝐹 ∈ F(𝑋) : 𝑈 ∩ 𝐹 ≠ ∅}. Following [19], we say that a Polish
topology 𝜏 on the set F(𝑋) is admissible if it satisfies the following two conditions:

1. For every open subset U of X, the set 𝐸+(𝑈) is 𝜏-open.
2. There exists a subbasis of 𝜏 such that every set from this subbasis is a countable union of sets of the

form 𝐸+(𝑈) \ 𝐸+(𝑉), where U and V are open in X.1

We note that Godefroy and Saint-Raymond also suggest the following optional condition that is
satisfied by many natural admissible topologies.

3. The set {(𝑥, 𝐹) ∈ 𝑋 × F(𝑋) : 𝑥 ∈ 𝐹} is closed in 𝑋 × F(𝑋).

If X is a separable Banach space, we denote by 𝑆𝐵(𝑋) ⊆ F(𝑋) the set of closed vector subspaces of
X. We denote by 𝑆𝐵∞(𝑋) the subset of 𝑆𝐵(𝑋) consisting of infinite-dimensional spaces. We say that a
topology on 𝑆𝐵(𝑋) or 𝑆𝐵∞(𝑋) is admissible if it is induced by an admissible topology on F(𝑋). Both
𝑆𝐵(𝑋) and 𝑆𝐵∞(𝑋) are Polish spaces when endowed with an admissible topology; see Remark 3.2.

If Z is a separable Banach space, we put, similarly as in Notation 2.6,

〈𝑍〉≡ := {𝐹 ∈ 𝑆𝐵(𝑋) : 𝐹 ≡ 𝑍} and 〈𝑍〉� := {𝐹 ∈ 𝑆𝐵(𝑋) : 𝐹 � 𝑍}.

It will always be clear from the context whether we work with subsets of P or 𝑆𝐵(𝑋).

Remark 3.2. If X is a separable Banach space and 𝜏 is an admissible topology on F(𝑋), then 𝑆𝐵(𝑋)
is a 𝐺 𝛿-subset of (F(𝑋), 𝜏) (see [19, Section 3]). Moreover, by [19, Corollary 4.2], 𝑆𝐵∞(𝑋) is a 𝐺 𝛿-
subset of (𝑆𝐵(𝑋), 𝜏). (In fact, [19] deals only with the case 𝑋 = 𝐶 (2𝜔), but the generalization to any
separable Banach space is easy.)

A certain connection between codings 𝑆𝐵(𝑋) and P of separable Banach spaces might be deduced
already from [19].

Theorem 3.3. Let X be an isometrically universal separable Banach space, and let 𝜏 be an admissible
topology on 𝑆𝐵(𝑋). Then there is a continuous mapping Φ : (𝑆𝐵(𝑋), 𝜏) → P such that for every
𝐹 ∈ 𝑆𝐵(𝑋), we have 𝐹 ≡ 𝑋Φ(𝐹 ) .

Proof. By [19, Theorem 4.1], there are continuous functions ( 𝑓𝑛)𝑛∈N on 𝑆𝐵(𝑋) with values in X
such that for each 𝐹 ∈ 𝑆𝐵(𝑋), we have { 𝑓𝑛 (𝐹) : 𝑛 ∈ N} = 𝐹. Consider the mapping Φ given by
Φ(𝐹) (

∑𝑘
𝑛=1 𝑎𝑛𝑒𝑛) := ‖

∑𝑘
𝑛=1 𝑎𝑛 𝑓𝑛 (𝐹)‖𝑋 for every 𝐹 ∈ 𝑆𝐵(𝑋) and 𝑎1, . . . , 𝑎𝑘 ∈ Q. Then it is easy to

see that Φ is the mapping we need. �

The following relation between various codings of Banach spaces as 𝑆𝐵(𝑋) is easy.

Observation 3.4. Let 𝑋,𝑌 be isometrically universal separable Banach spaces, and let 𝜏1 and 𝜏2 be
admissible topologies on 𝑆𝐵(𝑋) and 𝑆𝐵(𝑌 ), respectively. Then there is a 𝚺0

2-measurable mapping
𝑓 : (𝑆𝐵(𝑋), 𝜏1) → (𝑆𝐵(𝑌 ), 𝜏2) such that for every 𝐹 ∈ 𝑆𝐵(𝑋), we have 𝐹 ≡ 𝑓 (𝐹). Moreover, f can be
chosen such that for every open set 𝑈 ⊆ 𝑌 there is an open set 𝑉 ⊆ 𝑋 such that 𝑓 −1(𝐸+(𝑈)) = 𝐸+(𝑉).

1Note that condition (ii) is different from what is mentioned in [19]; however, as the authors have confirmed, there is a typo in
the condition from [19] that makes it wrong (otherwise, no single one of the topologies mentioned in [19] would be admissible).
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Proof. Let 𝑗 : 𝑋 → 𝑌 be an isometry (not necessarily surjective). Then the mapping f given by
𝑓 (𝐹) := 𝑗 (𝐹), 𝐹 ∈ 𝑆𝐵(𝑋), does the job, because 𝑓 −1(𝐸+(𝑈)) = 𝐸+( 𝑗−1(𝑈)) for every open set
𝑈 ⊆ 𝑌 . �

Let us note the following easy fact, which we record here for a later reference. The proof is easy and
so is omitted.

Lemma 3.5. Let X be an isometrically universal separable Banach space, 𝜏 be an admissible topology
on 𝑆𝐵(𝑋), Y be a Polish space, 𝑓 : 𝑌 → 𝑆𝐵(𝑋) be a mapping and 𝑛 ∈ N, 𝑛 ≥ 2, be such that
𝑓 −1(𝐸+(𝑈)) is a 𝚫0

𝑛 set in Y for every open set 𝑈 ⊆ 𝑋 . Then f is 𝚺0
𝑛-measurable.

A straightforward idea leads to the following relation between P∞ and B.

Proposition 3.6. There is a 𝚺0
2-measurable mapping Φ : P∞ → B such that for every 𝜇 ∈ P∞, we have

𝑋𝜇 ≡ 𝑋Φ(𝜇) .
Moreover, Φ can be chosen such that Φ−1(𝑈 [𝑣, 𝐼]) ∈ 𝚫0

2 (P∞) for each 𝑣 ∈ 𝑉 and each open
interval I.

Proof. For each 𝜇 ∈ P∞, let us inductively define natural numbers (𝑛𝑘 (𝜇))𝑘∈N by

𝑛1(𝜇) := min{𝑛 ∈ N : 𝜇(𝑒𝑛) ≠ 0},
𝑛𝑘+1(𝜇) := min{𝑛 ∈ N : 𝑒𝑛1 (𝜇) , . . . , 𝑒𝑛𝑘 (𝜇) , 𝑒𝑛 are linearly independent}.

Consider the mapping Φ given by Φ(𝜇) (
∑𝑘
𝑖=1 𝑎𝑛𝑒𝑛) := 𝜇(

∑𝑘
𝑖=1 𝑎𝑖𝑒𝑛𝑖 (𝜇) ) for every 𝜇 ∈ P∞ and

𝑎1, . . . , 𝑎𝑘 ∈ Q. It is easy to see that Φ(𝜇) ∈ B and that 𝑋𝜇 is isometric to 𝑋Φ(𝜇) for each 𝜇 ∈ P∞.
For all natural numbers 𝑁1 < . . . < 𝑁𝑘 , the set {𝜇 ∈ P∞ : 𝑛1 (𝜇) = 𝑁1, . . . , 𝑛𝑘 (𝜇) = 𝑁𝑘 } is a 𝚫0

2 set
in P∞. Indeed, we may prove it by induction on k because for each 𝑘 ∈ N and each 𝜇 ∈ P∞, we have
that 𝑛1(𝜇) = 𝑁1, . . . , 𝑛𝑘+1(𝜇) = 𝑁𝑘+1 iff

𝑛1(𝜇) = 𝑁1, . . . , 𝑛𝑘 (𝜇) = 𝑁𝑘 &
∀𝑛 = 𝑁𝑘 + 1, . . . , 𝑁𝑘+1 − 1 : 𝑒𝑁1 , . . . , 𝑒𝑁𝑘 , 𝑒𝑛 are linearly dependent
& 𝑒𝑁1 , . . . , 𝑒𝑁𝑘+1 are linearly independent,

which is an intersection of a 𝚫0
2-condition (by the inductive assumption) with a closed and an open

condition (by Lemma 2.4).
Let us pick 𝑣 =

∑𝑘
𝑖=1 𝑎𝑛𝑒𝑛 ∈ 𝑉 and an open interval I. Then

Φ−1(𝑈 [𝑣, 𝐼]) = {𝜇 ∈ P∞ : 𝜇(
𝑘∑
𝑖=1

𝑎𝑖𝑒𝑛𝑖 (𝜇) ) ∈ 𝐼},

which is a 𝚫0
2 set in P∞. Indeed, on one hand we have 𝜇 ∈ Φ−1(𝑈 [𝑣, 𝐼]) iff there are natural numbers

𝑁1 < 𝑁2 < . . . < 𝑁𝑘 such that 𝑛1 (𝜇) = 𝑁1, . . . , 𝑛𝑘 (𝜇) = 𝑁𝑘 and 𝜇(
∑𝑘
𝑖=1 𝑎𝑖𝑒𝑁𝑖 ) ∈ 𝐼, which witnesses

that Φ−1(𝑈 [𝑣, 𝐼]) ∈ 𝚺0
2(P∞) as it is a countable union of 𝚫0

2 sets. On the other hand, we have that
𝜇 ∈ Φ−1(𝑈 [𝑣, 𝐼]) iff for each 𝑙 ∈ N, we have that either 𝑛𝑘 (𝜇) > 𝑙 or there are natural numbers
𝑁1 < 𝑁2 < . . . < 𝑁𝑘 ≤ 𝑙 such that 𝑛1 (𝜇) = 𝑁1, . . . , 𝑛𝑘 (𝜇) = 𝑁𝑘 and 𝜇(

∑𝑘
𝑖=1 𝑎𝑖𝑒𝑁𝑖 ) ∈ 𝐼, which

witnesses that Φ−1(𝑈 [𝑣, 𝐼]) ∈ 𝚷0
2(P∞) as it is a countable intersection of 𝚫0

2 sets.
This proves the ‘Moreover’ part, from which it easily follows that Φ is 𝚺0

2-measurable. �

Remark 3.7. For 𝑑 ∈ N, let us consider the sets P𝑑 := {𝜇 ∈ P : dim 𝑋𝜇 = 𝑑} and

B𝑑 := {𝜇 ∈ P : 𝑒1, . . . , 𝑒𝑑 is a basis of 𝑋𝜇 and 𝜇(𝑒𝑖) = 0 for every 𝑖 > 𝑑}.

A similar argument as in Proposition 3.6 shows that for every 𝑑 ∈ N, there is a 𝚺0
2-measurable mapping

Φ : P𝑑 → B𝑑 such that for every 𝜇 ∈ P𝑑 , we have 𝑋𝜇 ≡ 𝑋Φ(𝜇) .
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Finally, let us consider the reduction from P to 𝑆𝐵(𝑋). An optimal result would be to have a 𝚺0
2-

reduction. This is because, as was already observed in [19], the identity map between two admissible
topologies is only 𝚺0

2-measurable in general. Using the ideas of the proof of [24, Lemma 2.4], we obtain
Theorem 3.10. This result is improved in the next subsection (see Theorem 3.14), but since some steps
remain the same, let us give a sketch of the argument (we will be a bit sketchy at the places that will be
modified later).

Lemma 3.8. Let 𝑛 ∈ N, X be an isometrically universal separable Banach space and 𝜏 be an admissible
topology on 𝑆𝐵(𝑋). Let there exist 𝚺0

𝑛-measurable mappings 𝜒𝑘 : B → 𝑋 , 𝑘 ∈ N, such that 𝑋𝜇 ≡

span{𝜒𝑘 (𝜇) : 𝑘 ∈ N} for every 𝜇 ∈ B.
Then there exists a 𝚺0

𝑛+1-measurable mapping Φ : B → (𝑆𝐵(𝑋), 𝜏) such that for every 𝜇 ∈ B, we
have 𝑋𝜇 ≡ Φ(𝜇).

Proof. Consider the mapping Φ : B → (𝑆𝐵(𝑋), 𝜏) defined as

Φ(𝜈) := span{𝜒𝑘 (𝜈) : 𝑘 ∈ N}, 𝜈 ∈ B.

We have 𝑋𝜈 ≡ Φ(𝜈). For every open set 𝑈 ⊆ 𝑋 , using the 𝚺0
𝑛-measurability of 𝜒𝑘 ’s, it is easy to see

that Φ−1(𝐸+(𝑈)) is a 𝚺0
𝑛-set in B. Thus, by Lemma 3.5, the mapping Φ is 𝚺0

𝑛+1-measurable. �

Remark 3.9. Similarly as in Remark 3.7, an analogous approach leads to a similar statement valid for
any B𝑑 , 𝑑 ∈ N, instead of B.

