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1. Introduction

It is well known that a real symmetric matrix can be diagonalised by
an orthogonal transformation. This statement is not true, in general, for
a symmetric matrix of complex elements. Such complex symmetric matrices
arise naturally in the study of damped vibrations of linear systems. It is
shown in this paper that a complex symmetric matrix can be diagonalised
by a (complex) orthogonal transformation, when and only when each
eigenspace of the matrix has an orthonormal basis; this implies that no
eigenvectors of zero Euclidean length need be included in the basis. If the
matrix cannot be diagonalised, then it has at least one invariant subspace
which consists entirely of vectors of zero Euclidean length.

A symmetric normal form has been obtained for the non-diagonalisable
case, and its application shown to the solution of equations of damped linear
vibrations. This normal form is different from the (non-unique) symmetric
normal form which Wellstein [1] (quoted in Gantmacher [2], pages 9—12)
obtained for a complex symmetric matrix, by transforming the Jordan
normal form. Although Wellstein's form contains fewer non-zero elements,
his result and method do not exhibit the essential role of vectors of zero
Euclidean length, in the non-diagonalisable case. This is done in the present
paper.

The following notation and terms will be used. A matrix G, of real or
complex elements, is orthogonal if its transpose equals its inverse, G' = G"1.
The nxn matrices A and B are similar if B — T~XAT for some non-singular
matrix T, and orthogonally similar if B = G'AG, where G is orthogonal.
The matrix A is complex symmetric if A' = A, but the elements of A are
not necessarily real numbers. Vectors u, v, in complex w-space Cn will be
considered, in matrix notation, as column vectors, though usually written,
for brevity, in row form a s « = {u1, u2, • • •, un}. The inner product and the
resulting squared Euclidean (quasi-) norm are defined respectively by

n

(1) u'v = 2 ukvk

(2) \\u\\2 = u'u.
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||M|| is not defined uniquely, but only ||w||2 is required later. The vector
u is quasi-null (q.n.) if |[w||2 = 0 but u =£ 0, (e.g. the vector {l,i} is q.n.)
A finite set of vectors u1, u2, • • •, uT is orthogonal if u\uh = 0 (/ ^ k;
j , k = 1, • • •, r); the set is orthonormal (o.n.) if, in addition, ||M3||2 = 1
(/ = 1, • • •, r). A basis for a subspace is quasi-null-free (q.n.f.) if no vector
in the basis is q.n. Denote also the vectors

«i = {1, 0, • • •, 0}, e2 = {0, 1, 0, • • •, 0}, • • - , « , = {0, 0, • • •, 0, 1}.

Let / denote a unit matrix.

THEOREM 1. (Gantmacher [2], page 8, Theorem 4.) If two complex
symmetric matrices are similar, then they are orthogonally similar.

It follows that a complex symmetric matrix is diagonalisable by a simi-
larity transformation when and only when it is diagonalisable by a (complex)
orthogonal transformation. For this reason, orthogonal matrices and the
Euclidean norm (2) are relevant to the problem, and not unitary matrices
and the Hermitian norm. (A complex symmetric matrix is Hermitian only
if it is real.) Arguments based on linear independence are unaffected by
the choice of norm.

Most of the usual diagonalisation proof for real symmetric matrices
applies also to complex symmetric matrices, but the proof assumes at one
stage, in constructing an orthogonal set of vectors, that any non-zero vector
can be normalised. This is not always so in the complex case, since q.n.
vectors can occur. A preliminary investigation of the orthogonalisation
procedure is therefore required.

2. Orthogonalisation

A number of preliminary results are stated as lemmas.

LEMMA 1. Orthogonality does not imply linear independence.

PROOF. In C2, the vectors {1, i] and {a, /S} are orthogonal if a+t'/J = 0,
i.e. if {a, /?} = —if}{\, i}. So the only vector orthogonal to the quasi null
vector {1, i} is {1, i} itself, apart from constant multipliers. No orthogonal
basis of C2 contains {1, i).

LEMMA 2. Any two-dimensional subspace S of Cn contains a q.n. vector.

PROOF. By a suitable rotation (i.e. orthogonal transformation), consider
S as spanned by u = {1, 0, 0, • • •, 0} and v = {p, q, 0, • • •, 0}, where q ^ 0.
If p2-\-q2 = 0, the lemma is proved. If not, then^2+^2 = 1 may be assumed.
Then cm-\-fiv is q.n. when

i.e. when /
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LEMMA 3. In Cn (n > 2) there exists a two-dimensional subspace S, which
has a basis containing no q.n. vectors, but which does not have a basis of ortho-
normal vectors.

PROOF. Consider the subspace of Cs spanned by ex = {1, 0, 0} and
z = {1, 1, i}. The vectors a^+jSz = {a+/S, /S, ifi) and yex-\-dz are not q.n.
only if Ha^+jfeU2 = (a+/3)2 ^ 0, and likewise {y+d)2 =/= 0. But then their
inner product (<x.-\-fi)(y-\-d) ^ 0.

LEMMA 4. / / the vectors vx, v2, • • •, vr (r rgi n) are orthogonal and not q.n.,

then they are linearly independent. (The usual proof applies.)