Theorem 3.10. Let X be an isometrically universal separable Banach space, and let 𝜏 be an admissible
topology on 𝑆𝐵(𝑋). Then there is a 𝚺0

4-measurable mapping Φ : P → (𝑆𝐵(𝑋), 𝜏) such that for every
𝜇 ∈ P, we have 𝑋𝜇 ≡ Φ(𝜇).

Sketch of the proof. By Remark 3.7, it suffices to find, for every 𝑑 ∈ N ∪ {∞}, a 𝚺0
3-measurable

reduction from B𝑑 to 𝑆𝐵(𝑋), where B∞ = B. This is done for every 𝑑 ∈ N ∪ {∞} in a similar way.
Let us concentrate further only on the case of 𝑑 = ∞; the other cases are similar. From the proof of
[24, Lemma 2.4], it follows that there are Borel measurable mappings 𝜒𝑘 : B → 𝑋 , 𝑘 ∈ N, such that
𝑋𝜇 ≡ span{𝜒𝑘 (𝜇) : 𝑘 ∈ N} for every 𝜇 ∈ B. A careful inspection of the proof actually shows that
the mappings 𝜒𝑘 are 𝚺0

2-measurable (since this part is improved in the next subsection [see Proposition
3.12], we do not give any more details here). Thus, an application of Lemma 3.8 finishes the proof. �

3.2. An optimal reduction from B to 𝑆𝐵(𝑋)

The last subsection is devoted to the proof of the following result. The rest of the paper does not depend
on it.

Theorem 3.11. Let X be an isometrically universal separable Banach space, and let 𝜏 be an admissible
topology on 𝑆𝐵(𝑋). Then there is a 𝚺0

2-measurable mapping Φ : B → (𝑆𝐵(𝑋), 𝜏) such that for every
𝜇 ∈ B, we have 𝑋𝜇 ≡ Φ(𝜇).

The main ingredient of the proof is the following.

Proposition 3.12. For any isometrically universal separable Banach space 𝑋 , there exist continuous
mappings 𝜒𝑘 : B → 𝑋, 𝑘 ∈ N, such that��� 𝑛∑

𝑘=1
𝑎𝑘 𝜒𝑘 (𝜈)

��� = 𝜈
( 𝑛∑
𝑘=1

𝑎𝑘𝑒𝑘

)
for every

∑𝑛
𝑘=1 𝑎𝑘𝑒𝑘 ∈ 𝑐00 and every 𝜈 ∈ B.
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Remark 3.13. Similarly as in Remark 3.7, we may easily obtain a variant of Proposition 3.12 for B𝑑 ,
𝑑 ∈ N. Indeed, let 𝑑 ∈ N be given. For 𝜈 ∈ B𝑑 , let us define �̃� ∈ B by

�̃�
( ∞∑
𝑖=1

𝑎𝑖𝑒𝑖

)
:= 𝜈

( 𝑑∑
𝑖=1

𝑎𝑖𝑒𝑖

)
+

∞∑
𝑖=𝑑+1

|𝑎𝑖 |,
∞∑
𝑖=1

𝑎𝑖𝑒𝑖 ∈ 𝑐00.

If 𝜒𝑘 , 𝑘 ∈ N, are as in Proposition 3.12, then we may consider mappings �̃�𝑘 : B𝑑 → 𝑋 , 𝑘 ≤ 𝑑, defined
by �̃�𝑘 (𝜈) = 𝜒𝑘 (�̃�), 𝜈 ∈ B𝑑 .

We postpone the proof of Proposition 3.12 to the very end of this subsection.

Proof of Theorem 3.11. Follows immediately from Lemma 3.8 and Proposition 3.12. �

Similarly as above, we obtain also the following.

Theorem 3.14. Let X be an isometrically universal separable Banach space, and let 𝜏 be an admissible
topology on 𝑆𝐵(𝑋). Then there is a 𝚺0

3-measurable mapping Φ : P → (𝑆𝐵(𝑋), 𝜏) such that for every
𝜇 ∈ P, we have 𝑋𝜇 ≡ Φ(𝜇).

Proof. This is similar to the proof of Theorem 3.10; the only modification is that we use Proposition
3.12 and Remark 3.13 instead of the reference to the proof of [24, Lemma 2.4]. �

The aim of the remainder of this subsection is now to prove Proposition 3.12. Its proof is based on
two auxiliary results, namely Proposition 3.15 and Lemma 3.18; the first of them is a reformulation of
our task. Although we will use only the implication (2′) ⇒ (1) for the set of norms with 𝜈(𝑒𝑘 ) = 1,
we prove a bit more and keep the formulation for a general set of (pseudo)norms. The implication
(1) ⇒ (2), which is not obligatory for us, is a simple application of the Hahn-Banach theorem, and we
think it is appropriate to include the proof.

In fact, we do not know if the conditions hold for the set of all pseudonorms (or, equivalently, for the
set of pseudonorms with 𝜈(𝑒𝑘 ) ≤ 1). So, it is open if Proposition 3.12 holds not only for B, but even
for P.

Proposition 3.15. For each A ⊆ P, the following conditions are equivalent:
(1) There are a separable Banach space 𝑈 and continuous mappings 𝜒𝑘 : A → 𝑈, 𝑘 ∈ N, such that��� 𝑛∑

𝑘=1
𝑎𝑘 𝜒𝑘 (𝜈)

��� = 𝜈
( 𝑛∑
𝑘=1

𝑎𝑘𝑒𝑘

)
for every

∑𝑛
𝑘=1 𝑎𝑘𝑒𝑘 ∈ 𝑐00 and every 𝜈 ∈ A.

(2) There are continuous functions 𝛼𝑘 : A2 → [0,∞), 𝑘 ∈ N, such that

𝛼𝑘 (𝜈, 𝜈) = 0

for every 𝜈 and 𝑘 , and the following property is satisfied: If 𝜈 ∈ A and 𝑧∗ ∈ (𝑐00)
# satisfy |𝑧∗(𝑥) | ≤ 𝜈(𝑥)

for every 𝑥 ∈ 𝑐00, then there is a mapping Γ : A → (𝑐00)
# such that Γ(𝜈) = 𝑧∗, |Γ(𝜇) (𝑥) | ≤ 𝜇(𝑥) for

every 𝜇 ∈ A and 𝑥 ∈ 𝑐00, and

|Γ(𝜇) (𝑒𝑘 ) − Γ(𝜆) (𝑒𝑘 ) | ≤ 𝛼𝑘 (𝜇, 𝜆)

for every 𝜇, 𝜆 ∈ A and every 𝑘 .
Moreover, if A consists only of pseudonorms 𝜈 with 𝜈(𝑒𝑘 ) ≤ 1 for every 𝑘 , then these conditions are

equivalent with:
(2’) For every 𝜂 ∈ [0, 1), there are continuous functions 𝛽𝑘 : A2 → [0,∞), 𝑘 ∈ N, such that

𝛽𝑘 (𝜈, 𝜈) = 0
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for every 𝜈 and 𝑘 , and the following property is satisfied: If 𝜈 ∈ A and 𝑧∗ ∈ (𝑐00)
# satisfy |𝑧∗(𝑥) | ≤ 𝜈(𝑥)

for every 𝑥 ∈ 𝑐00, then there is a mapping Γ : A → (𝑐00)
# such that Γ(𝜈) = 𝜂 · 𝑧∗, |Γ(𝜇) (𝑥) | ≤ 𝜇(𝑥) for

every 𝜇 ∈ A and 𝑥 ∈ 𝑐00, and

|Γ(𝜇) (𝑒𝑘 ) − Γ(𝜆) (𝑒𝑘 ) | ≤ 𝛽𝑘 (𝜇, 𝜆)

for every 𝜇, 𝜆 ∈ A and every 𝑘 .

Remark 3.16. The conditions (1) and (2) from Proposition 3.15 are also equivalent to the following one:
(3) There are continuous functions 𝛼𝑘 : A2 → [0,∞), 𝑘 ∈ N, such that

𝛼𝑘 (𝜈, 𝜈) = 0

for every 𝜈 and 𝑘 and∑
𝜇,𝜆,𝑘

|𝑎𝜇,𝜆,𝑘 |𝛼𝑘 (𝜇, 𝜆) ≥ 𝜈
( ∑
𝜆,𝑘

(𝑎𝜈,𝜆,𝑘 − 𝑎𝜆,𝜈,𝑘 )𝑒𝑘

)
−

∑
𝜇≠𝜈

𝜇
( ∑
𝜆,𝑘

(𝑎𝜇,𝜆,𝑘 − 𝑎𝜆,𝜇,𝑘 )𝑒𝑘

)
for every 𝜈 ∈ A and every system (𝑎𝜇,𝜆,𝑘 )𝜇,𝜆∈A,𝑘∈N of real numbers with finite support.

The proof is similar to the proof of (1) ⇔ (2) below (for (1) ⇒ (3), the choice of 𝛼𝑘 ’s is the same as
in the proof of (1) ⇒ (2); for (3) ⇒ (1), the construction of the space U is the same as in (2) ⇒ (1)).
We omit the full proof because the details are technical, and we do not use condition (3) any further.
Let us note that even though we tried to find an application of condition (3), we did not find it, and this
is basically why we had to develop conditions (2) and (2′).

Proof of Proposition 3.15. (1) ⇒ (2): Given such 𝑈 and 𝜒𝑘 : A → 𝑈, 𝑘 ∈ N, we put

𝛼𝑘 (𝜈, 𝜇) = ‖𝜒𝑘 (𝜈) − 𝜒𝑘 (𝜇)‖, 𝜈, 𝜇 ∈ A, 𝑘 ∈ N.

Denote by 𝐼𝜇 : (𝑐00, 𝜇) → 𝑈 the isometry given by 𝑒𝑘 ↦→ 𝜒𝑘 (𝜇). Let 𝜈 ∈ A and 𝑧∗ ∈ (𝑐00)
# satisfying

|𝑧∗(𝑥) | ≤ 𝜈(𝑥) be given. For 𝑥, 𝑦 ∈ 𝑐00 with 𝐼𝜈𝑥 = 𝐼𝜈𝑦, we have |𝑧∗(𝑦−𝑥) | ≤ 𝜈(𝑦−𝑥) = ‖𝐼𝜈 (𝑦−𝑥)‖ = 0,
and so 𝑧∗(𝑥) = 𝑧∗(𝑦). Thus, the formula

𝑢∗(𝐼𝜈𝑥) = 𝑧∗(𝑥), 𝑥 ∈ 𝑐00,

defines a functional on 𝐼𝜈 (𝑐00) such that |𝑢∗(𝐼𝜈𝑥) | = |𝑧∗(𝑥) | ≤ 𝜈(𝑥) = ‖𝐼𝜈𝑥‖. By the Hahn-Banach
theorem, we can extend 𝑢∗ to the whole 𝑈 in the way that

|𝑢∗(𝑢) | ≤ ‖𝑢‖, 𝑢 ∈ 𝑈.

For every 𝜇 ∈ A, let us put

Γ(𝜇) (𝑥) = 𝑢∗(𝐼𝜇𝑥), 𝑥 ∈ 𝑐00.

We obtain |Γ(𝜇) (𝑥) | = |𝑢∗(𝐼𝜇𝑥) | ≤ ‖𝐼𝜇𝑥‖ = 𝜇(𝑥) and |Γ(𝜇) (𝑒𝑘 )−Γ(𝜆) (𝑒𝑘 ) | = |𝑢∗(𝐼𝜇𝑒𝑘 )−𝑢
∗(𝐼𝜆𝑒𝑘 ) | =

|𝑢∗(𝜒𝑘 (𝜇) − 𝜒𝑘 (𝜆)) | ≤ ‖𝜒𝑘 (𝜇) − 𝜒𝑘 (𝜆)‖ = 𝛼𝑘 (𝜇, 𝜆) for 𝜇, 𝜆 ∈ A and 𝑘 ∈ N.
(2) ⇒ (1): Given such 𝛼𝑘 : A2 → [0,∞), 𝑘 ∈ N, we define a subset of 𝑐00 (A × N) by

Ω = co
( ⋃
𝜇

{ ∑
𝑘

𝑎𝑘𝑒𝜇,𝑘 : 𝜇
( ∑

𝑘

𝑎𝑘𝑒𝑘

)
≤ 1

}
∪

⋃
𝜇,𝜆,𝑘

{
𝑐 · (𝑒𝜇,𝑘 − 𝑒𝜆,𝑘 ) : |𝑐 | · 𝛼𝑘 (𝜇, 𝜆) ≤ 1

})
,
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and denote the corresponding Minkowski functional by 𝜚. Let𝑈 be the completion of the quotient space
𝑋/𝑁 , where 𝑋 = (𝑐00 (A × N), 𝜚) and 𝑁 = {𝑥 ∈ 𝑐00 (A × N) : 𝜌(𝑥) = 0}. In what follows, we identify
every 𝑥 ∈ 𝑐00 (A × N) with its equivalence class [𝑥]𝑁 ∈ 𝑈. Let us define

𝜒𝑘 : A → 𝑈, 𝜈 ↦→ 𝑒𝜈,𝑘 .

As 𝑐 · (𝑒𝜇,𝑘 − 𝑒𝜆,𝑘 ) ∈ Ω whenever |𝑐 | · 𝛼𝑘 (𝜇, 𝜆) ≤ 1, we obtain 𝜚(𝑒𝜇,𝑘 − 𝑒𝜆,𝑘 ) ≤ 𝛼𝑘 (𝜇, 𝜆): that is,
𝜚(𝜒𝑘 (𝜇) − 𝜒𝑘 (𝜆)) ≤ 𝛼𝑘 (𝜇, 𝜆). For a fixed 𝜇, we have 𝛼𝑘 (𝜇, 𝜆) → 𝛼𝑘 (𝜇, 𝜇) = 0 as 𝜆 → 𝜇, and
consequently 𝜚(𝜒𝑘 (𝜇) − 𝜒𝑘 (𝜆)) → 0 as 𝜆 → 𝜇. Therefore, 𝜒𝑘 is continuous on A. It follows that the
image of 𝜒𝑘 is separable. As these images contain all basic vectors 𝑒𝜈,𝑘 , the space 𝑈 is separable.

We need to show that

𝜈(𝑥) = 𝜚(𝑥)

for fixed 𝜈 ∈ A, 𝑥 =
∑
𝑘∈N 𝑎𝑘𝑒𝑘 ∈ 𝑐00 and its image 𝑥 =

∑
𝑘∈N 𝑎𝑘𝑒𝜈,𝑘 . The inequality 𝜈(𝑥) ≥ 𝜚(𝑥)

follows immediately from the definition of Ω (for any 𝑐 ≥ 𝜈(𝑥) with 𝑐 > 0, we have 𝜈( 1
𝑐 𝑥) ≤ 1, and

so 1
𝑐 𝑥 ∈ Ω, hence 𝜚( 1

𝑐 𝑥) ≤ 1 and 𝜚(𝑥) ≤ 𝑐). Let us show the opposite inequality 𝜈(𝑥) ≤ 𝜚(𝑥). Using
the Hahn-Banach theorem, we can pick 𝑧∗ ∈ (𝑐00)

# satisfying 𝑧∗(𝑥) = 𝜈(𝑥) and |𝑧∗(𝑦) | ≤ 𝜈(𝑦) for
every 𝑦 ∈ 𝑐00. Let Γ : A → (𝑐00)

# be the mapping provided for 𝜈 and 𝑧∗, and let 𝑢∗ ∈ (𝑐00 (A × N))#

be given by

𝑢∗(𝑒𝜇,𝑘 ) = Γ(𝜇) (𝑒𝑘 ), 𝜇 ∈ A, 𝑘 ∈ N.

Then 𝑢∗(𝑥) = 𝑢∗(
∑
𝑘 𝑎𝑘𝑒𝜈,𝑘 ) =

∑
𝑘 𝑎𝑘𝑢

∗(𝑒𝜈,𝑘 ) =
∑
𝑘 𝑎𝑘Γ(𝜈) (𝑒𝑘 ) = Γ(𝜈) (

∑
𝑘 𝑎𝑘𝑒𝑘 ) = 𝑧∗(𝑥) = 𝜈(𝑥). It

is sufficient to show that 𝑢∗ ≤ 1 on Ω (equivalently |𝑢∗(𝑦) | ≤ 𝜚(𝑦) for every 𝑦 ∈ 𝑐00 (A × N)), since it
follows that 𝜈(𝑥) = 𝑢∗(𝑥) ≤ 𝜚(𝑥).

To show that 𝑢∗ ≤ 1 on Ω, we need to check that

𝜇
( ∑

𝑘

𝑏𝑘𝑒𝑘

)
≤ 1 ⇒ 𝑢∗

( ∑
𝑘

𝑏𝑘𝑒𝜇,𝑘

)
≤ 1

and

|𝑐 | · 𝛼𝑘 (𝜇, 𝜆) ≤ 1 ⇒ 𝑢∗
(
𝑐 · (𝑒𝜇,𝑘 − 𝑒𝜆,𝑘 )

)
≤ 1.

Concerning the first implication, we compute 𝑢∗(
∑
𝑘 𝑏𝑘𝑒𝜇,𝑘 ) =

∑
𝑘 𝑏𝑘𝑢

∗(𝑒𝜇,𝑘 ) =
∑
𝑘 𝑏𝑘Γ(𝜇) (𝑒𝑘 ) =

Γ(𝜇) (
∑
𝑘 𝑏𝑘𝑒𝑘 ) ≤ 𝜇(

∑
𝑘 𝑏𝑘𝑒𝑘 ) ≤ 1. Concerning the second implication, we compute 𝑢∗(𝑐 · (𝑒𝜇,𝑘 −

𝑒𝜆,𝑘 )) = 𝑐𝑢∗(𝑒𝜇,𝑘 ) − 𝑐𝑢∗(𝑒𝜆,𝑘 ) = 𝑐Γ(𝜇) (𝑒𝑘 ) − 𝑐Γ(𝜆) (𝑒𝑘 ) ≤ |𝑐 |𝛼𝑘 (𝜇, 𝜆) ≤ 1.
(2) ⇒ (2’): The choice 𝛽𝑘 = 𝛼𝑘 works. Indeed, if Γ is provided by (2), we can take 𝜂 · Γ.
(2’) ⇒ (2): For every 𝑛 ∈ N, let 𝛽𝑛𝑘 : A2 → [0,∞), 𝑘 ∈ N, be provided by (2’) for 𝜂 = (1− 2−𝑛). We

can assume that each 𝛽𝑛𝑘 is a pseudometric. Indeed, instead of 𝛽𝑛𝑘 , we can take the maximal minorizing
pseudometric 𝛽𝑛𝑘 (in such a case, 𝛽𝑛𝑘 is continuous, and since the function (𝜇, 𝜆) ↦→ |Γ(𝜇) (𝑒𝑘 ) −

Γ(𝜆) (𝑒𝑘 ) | is a pseudometric, if it minorizes 𝛽𝑛𝑘 , then it minorizes 𝛽𝑛𝑘 as well). Moreover, we can assume
that 𝛽1

1 is a metric (it is possible to add a compatible metric on A to 𝛽1
1).

Let us define

𝛼(𝜇, 𝜆) = max
𝑛,𝑘

min{𝛽𝑛𝑘 (𝜇, 𝜆), 2
−max{𝑛,𝑘 }}, 𝜇, 𝜆 ∈ A.

It is easy to check that 𝛼 is continuous. Due to our additional assumptions, 𝛼 is a metric on A. We want
to show that there are some constants 𝑐𝑘 such that the choice 𝛼𝑘 = 𝑐𝑘 · 𝛼 works.

https://doi.org/10.1017/fms.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.16


Forum of Mathematics, Sigma 15

Let 𝜈 ∈ A and 𝑧∗ ∈ (𝑐00)
# satisfy |𝑧∗(𝑥) | ≤ 𝜈(𝑥) for every 𝑥 ∈ 𝑐00. For every 𝑛 ∈ N, there is a

mapping Γ𝑛 : A → (𝑐00)
# such that

Γ𝑛 (𝜈) = (1 − 2−𝑛) · 𝑧∗,

|Γ𝑛 (𝜇) (𝑥) | ≤ 𝜇(𝑥), 𝜇 ∈ A, 𝑥 ∈ 𝑐00,

and, if we denote

𝛾𝑛𝑘 (𝜇) = Γ𝑛 (𝜇) (𝑒𝑘 ),

then

|𝛾𝑛𝑘 (𝜇) − 𝛾𝑛𝑘 (𝜆) | ≤ 𝛽𝑛𝑘 (𝜇, 𝜆)

for every 𝜇, 𝜆 ∈ A and every 𝑘 . Let us note that

|𝛾𝑛𝑘 (𝜇) | ≤ 1,

as |𝛾𝑛𝑘 (𝜇) | = |Γ𝑛 (𝜇) (𝑒𝑘 ) | ≤ 𝜇(𝑒𝑘 ) ≤ 1 by the assumption on A.
Now, we define the desired mapping Γ. For practical purposes, we first define

𝛾𝑛𝑘 (𝜇) = 0 for 𝑛 ∈ Z, 𝑛 ≤ 0.

For every 𝑛 ∈ Z, let 𝑓𝑛 denote the piecewise linear function supported by [2−𝑛−3, 2−𝑛−1], which is linear
on [2−𝑛−3, 2−𝑛−2] and [2−𝑛−2, 2−𝑛−1], and for which 𝑓𝑛 (2−𝑛−2) = 1. In this way, we have

∑
𝑛∈Z 𝑓𝑛 = 1

on (0,∞). We define

𝛾𝑘 (𝜈) = 𝑧∗(𝑒𝑘 )

and

𝛾𝑘 (𝜇) =
∑
𝑛∈Z

𝑓𝑛 (𝛼(𝜇, 𝜈))𝛾
𝑛
𝑘 (𝜇), 𝜇 ≠ 𝜈.

Finally, we put Γ(𝜇) (𝑒𝑘 ) = 𝛾𝑘 (𝜇), so Γ(𝜈) = 𝑧∗ and Γ(𝜇) =
∑
𝑛∈N 𝑓𝑛 (𝛼(𝜇, 𝜈))Γ𝑛 (𝜇) for 𝜇 ≠ 𝜈. In

both cases 𝜇 = 𝜈 and 𝜇 ≠ 𝜈, it follows that |Γ(𝜇) (𝑥) | ≤ 𝜇(𝑥) for every 𝑥 ∈ 𝑐00. It remains to prove the
inequality

|𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) | ≤ 𝑐𝑘 · 𝛼(𝜇, 𝜆)

for some suitable constants 𝑐𝑘 .
Let us show that the implication

𝛼(𝜇, 𝜆) < 2−𝑛 ⇒ |𝛾𝑛𝑘 (𝜇) − 𝛾𝑛𝑘 (𝜆) | ≤ 2𝑘+1𝛼(𝜇, 𝜆) (3.1)

holds. Clearly, we can suppose that 𝑛 ≥ 1. If 𝛼(𝜇, 𝜆) ≥ 2−𝑘 , then 2𝑘+1𝛼(𝜇, 𝜆) ≥ 2 ≥ |𝛾𝑛𝑘 (𝜇) −

𝛾𝑛𝑘 (𝜆) |. So, let us assume that 𝛼(𝜇, 𝜆) < 2−𝑘 . Since min{𝛽𝑛𝑘 (𝜇, 𝜆), 2
−max{𝑛,𝑘 }} ≤ 𝛼(𝜇, 𝜆) <

2−max{𝑛,𝑘 }, we have min{𝛽𝑛𝑘 (𝜇, 𝜆), 2
−max{𝑛,𝑘 }} = 𝛽𝑛𝑘 (𝜇, 𝜆), and so |𝛾𝑛𝑘 (𝜇) − 𝛾𝑛𝑘 (𝜆) | ≤ 𝛽𝑛𝑘 (𝜇, 𝜆) =

min{𝛽𝑛𝑘 (𝜇, 𝜆), 2
−max{𝑛,𝑘 }} ≤ 𝛼(𝜇, 𝜆) ≤ 2𝑘+1𝛼(𝜇, 𝜆).

Next, we show that

2−𝑛−4 ≤ 𝛼(𝜇, 𝜈) < 2−𝑛 ⇒ |𝛾𝑛𝑘 (𝜇) − 𝛾𝑘 (𝜈) | ≤ (2𝑘+1 + 16)𝛼(𝜇, 𝜈). (3.2)
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If 𝑛 ≥ 1, then 𝛾𝑘 (𝜈) − 𝛾𝑛𝑘 (𝜈) = 𝑧∗(𝑒𝑘 ) − (1 − 2−𝑛)𝑧∗(𝑒𝑘 ) = 2−𝑛𝑧∗(𝑒𝑘 ). If 𝑛 ≤ 0, then 𝛾𝑘 (𝜈) − 𝛾𝑛𝑘 (𝜈) =
𝑧∗(𝑒𝑘 ). In both cases, |𝛾𝑘 (𝜈) − 𝛾𝑛𝑘 (𝜈) | ≤ 2−𝑛 |𝑧∗(𝑒𝑘 ) | ≤ 2−𝑛𝜈(𝑒𝑘 ) ≤ 2−𝑛 ≤ 24𝛼(𝜇, 𝜈). Using formula
(3.1), we can compute

|𝛾𝑛𝑘 (𝜇) − 𝛾𝑘 (𝜈) | ≤ |𝛾𝑛𝑘 (𝜇) − 𝛾𝑛𝑘 (𝜈) | + |𝛾𝑛𝑘 (𝜈) − 𝛾𝑘 (𝜈) | ≤ (2𝑘+1 + 24)𝛼(𝜇, 𝜈).

Further, it follows from formula (3.2) that

|𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜈) | ≤ (2𝑘+1 + 16)𝛼(𝜇, 𝜈). (3.3)

Indeed, since 𝑓𝑛 is supported by [2−𝑛−3, 2−𝑛−1], we always have

𝑓𝑛 (𝛼(𝜇, 𝜈)) |𝛾
𝑛
𝑘 (𝜇) − 𝛾𝑘 (𝜈) | ≤ 𝑓𝑛 (𝛼(𝜇, 𝜈)) (2𝑘+1 + 16)𝛼(𝜇, 𝜈),

and it is sufficient to use that 𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜈) =
∑
𝑛∈Z 𝑓𝑛 (𝛼(𝜇, 𝜈)) (𝛾

𝑛
𝑘 (𝜇) − 𝛾𝑘 (𝜈)) for 𝜇 ≠ 𝜈.

Now, we are going to investigate the value |𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) |. First, we have

𝛼(𝜆, 𝜈) ≥ 2𝛼(𝜇, 𝜈) ⇒ |𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) | ≤ 3 · (2𝑘+1 + 16)𝛼(𝜇, 𝜆). (3.4)

Indeed, as 𝛼(𝜇, 𝜆) ≥ 𝛼(𝜆, 𝜈) − 𝛼(𝜇, 𝜈) ≥ 2𝛼(𝜇, 𝜈) − 𝛼(𝜇, 𝜈) = 𝛼(𝜇, 𝜈), we can apply inequality (3.3)
and write

|𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) | ≤ |𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜈) | + |𝛾𝑘 (𝜆) − 𝛾𝑘 (𝜈) |

≤ (2𝑘+1 + 16) (𝛼(𝜇, 𝜈) + 𝛼(𝜆, 𝜈))
= (2𝑘+1 + 16) (𝛼(𝜆, 𝜈) − 𝛼(𝜇, 𝜈) + 2𝛼(𝜇, 𝜈))
≤ (2𝑘+1 + 16) (1 + 2)𝛼(𝜇, 𝜆).

Now, we prove the last but most challenging implication:

𝛼(𝜇, 𝜈) ≤ 𝛼(𝜆, 𝜈) < 2𝛼(𝜇, 𝜈) ⇒ |𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) | ≤ [12(2𝑘+1 + 16) + 2𝑘+1]𝛼(𝜇, 𝜆). (3.5)

Let us compute

𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) =
∑
𝑛∈Z

[
𝑓𝑛 (𝛼(𝜇, 𝜈))𝛾

𝑛
𝑘 (𝜇) − 𝑓𝑛 (𝛼(𝜆, 𝜈))𝛾

𝑛
𝑘 (𝜆)

]
=

∑
𝑛∈Z

[
𝑓𝑛 (𝛼(𝜇, 𝜈))𝛾

𝑛
𝑘 (𝜇) − 𝑓𝑛 (𝛼(𝜆, 𝜈))𝛾

𝑛
𝑘 (𝜇) + 𝑓𝑛 (𝛼(𝜆, 𝜈))𝛾

𝑛
𝑘 (𝜇) − 𝑓𝑛 (𝛼(𝜆, 𝜈))𝛾

𝑛
𝑘 (𝜆)

]
=

∑
𝑛∈Z

[ 𝑓𝑛 (𝛼(𝜇, 𝜈)) − 𝑓𝑛 (𝛼(𝜆, 𝜈))]𝛾
𝑛
𝑘 (𝜇) +

∑
𝑛∈Z

𝑓𝑛 (𝛼(𝜆, 𝜈)) [𝛾
𝑛
𝑘 (𝜇) − 𝛾𝑛𝑘 (𝜆)]

=
∑
𝑛∈Z

[ 𝑓𝑛 (𝛼(𝜇, 𝜈)) − 𝑓𝑛 (𝛼(𝜆, 𝜈))] (𝛾
𝑛
𝑘 (𝜇) − 𝛾𝑘 (𝜈)) +

∑
𝑛∈Z

𝑓𝑛 (𝛼(𝜆, 𝜈)) [𝛾
𝑛
𝑘 (𝜇) − 𝛾𝑛𝑘 (𝜆)] .

Hence, |𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) | is less than or equal to∑
𝑛∈Z

| 𝑓𝑛 (𝛼(𝜇, 𝜈)) − 𝑓𝑛 (𝛼(𝜆, 𝜈)) | |𝛾
𝑛
𝑘 (𝜇) − 𝛾𝑘 (𝜈) | +

∑
𝑛∈Z

𝑓𝑛 (𝛼(𝜆, 𝜈)) |𝛾
𝑛
𝑘 (𝜇) − 𝛾𝑛𝑘 (𝜆) |.

Let us notice that

◦ 𝑓𝑛 (𝛼(𝜇, 𝜈)) ≠ 0 iff 2−𝑛−3 < 𝛼(𝜇, 𝜈) < 2−𝑛−1,
◦ 𝑓𝑛 (𝛼(𝜆, 𝜈)) ≠ 0 iff 2−𝑛−3 < 𝛼(𝜆, 𝜈) < 2−𝑛−1, and 2−𝑛−4 < 𝛼(𝜇, 𝜈) < 2−𝑛−1 in this case,
◦ the function 𝑓𝑛 is Lipschitz with the constant 2𝑛+3.
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So, if 𝑓𝑛 (𝛼(𝜇, 𝜈)) ≠ 0 or 𝑓𝑛 (𝛼(𝜆, 𝜈)) ≠ 0, then 2−𝑛−4 < 𝛼(𝜇, 𝜈) < 2−𝑛−1, and formula (3.2) can be
applied. We obtain for the first sum that∑

𝑛∈Z

| 𝑓𝑛 (𝛼(𝜇, 𝜈)) − 𝑓𝑛 (𝛼(𝜆, 𝜈)) | |𝛾
𝑛
𝑘 (𝜇) − 𝛾𝑘 (𝜈) |

≤
∑

2−𝑛−4<𝛼(𝜇,𝜈)<2−𝑛−1

2𝑛+3 |𝛼(𝜇, 𝜈) − 𝛼(𝜆, 𝜈) |(2𝑘+1 + 16)𝛼(𝜇, 𝜈)

≤
∑

2−𝑛−4<𝛼(𝜇,𝜈)<2−𝑛−1

2𝑛+3𝛼(𝜇, 𝜆) (2𝑘+1 + 16)2−𝑛−1

≤ 3 · 22 (2𝑘+1 + 16)𝛼(𝜇, 𝜆).

Concerning the second sum, we notice that if 𝑓𝑛 (𝛼(𝜆, 𝜈)) ≠ 0, then 𝛼(𝜆, 𝜈) < 2−𝑛−1, and so
𝛼(𝜇, 𝜆) ≤ 𝛼(𝜇, 𝜈) + 𝛼(𝜆, 𝜈) ≤ 2𝛼(𝜆, 𝜈) < 2−𝑛. Applying formula (3.1), we obtain∑

𝑛∈Z

𝑓𝑛 (𝛼(𝜆, 𝜈)) |𝛾
𝑛
𝑘 (𝜇) − 𝛾𝑛𝑘 (𝜆) | ≤

∑
𝑛∈Z

𝑓𝑛 (𝛼(𝜆, 𝜈))2𝑘+1𝛼(𝜇, 𝜆) = 2𝑘+1𝛼(𝜇, 𝜆),

and formula (3.5) follows.
Finally, we finish the proof with the observation that formulas (3.4) and (3.5) provide

|𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) | ≤ [12(2𝑘+1 + 16) + 2𝑘+1]𝛼(𝜇, 𝜆).

We can suppose that 𝛼(𝜇, 𝜈) ≤ 𝛼(𝜆, 𝜈). If 𝛼(𝜆, 𝜈) ≥ 2𝛼(𝜇, 𝜈), we use formula (3.4), and if 𝛼(𝜆, 𝜈) <
2𝛼(𝜇, 𝜈), we use formula (3.5). �

Definition 3.17. Let B(1) denote the set of all norms 𝜈 ∈ B such that 𝜈(𝑒𝑘 ) = 1 for each 𝑘 ∈ N.

Now we introduce the second auxiliary result for proving Proposition 3.12.

Lemma 3.18. Condition (2’) from Proposition 3.15 is valid for A = B(1) .

The proof of the lemma is organized according to the order of quantifiers in condition (2’). This
is perhaps not the most natural order for reading, and the reader may skip the first paragraph of the
proof, in which the functions 𝛽𝑘 are introduced in a somewhat incomprehensible way, and come back
later. The next part, in which functions 𝛾𝑘 (the coordinates of Γ) are constructed, is natural in some
sense. In a recursive procedure, functionals are extended to a space with dimension 1 bigger, so there
are similarities with the proof of the Hanh-Banach theorem. In our situation, the upper bound by the
corresponding norm is a bit relaxed in each step (see formula (3.7)), which is allowed since we prove
the relaxed condition (2’). This is needed later for having a control over the difference |𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) |.

Proof. Let 𝜂 ∈ [0, 1) be given. We fix numbers 𝜅𝑘 < 1 such that 𝜂 ≤ 𝜅1 < 𝜅2 < 𝜅3 < . . . . For every
𝜇, 𝜆 ∈ B(1) , we define recursively

𝛽1 (𝜇, 𝜆) = 0

and

𝛽𝑘+1(𝜇, 𝜆) = sup
{���𝜇(

𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
− 𝜆

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)��� + 𝑘∑
𝑖=1

|𝑎𝑖 |𝛽𝑖 (𝜇, 𝜆) :

𝑎1, . . . , 𝑎𝑘 ∈ R, min
{
𝜇

( 𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
, 𝜆

( 𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)}
<

2𝜅𝑘+1
𝜅𝑘+1 − 𝜅𝑘

}
.
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Clearly, 𝛽𝑘 (𝜈, 𝜈) = 0 for every 𝜈 ∈ B(1) . Let us sketch a proof of continuity of the functions 𝛽𝑘 . The
function 𝛽1 = 0 is obviously continuous. Assuming that 𝛽𝑖 is continuous for every 𝑖 ≤ 𝑘 , we consider
for 𝛿 > 0 the set

U𝑘+1
𝛿 (𝜇) =

{
𝜇′ ∈ B(1) :

(
∀𝑥 ∈ span{𝑒1, . . . , 𝑒𝑘+1} \ {0} : (1 + 𝛿)−1 <

𝜇′(𝑥)

𝜇(𝑥)
< 1 + 𝛿

)}
.

Using Lemma 2.2, it is easy to see that U𝑘+1
𝛿 (𝜇) is an open neighborhood of 𝜇 in B(1) . Given 𝜀 > 0, we

can find 𝛿 > 0 such that |𝛽𝑘+1 (𝜇
′, 𝜆′) − 𝛽𝑘+1(𝜇, 𝜆) | < 𝜀 for every (𝜇′, 𝜆′) ∈ U𝑘+1

𝛿 (𝜇) × U𝑘+1
𝛿 (𝜆). The

details are left to the reader.
Let us prove that the functions 𝛽𝑘 work. Given 𝜈 ∈ B(1) and 𝑧∗ ∈ (𝑐00)

# satisfying |𝑧∗(𝑥) | ≤ 𝜈(𝑥)
for every 𝑥 ∈ 𝑐00, we define first

𝛾1 (𝜇) = 𝜂 · 𝑧∗(𝑒1), 𝜇 ∈ B(1) .

Recursively, we define for every 𝑘 ∈ N functions

𝑢𝑘+1(𝜇) = sup
𝑎1 ,...,𝑎𝑘

[
− 𝜅𝑘+1𝜇

(
− 𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
+

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜇)
]
,

𝑣𝑘+1(𝜇) = inf
𝑎1 ,...,𝑎𝑘

[
𝜅𝑘+1𝜇

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
−

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜇)
]

and

𝛾𝑘+1 (𝜇) = 𝑝𝑘+1𝑢𝑘+1(𝜇) + 𝑞𝑘+1𝑣𝑘+1(𝜇),

where numbers 𝑝𝑘+1 ≥ 0, 𝑞𝑘+1 ≥ 0 with 𝑝𝑘+1 + 𝑞𝑘+1 = 1 are chosen in the way that

𝛾𝑘+1(𝜈) = 𝜂 · 𝑧∗(𝑒𝑘+1). (3.6)

Let us check that it is possible to choose such numbers. Note first that 𝛾1 (𝜈) = 𝜂 · 𝑧∗(𝑒1). Assuming that
the functions 𝛾𝑖 are already defined and satisfy 𝛾𝑖 (𝜈) = 𝜂 · 𝑧∗(𝑒𝑖) for 𝑖 ≤ 𝑘 , we notice that, for every
𝑎1, . . . , 𝑎𝑘 ∈ R,

±𝜂 · 𝑧∗(𝑒𝑘+1) +

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜈) = 𝜂 · 𝑧∗
(
± 𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
≤ 𝜅𝑘+1𝜈

(
± 𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
,

and consequently

𝜂 · 𝑧∗(𝑒𝑘+1) ≥ −𝜅𝑘+1𝜈
(
− 𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
+

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜈),

𝜂 · 𝑧∗(𝑒𝑘+1) ≤ 𝜅𝑘+1𝜈
(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
−

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜈).

This gives

𝑢𝑘+1(𝜈) ≤ 𝜂 · 𝑧∗(𝑒𝑘+1) ≤ 𝑣𝑘+1(𝜈),

and it follows that suitable 𝑝𝑘+1 and 𝑞𝑘+1 do exist.
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Let us prove that

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜇) ≤ 𝜅𝑘𝜇
( 𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
(3.7)

for every 𝜇 ∈ B(1) , 𝑘 ∈ N and 𝑎1, . . . , 𝑎𝑘 ∈ R. For 𝑘 = 1, we just write 𝑎1𝛾1 (𝜇) = 𝑎1𝜂 · 𝑧∗(𝑒1) ≤

|𝑎1 |𝜅1𝜈(𝑒1) = |𝑎1 |𝜅1 = |𝑎1 |𝜅1𝜇(𝑒1) = 𝜅1𝜇(𝑎1𝑒1). Assume that inequality (3.7) is valid for 𝑘 . We show
first that

𝑢𝑘+1(𝜇) ≤ 𝛾𝑘+1 (𝜇) ≤ 𝑣𝑘+1(𝜇).

Clearly, it is sufficient to show just that 𝑢𝑘+1(𝜇) ≤ 𝑣𝑘+1(𝜇). Given 𝑏1, . . . , 𝑏𝑘 and 𝑐1, . . . , 𝑐𝑘 , we need
to check that

−𝜅𝑘+1𝜇
(
− 𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑏𝑖𝑒𝑖

)
+

𝑘∑
𝑖=1

𝑏𝑖𝛾𝑖 (𝜇) ≤ 𝜅𝑘+1𝜇
(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑐𝑖𝑒𝑖

)
−

𝑘∑
𝑖=1

𝑐𝑖𝛾𝑖 (𝜇).

But this is easy, as

𝑘∑
𝑖=1

𝑏𝑖𝛾𝑖 (𝜇) +
𝑘∑
𝑖=1

𝑐𝑖𝛾𝑖 (𝜇) =
𝑘∑
𝑖=1

(𝑏𝑖 + 𝑐𝑖)𝛾𝑖 (𝜇) ≤ 𝜅𝑘𝜇
( 𝑘∑
𝑖=1

(𝑏𝑖 + 𝑐𝑖)𝑒𝑖

)
≤ 𝜅𝑘+1

[
𝜇

(
− 𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑏𝑖𝑒𝑖

)
+ 𝜇

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑐𝑖𝑒𝑖

)]
.

Now, let us verify inequality (3.7) for 𝑘 + 1. We can suppose that 𝑎𝑘+1 = ±1. For 𝑎𝑘+1 = 1, it is enough
to use

𝛾𝑘+1 (𝜇) ≤ 𝑣𝑘+1(𝜇) ≤ 𝜅𝑘+1𝜇
(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
−

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜇),

and for 𝑎𝑘+1 = −1, it is enough to use

𝛾𝑘+1 (𝜇) ≥ 𝑢𝑘+1(𝜇) ≥ −𝜅𝑘+1𝜇
(
− 𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
+

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜇).

Next, let us prove that

|𝛾𝑘 (𝜇) − 𝛾𝑘 (𝜆) | ≤ 𝛽𝑘 (𝜇, 𝜆) (3.8)

for every 𝜇, 𝜆 ∈ B(1) and 𝑘 ∈ N. This is clear for 𝑘 = 1, as 𝛾1 is constant. Assume that inequality (3.8)
is valid for 𝑖 ≤ 𝑘 . To prove it for 𝑘 + 1, it is sufficient to show the inequalities

|𝑢𝑘+1 (𝜇) − 𝑢𝑘+1(𝜆) | ≤ 𝛽𝑘+1(𝜇, 𝜆) and |𝑣𝑘+1 (𝜇) − 𝑣𝑘+1(𝜆) | ≤ 𝛽𝑘+1(𝜇, 𝜆).

We consider only the function 𝑣𝑘+1, since the inequality for 𝑢𝑘+1 can be shown in the same way. Let us
note first that, in the definition of 𝑣𝑘+1(𝜇), it is possible to take the infimum only over 𝑘-tuples with

𝜇
( 𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
<

2𝜅𝑘+1
𝜅𝑘+1 − 𝜅𝑘

.
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Indeed, for 𝑎1, . . . , 𝑎𝑘 that do not satisfy this condition, using inequality(3.7), we obtain

𝜅𝑘+1𝜇
(
𝑒𝑘+1+

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
−

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜇)

≥ 𝜅𝑘+1𝜇
( 𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
− 𝜅𝑘+1𝜇(𝑒𝑘+1) − 𝜅𝑘𝜇

( 𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
= (𝜅𝑘+1 − 𝜅𝑘 )𝜇

( 𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
− 𝜅𝑘+1

≥ 2𝜅𝑘+1 − 𝜅𝑘+1 = 𝜅𝑘+1 = 𝜅𝑘+1𝜇
(
𝑒𝑘+1 +

𝑘∑
𝑖=1

0 · 𝑒𝑖

)
−

𝑘∑
𝑖=1

0 · 𝛾𝑖 (𝜇).

Now, inequality (3.8) is provided by the following computation, in which every sup/inf is meant over
𝑘-tuples with 𝜇

( ∑𝑘
𝑖=1 𝑎𝑖𝑒𝑖

)
< 2𝜅𝑘+1

𝜅𝑘+1−𝜅𝑘
or 𝜆

( ∑𝑘
𝑖=1 𝑎𝑖𝑒𝑖

)
< 2𝜅𝑘+1

𝜅𝑘+1−𝜅𝑘
:

|𝑣𝑘+1 (𝜇) − 𝑣𝑘+1(𝜆) |

=

���� inf
[
𝜅𝑘+1𝜇

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
−

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜇)
]

− inf
[
𝜅𝑘+1𝜆

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
−

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜆)
] ����

≤ sup
���� [𝜅𝑘+1𝜇

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
−

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜇)
]

−
[
𝜅𝑘+1𝜆

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
−

𝑘∑
𝑖=1

𝑎𝑖𝛾𝑖 (𝜆)
] ����

= sup
����𝜅𝑘+1

[
𝜇

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
− 𝜆

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)]
−

𝑘∑
𝑖=1

𝑎𝑖
(
𝛾𝑖 (𝜇) − 𝛾𝑖 (𝜆)

) ����
≤ sup

[���𝜇(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)
− 𝜆

(
𝑒𝑘+1 +

𝑘∑
𝑖=1

𝑎𝑖𝑒𝑖

)��� + 𝑘∑
𝑖=1

|𝑎𝑖 |𝛽𝑖 (𝜇, 𝜆)

]
= 𝛽𝑘+1(𝜇, 𝜆).

Finally, as usual, we put Γ(𝜇) (𝑒𝑘 ) = 𝛾𝑘 (𝜇). The required properties of Γ follow now from inequalities
(3.6), (3.7) and (3.8). Thus, the functions 𝛽𝑘 work, and the proof of the lemma is completed. �

Proof of Proposition 3.12. Let 𝑋 be an isometrically universal separable Banach space. By Lemma
3.18, the condition (2’) from Proposition 3.15 is valid for A = B(1) . Hence, the condition (1) from
this proposition is valid for A = B(1) as well. There are a separable Banach space 𝑈 and continuous
mappings 𝜒𝑘 : B(1) → 𝑈, 𝑘 ∈ N, such that��� 𝑛∑

𝑘=1
𝑎𝑘 𝜒𝑘 (𝜈)

��� = 𝜈
( 𝑛∑
𝑘=1

𝑎𝑘𝑒𝑘

)
for every

∑𝑛
𝑘=1 𝑎𝑘𝑒𝑘 ∈ 𝑐00 and every 𝜈 ∈ B(1) . Since 𝑋 contains an isometric copy of𝑈, we can suppose

that 𝑈 ⊆ 𝑋 .
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Let us consider the continuous mapping Ψ : B → B(1) given by

Ψ(𝜇)
( 𝑛∑
𝑘=1

𝑎𝑘𝑒𝑘

)
= 𝜇

( 𝑛∑
𝑘=1

𝑎𝑘
𝜇(𝑒𝑘 )

𝑒𝑘

)
.

If we define

�̃�𝑘 (𝜇) = 𝜇(𝑒𝑘 ) · 𝜒𝑘 (Ψ(𝜇)), 𝜇 ∈ B,

for each 𝑘 ∈ N, then we get��� 𝑛∑
𝑘=1

𝑏𝑘 �̃�𝑘 (𝜇)
��� =

��� 𝑛∑
𝑘=1

𝑏𝑘𝜇(𝑒𝑘 )𝜒𝑘 (Ψ(𝜇))
��� = Ψ(𝜇)

( 𝑛∑
𝑘=1

𝑏𝑘𝜇(𝑒𝑘 )𝑒𝑘

)
= 𝜇

( 𝑛∑
𝑘=1

𝑏𝑘𝑒𝑘

)
for every

∑𝑛
𝑘=1 𝑏𝑘𝑒𝑘 ∈ 𝑐00 and every 𝜇 ∈ B. �

To summarize, we obtained an optimal reduction from B to 𝑆𝐵∞(𝑋) and from 𝑆𝐵∞(𝑋) to P∞.
However, our reduction from P∞ to B seems not to be optimal, so one is tempted to ask the following.

Question 1. Does there exist a continuous mapping Φ : P∞ → B such that for every 𝜇 ∈ P∞, we have
𝑋𝜇 ≡ 𝑋Φ(𝜇)?

Note that a positive answer to Question 1 would imply a positive answer to Question 2 and that a
sufficient condition for a positive solution of Question 2 is provided by Proposition 3.15.

Question 2. Let X be an isometrically universal separable Banach space, and let 𝜏 be an admissible
topology on 𝑆𝐵(𝑋). Does there exist a 𝚺0

2-measurable mapping Φ : P∞ → (𝑆𝐵(𝑋), 𝜏) such that for
every 𝜇 ∈ P∞, we have 𝑋𝜇 ≡ Φ(𝜇)?

4. Generic properties

As soon as one has a Polish space, or more generally a Baire space, of some objects, it is natural and
often useful to find properties (of these objects) that are generic; that is, the corresponding subset of
the space is comeager. In the case of the spaces P, P∞ and B, we resolve this problem completely; see
Theorem 4.1, which is a more precise description of the content of Theorem B.

In the case of the spaces 𝑆𝐵(𝑋) with an admissible topology, this is the content of Problem 5.5
from [19]. We show that in that case, the situation is more complicated. In particular, we confirm the
suspicion of Godefroy and Saint-Raymond that being meager in 𝑆𝐵(𝑋) is not independent of the chosen
admissible topology; see Theorem 4.10 and Theorem 4.12, which together imply Theorem C.

4.1. Generic objects in P
The main result of this subsection is Theorem 4.1 below. Although it may not appear surprising to
a specialist in Fraïssé theory, as the Gurariı̆ space is the Fraïssé limit of finite-dimensional Banach
spaces (see, e.g., [3, Theorem 4.3]), its proof is far more involved than analogous results for countable
Fraïssé limits. Also, the result has several applications in estimating the complexities of isometry and
isomorphism classes of other Banach spaces; see [13], where this issue is addressed.

Theorem 4.1. Let G be the Gurariı̆ space. Then the isometry class 〈G〉I≡ is a dense 𝐺 𝛿-set in I for any
I ∈ {P,P∞,B}.

Let us recall what the Gurariı̆ space is. One of the characterizations of the Gurariı̆ space is the
following; for more details, we refer the interested reader to, for example, [10] (the characterization
below is provided by [10, Lemma 2.2]).
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Definition 4.2. The Gurariı̆ space is the unique (up to isometry) separable Banach space such that for
every 𝜀 > 0 and every isometric embedding 𝑔 : 𝐴 → 𝐵, where B is a finite-dimensional Banach space
and A is a subspace of G, there is a (1 + 𝜀)-isomorphism 𝑓 : 𝐵 → G such that ‖ 𝑓 ◦ 𝑔 − 𝑖𝑑𝐴‖ ≤ 𝜀.

In the remainder of this subsection, we prove Theorem 4.1. Let us start with the most technical part,
namely that 〈G〉P∞

≡ is a 𝐺 𝛿-set in P∞.
We need two technical lemmas first.

Lemma 4.3.
1. Given a basis 𝔟𝐸 = {𝑒1, . . . , 𝑒𝑛} of a finite-dimensional Banach space E, there are 𝐶 > 0 and a

function 𝜙𝔟𝐸2 : [0, 𝐶) → [0,∞) continuous at zero with 𝜙𝔟𝐸2 (0) = 0 such that whenever X is a
Banach space with 𝐸 ⊆ 𝑋 and {𝑥𝑖 : 𝑖 ≤ 𝑛} ⊆ 𝑋 are such that ‖𝑥𝑖 − 𝑒𝑖 ‖ < 𝜀, 𝑖 ≤ 𝑛, for some
𝜀 < 𝐶, then the linear operator 𝑇 : 𝐸 → 𝑋 given by 𝑇 (𝑒𝑖) := 𝑥𝑖 is a (1 + 𝜙𝔟𝐸2 (𝜀))-isomorphism and
‖𝑇 − 𝐼𝑑𝐸 ‖ ≤ 𝜙𝔟𝐸2 (𝜀).

2. Let 𝜀 ∈ (0, 1), 𝑇 : 𝑋 → 𝑌 be a surjective (1 + 𝜀)-isomorphism between Banach spaces X and Y, and
N be 𝜀-dense for 𝑆𝑋 . Then 𝑇 (𝑁) is 3𝜀-dense for 𝑆𝑌 .

Proof. 1: Pick 𝐶 > 0 such that 𝐶
∑𝑛
𝑖=1 |𝜆𝑖 | ≤ ‖

∑𝑛
𝑖=1 𝜆𝑖𝑒𝑖 ‖ for every (𝜆𝑖)

𝑛
𝑖=1 ∈ R𝑛. Then for any

𝑥 =
∑𝑛
𝑖=1 𝜆𝑖𝑒𝑖 , we have

‖𝑇𝑥 − 𝑥‖ ≤

𝑛∑
𝑖=1

|𝜆𝑖 |‖𝑥𝑖 − 𝑒𝑖 ‖ <
𝜀

𝐶
‖𝑥‖.

Thus, ‖𝑇 − 𝐼𝑑𝐸 ‖ <
𝜀
𝐶 , ‖𝑇 ‖ ≤ 1 + 𝜀

𝐶 and ‖𝑇𝑥‖ ≥ (1 − 𝜀
𝐶 )‖𝑥‖ = (1 + 𝜀

𝐶−𝜀 )
−1‖𝑥‖. Thus, we may put

𝜙𝔟𝐸2 (𝜀) := 𝜀
𝐶−𝜀 for 𝜀 ∈ [0, 𝐶).

2: Let 𝜀 > 0, 𝑇 : 𝑋 → 𝑌 and N be as in the assumptions. Then for every 𝑦 ∈ 𝑆𝑌 , there is 𝑥 ∈ 𝑁 with
‖𝑥 − 𝑇 −1 (𝑦)

‖𝑇 −1 (𝑦) ‖
‖ < 𝜀. Thus, we have

‖𝑦 − 𝑇𝑥‖ ≤

���𝑦 − 𝑦

‖𝑇−1 (𝑦)‖

��� + ‖𝑇 ‖ ·
���𝑥 − 𝑇−1 (𝑦)

‖𝑇−1 (𝑦)‖

���
<

���1 −
1

‖𝑇−1𝑦‖

��� + (1 + 𝜀)𝜀 ≤ 𝜀 + 2𝜀 = 3𝜀. �

Lemma 4.4. For every 𝜇 ∈ P, finite set 𝐴 ⊆ 𝑉 and 𝜀 > 0, there exists 𝜈 ∈ B with |𝜇(𝑥) − 𝜈(𝑥) | < 𝜀
and 𝜈(𝑥) ∈ Q for every 𝑥 ∈ 𝐴.
Proof. It suffices to define such a norm 𝜈 on span 𝐴 since then we can easily find some extension to
the whole V. We assume that 0 ∉ 𝐴, and moreover, we can assume that no two elements of A lie in the
same one-dimensional subspace: that is, are scalar multiples of each other. Indeed, otherwise we would
find a subset 𝐴′ ⊆ 𝐴 where no elements are scalar multiples of each other and every element of A is a
scalar multiple, necessarily rational scalar multiple, of some element from 𝐴′. Then proving the fact for
𝐴′ for sufficiently small 𝛿 automatically proves it for A and 𝜀.

We enumerate A as {𝑎1, . . . , 𝑎𝑛} and so that the first k elements 𝑎1, . . . , 𝑎𝑘 , for some 𝑘 ≤ 𝑛, are
linearly independent and form a basis of span 𝐴.
Claim. By perturbing 𝜇 on A by an arbitrarily small 𝛿 > 0, we can without loss of generality assume
that for every 𝑖 ≤ 𝑛, 𝜇(𝑎𝑖) < 𝐾𝑖 := inf{

∑
𝑗∈𝐽 𝜇(𝛼 𝑗𝑎 𝑗 ) : 𝑖 ∉ 𝐽 ⊆ {1, . . . , 𝑛}, 𝑎𝑖 =

∑
𝑗∈𝐽 𝛼 𝑗𝑎 𝑗 }.

Suppose the claim is proved. Then for every 𝑖 ≤ 𝑛, we set 𝜈′(𝑎𝑖) to be an arbitrary positive rational
number in the interval [𝜇(𝑎𝑖),min{𝐾𝑖 , 𝜇(𝑎𝑖) + 𝜀}). From the assumption it is now clear that for all
𝑖 ≤ 𝑛, we have

𝜈′(𝑎𝑖) ≤ inf{
𝑛∑
𝑗=1

|𝛼 𝑗 |𝜈
′(𝑎 𝑗 ) : 𝑎𝑖 =

𝑛∑
𝑗=1

𝛼 𝑗𝑎 𝑗 }.
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We extend 𝜈′ to a norm 𝜈 on span 𝐴 by the formula

𝜈(𝑣) := inf{
𝑛∑
𝑖=1

|𝛼𝑖 |𝜈
′(𝑎𝑖) : 𝑣 =

𝑛∑
𝑖=1

𝛼𝑖𝑎𝑖},

for 𝑣 ∈ span 𝐴. From the previous assumption, it follows that 𝜈(𝑎𝑖) = 𝜈′(𝑎𝑖) for all 𝑖 ≤ 𝑛. Moreover, 𝜈
is indeed a norm since 𝜈(𝑎𝑖) > 0 for all 𝑖 ≤ 𝑛, and the infimum in the definition of 𝜈 is, by compactness,
always attained.

It remains to prove the claim. Let ‖ · ‖2 be the ℓ2 norm on span 𝐴 with 𝑎1, . . . , 𝑎𝑘 the orthonormal
basis. For each 𝑚 ∈ N, set 𝜇𝑚 := 𝜇 + ‖·‖2

𝑚 . Clearly 𝜇𝑚 → 𝜇, so it suffices to show that each 𝜇𝑚 satisfies
the condition from the claim. Suppose that for some 𝑚 ∈ N and 𝑖 ≤ 𝑛, we have

𝜇𝑚 (𝑎𝑖) = inf{
∑
𝑗∈𝐽

𝜇𝑚 (𝛼 𝑗𝑎 𝑗 ) : 𝑖 ∉ 𝐽 ⊆ {1, . . . , 𝑛}, 𝑎𝑖 =
∑
𝑗∈𝐽

𝛼 𝑗𝑎 𝑗 }.

By compactness, the infimum is attained: that is, there exists (𝛼 𝑗 ) 𝑗≤𝑛, with 𝛼𝑖 = 0, 𝑎𝑖 =
∑
𝑗≤𝑛 𝛼 𝑗𝑎 𝑗 and

𝜇𝑚 (𝑎𝑖) =
∑
𝑗≤𝑛 𝜇𝑚 (𝛼 𝑗𝑎 𝑗 ). Indeed, if the infimum is approximated by a sequence (𝛼𝑙1, . . . , 𝛼

𝑙
𝑛)𝑙∈N ⊆ R𝑛,

then since each coordinate is bounded (because up to finitely many ls, we have
∑𝑛
𝑗=1 𝜇𝑚 (𝛼

𝑙
𝑗𝑎 𝑗 ) ≤

2𝜇𝑚 (𝑎𝑖)), we may pass to a convergent subsequence and attain the infimum at the limit. The ℓ2 norm
‖ · ‖2 is strictly convex, so ‖𝑎𝑖 ‖2<

∑
𝑗≤𝑛 ‖𝛼 𝑗𝑎 𝑗 ‖2, while 𝜇 by triangle inequality satisfies 𝜇(𝑎𝑖) ≤∑

𝑗≤𝑛 𝜇(𝛼 𝑗𝑎 𝑗 ). Since 𝜇𝑚 is the sum of 𝜇 and a positive multiple of the ℓ2 norm, we must have
𝜇𝑚 (𝑎𝑖) <

∑
𝑗≤𝑛 𝜇𝑚 (𝛼 𝑗𝑎 𝑗 ), a contradiction. �

Notation 4.5. For a finite set 𝐴 ⊆ 𝑉 and 𝑃, 𝑃′ partial functions on V (i.e., functions whose domains are
subsets of V) with 𝐴 ⊆ dom(𝑃), dom(𝑃′), we put 𝑑𝐴(𝑃, 𝑃′) := max𝑎∈𝐴 |𝑃(𝑎) − 𝑃′(𝑎) |.

Let T be the countable set of tuples (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) such that:

1. 𝑛, 𝑛′ ∈ N;
2. 𝑃 ∈ Qdom(𝑃) , 𝑃′ ∈ Qdom(𝑃′) , where dom(𝑃) and dom(𝑃′) are finite subsets of V;
3. there exists 𝜈 ∈ B such that 𝑃′ = 𝜈 |dom(𝑃′) ;
4. 𝑔 : dom(𝑃) → dom(𝑃′) is a one-to-one mapping;
5. 𝑃 = 𝑃′ ◦ 𝑔;
6. whenever 𝜇′ ∈ P, 𝜈′ ∈ B are such that 𝑃′ ⊆ 𝜈′, 𝑑dom(𝑃) (𝑃, 𝜇

′) < 1
𝑛 and 𝜇′ restricted to

span(dom(𝑃)) ⊆ 𝑐00 is a norm, then there exists 𝑇𝑔 : (span(dom(𝑃)), 𝜇′) → (span(dom(𝑃′)), 𝜈′)
that is a (1 + 1

𝑛′ )-isomorphism and 𝑇𝑔 ⊇ 𝑔.

For (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) ∈ 𝑇 , we let 𝐺 (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) be the set of 𝜇 ∈ P∞ such that

◦ whenever 𝑑dom(𝑃) (𝑃, 𝜇) <
1
𝑛 and 𝜇 restricted to span(dom(𝑃)) ⊆ 𝑐00 is a norm, there is a Q-linear

mapping Φ : 𝑉 ∩ span(dom(𝑃′)) → 𝑉 such that 𝜇(Φ(𝑔𝑥) − 𝑥) < 2
𝑛′ 𝜇(𝑥) for every 𝑥 ∈ dom(𝑃) and

|𝑃′(𝑥) − 𝜇(Φ(𝑥)) | < 1
𝑛′𝑃

′(𝑥) for every 𝑥 ∈ dom(𝑃′).

Proposition 4.6. Let 𝜇 ∈ P∞. Then 𝑋𝜇 is isometric to the Gurariı̆ space if and only if 𝜇 ∈

𝐺 (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) for every (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) ∈ 𝑇 .

Proof. In order to prove the first implication, let 𝜇 ∈ P∞ be such that 𝑋𝜇 is isometric to the Gurariı̆ space,
and let (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) ∈ 𝑇 be such that 𝑑dom(𝑃) (𝑃, 𝜇) <

1
𝑛 and 𝜇 restricted to span(dom(𝑃)) ⊆ 𝑐00

is a norm. Consider the finite-dimensional space 𝐴 := (span(dom(𝑃)), 𝜇). Let 𝜈 ∈ B be as in 3. Put
𝐵 = (span(dom 𝑃′), 𝜈), and pick a basis 𝔟 ⊆ 𝑉 of B. By 6, there exists 𝑇𝑔 : 𝐴 → 𝐵, which is a (1 + 1

𝑛′ )-
isomorphism and 𝑇𝑔 ⊇ 𝑔. By [22, Lemma 2.2], there is a (1 + 1

3𝑛′ )-isomorphism 𝑆 : 𝐵 → 𝑋𝜇 such that
‖𝑆𝑇𝑔 − 𝐼𝑑𝐴‖ <

1
𝑛′ . By Lemma 4.31, we may for every 𝑏 ∈ 𝔟 find 𝑥𝑏 ∈ 𝑉 such that the linear mapping

𝑄 : 𝑆(𝐵) → 𝑋𝜇 given by 𝑄(𝑆(𝑏)) = 𝑥𝑏 , 𝑏 ∈ 𝔟, is a (1 + 1
3𝑛′ )-isomorphism with ‖𝑄 − 𝐼𝑑‖ < 1

3𝑛′ .
Consider Φ = 𝑄𝑆 |𝑉∩span(dom 𝑃′) . This is indeed aQ-linear map and since𝑄𝑆 is a (1+ 1

3𝑛′ )
2-isomorphism
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and (1 + 1
3𝑛′ )

2 < 1 + 1
𝑛′ , we have |𝜇(Φ(𝑥)) − 𝜈(𝑥) | < 1

𝑛′ 𝜈(𝑥) for 𝑥 ∈ dom(𝑃′). Moreover, for every
𝑥 ∈ dom(𝑃), we have

𝜇(Φ(𝑔𝑥) − 𝑥) = 𝜇(𝑄𝑆𝑇𝑔𝑥 − 𝑥) ≤ 𝜇(𝑄𝑆𝑇𝑔𝑥 − 𝑆𝑇𝑔𝑥) + 𝜇(𝑆𝑇𝑔𝑥 − 𝑥)

< 1
3𝑛′ ‖𝑆𝑇𝑔‖𝜇(𝑥) +

1
𝑛′ 𝜇(𝑥) ≤

2
𝑛′ 𝜇(𝑥).

This shows that 𝜇 ∈ 𝐺 (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔).
In order to prove the second implication, let 𝜇 ∈ P∞ be such that 𝜇 ∈ 𝐺 (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) whenever

(𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) ∈ 𝑇 . In what follows for 𝑥 ∈ 𝑐00, we denote by [𝑥]∈𝑋𝜇 the equivalence class corre-
sponding to x. Pick a finite-dimensional space 𝐴 ⊆ 𝑋𝜇 and an isometry 𝐺 : 𝐴 → 𝐵, where B is a
finite-dimensional Banach space; we may without loss of generality assume 𝐵 ⊆ 𝑋𝜇𝐵 for some 𝜇𝐵 ∈ B.
Let 𝔟𝐴 := {𝑎1, . . . , 𝑎 𝑗 } be a normalized basis of A, and extend 𝐺 (𝔟𝐴) = {𝐺 (𝑎1), . . . , 𝐺 (𝑎 𝑗 )} to a nor-
malized basis 𝔟𝐵 = {𝑏1, . . . , 𝑏𝑘 } of B. Fix 𝜂 > 0. It suffices to find a (1 + 𝜂)-isomorphism Ψ : 𝐵 → 𝑋𝜇
with ‖Ψ𝐺 − 𝐼𝐴‖ ≤ 𝜂. Consider the functions 𝜙1 and 𝜙𝔟𝐴2 from Lemma 2.2 and Lemma 4.31. Pick
𝛿 ∈ (0, 1) such that max{𝜙1(𝑡), 𝜙

𝔟𝐴
2 (𝑡)} < 𝜂 whenever 𝑡 < 𝛿 and 𝜀 ∈ (0, 1

20 ) such that 𝜙1(5𝜀) < 1
20 and

𝜀 + 72 max{𝜀, 𝜙1(5𝜀)} < 𝛿.

Claim 1. There are finite sets 𝑀, 𝑁 ⊆ 𝑉 such that 𝜇 restricted to span 𝑁 ⊆ 𝑐00 is a norm and surjective
(1 + 𝜀)-isomorphisms 𝑇𝐴 : 𝐴 → (span 𝑁, 𝜇), 𝑇𝐵 : 𝐵 → (span 𝑀, 𝜇𝐵) such that:

◦ N and M are 𝜀-dense sets for 𝑆𝑇𝐴 (𝐴) and 𝑆𝑇𝐵 (𝐵) , respectively;
◦ we have ‖[𝑇𝐴𝑎𝑖] − 𝑎𝑖 ‖𝑋𝜇 < 𝜀 for every 𝑎𝑖 ∈ 𝔟𝐴 and ‖(𝑇𝐴)

−1𝑥 − [𝑥]‖𝑋𝜇 < 𝜀, |𝜇(𝑥) − 1| < 𝜀 for
every 𝑥 ∈ 𝑁;

◦ (𝑇𝐵)
−1(𝑀) is 𝜀

3 -dense for 𝑆𝐵 and max{|𝜇𝐵 ((𝑇𝐵)−1𝑥) − 1|, |𝜇𝐵 (𝑥) − 1|} < 𝜀
2 for every 𝑥 ∈ 𝑀;

◦
(
𝑇𝐵𝐺 (𝑇𝐴)

−1)
(𝑁) ⊆ 𝑀 .

Proof of Claim 1. By Lemma 4.31, we may pick { 𝑓1, . . . , 𝑓𝑛} ⊆ 𝑉 such that the linear operator 𝑇𝐴 :
𝐴 → 𝑋𝜇 given by 𝑇𝐴(𝑎𝑖) = [ 𝑓𝑖], 𝑖 ≤ 𝑗 , is a (1 + 𝜀

6 )-isomorphism and ‖[𝑇𝐴𝑥] − 𝑥‖𝑋𝜇<
𝜀
6 ‖𝑥‖𝑋𝜇 ,

𝑥 ∈ 𝐴. This implies that 𝜇 restricted to span{ 𝑓1, . . . , 𝑓 𝑗 } is a norm, and since 𝑇𝐴(𝐴) is isometric to
(span{ 𝑓1, . . . , 𝑓𝑛}, 𝜇), we consider𝑇𝐴 a (1+ 𝜀

6 )-isomorphism between A and (span{ 𝑓1, . . . , 𝑓𝑛}, 𝜇). Now,
pick 𝑁 ′ ⊆ 𝐴 a finite 𝜀

6 -dense set for 𝑆𝐴 consisting of rational linear combinations of points from 𝔟𝐴 with
𝔟𝐴 ⊆ 𝑁 ′ such that |‖𝑥‖𝑋𝜇 − 1| < 𝜀

6 for every 𝑥 ∈ 𝑁 ′. Then ‖[𝑇𝐴𝑥] − 𝑥‖𝑋𝜇 < 𝜀
6 ‖𝑥‖𝑋𝜇 < 𝜀

6 (1 + 𝜀
6 ) <

𝜀
5

for every 𝑥 ∈ 𝑁 ′. Put 𝑁 := 𝑇𝐴(𝑁
′) ⊆ 𝑉 . Then we easily obtain |𝜇(𝑥) − 1| < 𝜀

2 for every 𝑥 ∈ 𝑁 and,
by Lemma 4.32, N is 𝜀

2 -dense in 𝑆𝑇𝐴 (𝐴) . Similarly as above, we may pick {𝑔1, . . . , 𝑔𝑘 } ⊆ 𝑉 such that
the linear operator 𝑇𝐵 : 𝐵 → 𝑋𝜇𝐵 given by 𝑇𝐵 (𝑏𝑖) = 𝑔𝑖 , 𝑖 ≤ 𝑘 , is a (1 + 𝜀

6 )-isomorphism, and we
find 𝑀 ′ ⊆ 𝐵 a finite 𝜀

6 -dense set for 𝑆𝐵 consisting of rational linear combinations of points from 𝔟𝐵
with 𝑀 ′ ⊇ {𝐺 (𝑥) : 𝑥 ∈ 𝑁 ′} ∪ 𝔟𝐵 and |𝜇𝐵 (𝑥) − 1| < 𝜀

6 for 𝑥 ∈ 𝑀 ′. Put 𝑀 := 𝑇𝐵 (𝑀
′); then similarly

as above, |𝜇𝐵 (𝑥) − 1| < 𝜀
2 for every 𝑥 ∈ 𝑀 and M is 𝜀

2 -dense in 𝑆𝑇𝐵 (𝐵) . Finally, we obviously have(
𝑇𝐵𝐺 (𝑇𝐴)

−1)
(𝑁) = 𝑇𝐵 (𝐺 (𝑁 ′)) ⊆ 𝑇𝐵 (𝑀

′) = 𝑀 . �

By Lemma 4.4, there is 𝜈 ∈ B having rational values on M with 𝑑𝑀 (𝜈, 𝜇𝐵 ◦ (𝑇𝐵)
−1) < 𝜀

2 . Put
𝑃′ = 𝜈 |𝑀 , consider the one-to-one map 𝑔 : 𝑁 → 𝑀 given by 𝑔 := 𝑇𝐵𝐺 (𝑇𝐴)

−1 |𝑁 and put 𝑃 = 𝑃′ ◦ 𝑔.
Let 𝑛 ∈ N be the integer part of 2

3𝜀 and 𝑛′ ∈ N be the integer part of 1
9 max{𝜀,𝜙1 (5𝜀) } . Easy computations

show that 3
2𝜀 ≤ 1

𝑛 < 2𝜀 and 9 max{𝜀, 𝜙1(5𝜀)} ≤ 1
𝑛′ < 18 max{𝜀, 𝜙1(5𝜀)} (in the last inequality, we are

using that max{𝜀, 𝜙1(5𝜀)} < 1
20 ).

Note that for every 𝑥 ∈ 𝑀 , we have

max{|𝜈(𝑇𝐵𝑥) − 1|, |𝜈(𝑥) − 1|} ≤ 𝜀
2 + max{|𝜇𝐵 (𝑥) − 1|, |𝜇𝐵 ((𝑇𝐵)−1𝑥) − 1|} < 𝜀. (4.1)

Claim 2. We have (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) ∈ 𝑇 and 𝑑𝑁 (𝑃, 𝜇) < 1
𝑛 .
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Proof of Claim 2. In order to see that 𝑑𝑁 (𝑃, 𝜇) < 1
𝑛 , pick 𝑥 ∈ 𝑁 . Then

|𝑃(𝑥) − 𝜇(𝑥) | ≤ 𝜀
2 + |𝜇𝐵 (𝐺 (𝑇𝐴)

−1(𝑥)) − 𝜇(𝑥) | = 𝜀
2 + |‖(𝑇𝐴)

−1(𝑥)‖𝑋𝜇 − ‖[𝑥]‖𝑋𝜇 | <
3
2𝜀.

In order to see that (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) ∈ 𝑇 , let us verify condition 6. Let 𝜇′ ∈ P, 𝜈′ ∈ B be such that
𝑃′ ⊆ 𝜈′, 𝑑𝑁 (𝑃, 𝜇′) < 1

𝑛 < 2𝜀 and 𝜇′ restricted to span 𝑁 ⊆ 𝑐00 is a norm. Note that |𝜇′(𝑥) − 1| < 5𝜀
for every 𝑥 ∈ 𝑁 , and so, since N is 𝜀-dense for the sphere of 𝑇𝐴(𝐴) = (span 𝑁, 𝜇), the mapping
𝑖𝑑 : (span 𝑁, 𝜇) → (span 𝑁, 𝜇′) is a (1+𝜙1(5𝜀))-isomorphism. Further, |𝜈′(𝑥) −1| = |𝜈(𝑥) −1| < 𝜀 for
every 𝑥 ∈ 𝑀 , and so the mapping 𝑖𝑑 : (span 𝑀, 𝜇𝐵) → (span 𝑀, 𝜈′) is a (1 + 𝜙1(5𝜀))-isomorphism as
well. Finally, since 𝑇𝐵𝐺 (𝑇𝐴)

−1 is a (1+𝜀)2-isomorphism between (span 𝑁, 𝜇) and (span 𝑔(𝑁), 𝜇𝐵) and

(1 + 𝜙1(5𝜀))2(1 + 𝜀)2 ≤ (1 + 3𝜙1 (5𝜀)) (1 + 3𝜀) ≤ 1 + 9 max{𝜀, 𝜙1(5𝜀)} ≤ 1 + 1
𝑛′ ,

we have that𝑇𝑔 := 𝑖𝑑◦𝑇𝐵 ◦𝐺 ◦ (𝑇𝐴)
−1◦𝑖𝑑 : (span 𝑁, 𝜇′) → (span 𝑀, 𝜈′) is a (1+ 1

𝑛′ )-isomorphism. �

Since 𝜇 ∈ 𝐺 (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔), there is a Q-linear mapping Φ : 𝑉 ∩ (span 𝑀, 𝜈) → 𝑉 such that
𝜇(Φ(𝑔𝑥) − 𝑥) < 2

𝑛′ 𝜇(𝑥) for every 𝑥 ∈ 𝑁 and |𝜈(𝑥) − 𝜇(Φ(𝑥)) | < 1
𝑛′ 𝜈(𝑥) for every 𝑥 ∈ 𝑀 . It is

easy to see that Φ extends to a bounded linear operator Φ′ : (span 𝑀, 𝜈) → 𝑋𝜇. Finally, consider
Ψ := Φ′ ◦ 𝑇𝐵 : 𝐵 → 𝑋𝜇.

For every 𝑥 ∈ 𝑀 , we have

|𝜇(Φ(𝑥)) − 1| ≤ |𝜇(Φ(𝑥)) − 𝜈(𝑥) | + |𝜈(𝑥) − 1|
(4.1)
≤ 1

𝑛′ 𝜈(𝑥) + 𝜀
(4.1)
≤ 1

𝑛′ (1 + 𝜀) + 𝜀 < 𝛿;

thus, |‖Ψ(𝑥)‖𝑋𝜇 − 1| < 𝛿 for every 𝑥 ∈ (𝑇𝐵)
−1(𝑀) and so Ψ is a (1 + 𝜂)-isomorphism.

Further, we have

‖Ψ𝐺 (𝑎𝑖) − 𝑎𝑖 ‖𝑋𝜇 ≤ ‖Φ(𝑔(𝑇𝐴𝑎𝑖)) − [𝑇𝐴𝑎𝑖]‖𝑋𝜇 + ‖[𝑇𝐴𝑎𝑖] − 𝑎𝑖 ‖𝑋𝜇

< 2
𝑛′ (1 + 𝜀) + 𝜀 ≤ 4

𝑛′ + 𝜀 < 𝛿;

hence, by Lemma 4.31, we have ‖Φ′𝑇𝐵𝐺 − 𝐼𝐴‖ ≤ 𝜙𝔟𝐴2 ( 2
𝑛′ (1 + 𝜀) + 𝜀) < 𝜂. �

Theorem 4.7. Let G be the Gurariı̆ space. Then the isometry class 〈G〉P∞
≡ is a 𝐺 𝛿-set in P∞.

Proof. By Proposition 4.6, we have for the countable set T defined before Proposition 4.6 that

〈G〉
P∞
≡ =

⋂
(𝑛,𝑛′,𝑃,𝑃′,𝑔) ∈𝑇

𝐺 (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔),

where 𝐺 (𝑛, 𝑛′, 𝑃, 𝑃′, 𝑔) is the union of a closed and an open set in P∞ (here we use the observation that
the set {𝜇 ∈ P∞ : 𝜇 restricted to span(dom 𝑃) ⊆ 𝑐00 is a norm} is open due to Lemma 2.4); thus it is
the countable intersection of 𝐺 𝛿-sets. �

Proof of Theorem 4.1. Let us recall that P∞ and B are 𝐺 𝛿-sets in P; see Corollary 2.5. Thus, since we
have 〈G〉B≡ = 〈G〉

P∞
≡ ∩ B, it follows from Proposition 4.6 that 〈G〉I≡ is a 𝐺 𝛿-set in any I ∈ {P,P∞,B}.

By Corollary 2.10, we also have that 〈G〉I≡ is dense in I for every I ∈ {P,P∞,B}. �

4.2. Generic objects in 𝑆𝐵(𝑋)

In this subsection, we address Problem 5.5 from [19], which suggests investigating generic properties of
admissible topologies. We have both positive and negative results. The positive result is Theorem 4.10,
which shows that the isometry class of the Gurariı̆ space, as a subset of 𝑆𝐵(G), is a dense 𝐺 𝛿-set in the
Wijsman topology. The negative results are Propositions 4.11 and 4.13 and Theorem 4.12.
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Definition 4.8. Given a closed set H in X, we denote by 𝐸−(𝐻) the set 𝑆𝐵(𝑋) \ 𝐸+(𝑋 \ 𝐻): that is,
𝐸−(𝐻) = {𝐹 ∈ 𝑆𝐵(𝑋) : 𝐹 ⊆ 𝐻}. Obviously, this is a closed set in any admissible topology on 𝑆𝐵(𝑋).

Definition 4.9. Let X be an isometrically universal separable Banach space. By 𝜏𝑊 , we denote the
restriction of the Wijsman topology from F(𝑋) to 𝑆𝐵(𝑋): that is, the minimal topology on 𝑆𝐵(𝑋)
such that the mappings 𝑆𝐵(𝑋) � 𝐹 ↦→ dist𝑋 (𝑥, 𝐹) are continuous for every 𝑥 ∈ 𝑋 . Note that 𝜏𝑊 is
admissible; see [19, Section 2].

Theorem 4.10. The isometry class 〈G〉≡ is a dense 𝐺 𝛿-set in (𝑆𝐵(G), 𝜏𝑊 ).

Proof. The isometry class 〈G〉≡ is a 𝐺 𝛿-set in (𝑆𝐵(G), 𝜏𝑊 ) since it is a 𝐺 𝛿-set in P (by Theorem 4.1)
and there is a continuous reduction from (𝑆𝐵(G), 𝜏𝑊 ) to P by Theorem 3.3. So we must show that it is
dense.

Choose a basic open set N in 𝜏𝑊 that is given by some closed subspace 𝑋 ⊆ G, finitely many points
𝑥1, . . . , 𝑥𝑛 ∈ G and 𝜀 > 0 so that

𝑁 = {𝑍 ∈ 𝑆𝐵(G) : ∀𝑖 ≤ 𝑛 (| distG(𝑥𝑖 , 𝑋) − distG(𝑥𝑖 , 𝑍) | < 𝜀)}.

Let us find a space G isometric to G such that 𝐺 ∈ 𝑁 . Let Y be span{𝑋 ∪ {𝑥𝑖 : 𝑖 ≤ 𝑛}}. Since X
embeds into both Y and G, we can consider the push-out of that diagram: that is, the amalgamated
sum of Y and G along the common subspace X. Recall this is nothing but the quotient (G ⊕1 𝑌 )/𝑍 ,
where 𝑍 = {(𝑧,−𝑧) : 𝑧 ∈ 𝑋}. Denote this space by 𝐺 ′, and notice that G is naturally embedded into
𝐺 ′. It is straightforward to verify that for each 𝑖 ≤ 𝑛, dist𝐺′ (𝑥𝑖 ,G) = distG(𝑥𝑖 , 𝑋). Since G is universal,
there is a linear isometric embedding 𝜄 : 𝐺 ′ ↩→ G. As there is a linear isometry 𝜙 : 𝜄[span{𝑥𝑖 : 𝑖 ≤
𝑛}] → span{𝑥𝑖 : 𝑖 ≤ 𝑛}, by [22, Theorem 1.1], there is a bijective linear isometry Φ : G → G such
that ‖Φ ◦ 𝜄(𝑥𝑖) − 𝑥𝑖 ‖ < 𝜀 for each 𝑖 ≤ 𝑛. By the triangle inequality, it follows that 𝐺 := Φ ◦ 𝜄[G ⊆ 𝐺 ′]

satisfies for each 𝑖 ≤ 𝑛, | distG(𝑥𝑖 , 𝐺) − distG(𝑥𝑖 , 𝑋) | < 𝜀, so it is the desired space isometric to G lying
in the open set N. �

The rest of the section is devoted to negative results. They show that the definition of an admissible
topology allows a lot of flexibility by which one can alter which properties should be meager or not.

Proposition 4.11. Let X be an isometrically universal separable Banach space, and let 𝜏 be an admissible
topology on 𝑆𝐵(𝑋). Then there exists an admissible topology 𝜏′ ⊇ 𝜏 on 𝑆𝐵(𝑋) such that the set 〈G〉�
is nowhere dense in (𝑆𝐵∞(𝑋), 𝜏′).

Proof. By the definition of an admissible topology, we may pick (𝑈𝑛)𝑛∈N, a basis of the topology 𝜏,
such that for every 𝑛 ∈ N, there are nonempty open sets 𝑉𝑛𝑘 , 𝑘 = 1, . . . , 𝑁𝑛, and 𝑊𝑛 in X such that the
set 𝑈 ′

𝑛 defined by

𝑈 ′
𝑛 =

𝑁𝑛⋂
𝑘=1

𝐸+(𝑉𝑛𝑘 ) \ 𝐸
+(𝑊𝑛)

is a nonempty subset of 𝑈𝑛.
We claim that for every 𝑛 ∈ N, there is 𝐹𝑛 ∈ 𝑈 ′

𝑛 such thatG �↩→ 𝐹𝑛. Indeed, pick an arbitrary 𝑍 ∈ 𝑈 ′
𝑛.

We may without loss of generality assume there is 𝐻0 ⊆ 𝑍 with 𝐻0 � G, and since G is isometrically
universal, there is 𝐻1 ⊆ 𝐻0 with 𝐻1 � ℓ2. Now, pick points 𝑣𝑘 ∈ 𝑍 ∩ 𝑉𝑛𝑘 , 𝑘 = 1, . . . , 𝑁𝑛. Then we
put 𝐹𝑛 := span{𝑣1, . . . , 𝑣𝑁𝑛 , 𝑢 : 𝑢 ∈ 𝐻1}. Since 𝐹𝑛 is a subset of Z, we have 𝐹𝑛 ∉ 𝐸+(𝑊𝑛), and since
it contains the points 𝑣1, . . . , 𝑣𝑁𝑛 , we have 𝐹𝑛 ∈ 𝑈 ′

𝑛. Moreover, it is a space isomorphic to ℓ2, and so
G �↩→ 𝐹𝑛.

Thus, for every 𝑛 ∈ N, there is a closed subspace 𝐹𝑛 of X such that 𝑈𝑛 ∩ 𝐸−(𝐹𝑛) is a nonempty set
disjoint from 〈G〉�.

It is a classical fact (see, e.g., [21, Lemma 13.2 and Lemma 13.3]) that the topology 𝜏′ generated by
𝜏 ∪ {𝐸−(𝐹𝑛) : 𝑛 ∈ N} is Polish. It is easy to check it is admissible. Moreover, for every 𝑛 ∈ N, we have
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that 𝑈𝑛 ∩ 𝐸−(𝐹𝑛) is a nonempty 𝜏′-open set in 𝑈𝑛 disjoint from 〈G〉�. It follows that nonempty sets of
the form 𝑈𝑛 ∩

⋂
𝑚∈𝐼 𝐸

−(𝐹𝑚), for finite 𝐼 ⊆ N, give us a 𝜋-basis of 𝜏′. Since obviously each element of
the form 𝑈𝑛 ∩

⋂
𝑚∈𝐼 𝐸

−(𝐹𝑚) is disjoint from 〈G〉�, the set 〈G〉� is 𝜏′-nowhere dense. �

Actually, one may observe that the same proof gives the following more general result, where the
pair (G, ℓ2) is replaced by a more general pair of Banach spaces.

Theorem 4.12. Let X be an isometrically universal separable Banach space, and let 𝜏 be an admissible
topology on 𝑆𝐵(𝑋). Let Y and Z be infinite-dimensional Banach spaces such that𝑌 ↩→ 𝑍 and 𝑍 �↩→ 𝑌⊕𝐹
for every finite-dimensional space F.

Then there exists an admissible topology 𝜏′ ⊇ 𝜏 on 𝑆𝐵(𝑋) such that the set 〈𝑍〉� is nowhere dense
in (𝑆𝐵∞(𝑋), 𝜏′).

It is even possible to find an admissible topology 𝜏 such that 〈ℓ2〉≡ is not a meager set in (𝑆𝐵∞(𝑋), 𝜏),
which is an immediate consequence of the following more general observation (property (𝑃) below
would be ‘X is isometric to ℓ2’).

Proposition 4.13. Let X be an isometrically universal separable Banach space and 𝜏 be an admissible
topology on 𝑆𝐵∞(𝑋). Let (𝑃) be a non-void property (i.e., there are spaces with such a property) of
infinite-dimensional Banach spaces closed under taking subspaces. Then there is an admissible topology
𝜏′ ⊇ 𝜏 such that the set {𝑌 ∈ 𝑆𝐵∞(𝑋) : 𝑌 has (𝑃)} has non-empty interior in (𝑆𝐵∞(𝑋), 𝜏′).

Proof. Pick 𝐹 ∈ 𝑆𝐵∞(𝑋) with (𝑃). Using again the classical fact (see, e.g., [21, Lemma 13.2]) that the
topology 𝜏′ generated by 𝜏 ∪ {𝐸−(𝐹)} is Polish, it is easy to check it is admissible. Then the 𝜏′-open
set 𝐸−(𝐹) is a subset of {𝑌 ∈ 𝑆𝐵∞(𝑋) : 𝑌 has (𝑃)}. �
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