LEMMA 5. Let vx, v2, • • •, vr (r < n) be orthonormal vectors in Cn. Then
there exists a vector vr+1, such that vltv2, • • -,vr, vr+1 are orthonormal.

"REMARK. The usual orthogonalisation procedure constructs a vector
vr+1 orthogonal to vlt • • •, vr, but then vr+1 is not necessarily quasi-null.
(Compare Lemma 3.)

PROOF. At most r of the vectors e5- can be linearly dependent on
vx, • • •, vr; by renumbering the eit suppose that e1, • • •, es (0 ^ s 5S r) are
Hnearly dependent on vx, • • -, vr. For s < k < n, set

(3)

where

«t = v'iek = i = 1, 2, •, r.)

Then uk is orthogonal to vlt • • •, vr, and

(4) = 1-2
t = l

= i - i K)2-
t=i

If there is k (s <k^n) such that

"i since vx, • • •, vr are orthogonal

0, then M,. may be nor-
malised to unit norm, and ek is linearly dependent on vx, • • •, vr, vr+1 = uk.
A contrary assumption leads to a contradiction. Since elt • • •, es are linearly
dependent on t1? • • •, t r , there are constants /?" such that

(5)

Then

so that
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= i «)2-
3 = 1

If also (6) holds for s+1 ^ m 5S n, i.e. ||%||2 = 0 for all k, then

m = l L3'=l J 3=1 l_m=l

contradicting r < n.
From this follows the orthogonalisation theorem required for the

diagonalisation process.

T H E O R E M 2. If vlt v2, • • •, wr are orthonormal vectors in Cn, then there

exist vectors wr+1, • • -,wn such that vt, • • •, vr, wr+1, • • •,wn are orthonormal.

PROOF. By induction, using Lemma 5.

This result shows that an orthonormal set of vectors vx, • • •, vr (r < n)
can always be extended to an orthonormal basis for Cn; therefore there is
an orthogonal transformation, given by the matrix

P = [v1, • • •, vr, wr+1, • • •, wn\

which maps vlt • • •, vr on elt • • •, er. But it is not always possible, as Lemma
3 shows, to construct an prthonormal basis for a given subspace.

LEMMA 6. Let S be a subspace of Cn. Then the following three statements
are equivalent:

(i) every basis of S contains a q.n. vector;
(ii) every basis of S consists of q.n. vectors;

(iii) every element of S is q.n.

PROOF. Obviously (iii) => (i); and (iii) untrue =̂> (ii) untrue, by the
Steinitz replacement theorem. To show that (ii) untrue => (i) untrue, let
S h a v e a basis wlt • • -,wr, in which wx, • • -,ws are q.n. a n d ws+1, • • -,wr

are not q.n.; t hen t h e vectors w1-\-c1wr, w2-\-c2wr, • • -, ws-\-cswr,

ws+1, • • •, wr, where nonzero cs ̂  — 2w'jwrl\\wr\\
2, form a q.n.f. basis for S.

There are therefore three types of subspaces of Cn, namely those
possessing (a) an o.n. basis, (b) a q.n.f. basis but no o.n. basis, (c) q.n.
elements only (as in Lemma 6.)

LEMMA 7. A subspace S of Cn of type (b) is the direct sum of orthogonal
subspaces of types (a) and (c).

PROOF. Let S have a q.n.f. basis wlt • • •, wd. Without loss of generality,
IIK^H = 1 can be assumed. By Theorem 2, there is an orthogonal trans-
formation R of Cn which maps w1 on e1. Now the vectors e1 and

Xj = Rwj—(e'1Rwi)el (2 ^ / sS d)
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form a basis for the subspace RS; so RS is the direct sum of the subspace
A spanned by e1 and the subspace B spanned by x2, • • -, xd; since the first
component of each x5 vanishes, A is orthogonal to B. Therefore S is the
direct sum of the subspaces R'A, of type (a), and R' B.

If R'B is of type (c), the lemma is proved. If it is of type (b), it may be
expressed as a direct sum of a subspace of type (a), and another subspace;
and so on. The process terminates in at most d steps.

COROLLARY. Any subspace of Cn is a direct sum of orthogonal subspaces
of types (a) and (c).

LEMMA 8. Let S be a subspace of Cn. If S has one orthonormal basis,
then every orthonormal set in S can be extended to an orthonormal basis of S.

PROOF. Let blt • • •, bd be an o.n. basis for S. Let w1, • • •, wp be an o.n.
set in S, which is not a basis; then p < d. There is an orthogonal trans-
formation R of Cn which maps blt • • •, bd on ex, • • •, ea; then R maps
w1, • • •, wv on o.n. vectors w*, • • •, w*, say, in which the coordinates
d-{-\, • • •, n vanish. Applying Theorem 2 to the ^-space S* defined by the
first d coordinates, there is an orthonormal basis w*, • • •, w*, yp+1, • • \ yd

for S*. Since d > p, the vectors

wlt • • •, wv, wp+1 = R-ryv+1, •••,wd = R^yd

form a basis for 5.

3. Diagonalisation

Let A be a n x n complex symmetric matrix. If X is an eigenvalue of A,
denote by SA the corresponding eigenspace, i.e. the subspace spanned by
the eigenvectors corresponding to X.

THEOREM 3. Let A be a complex symmetric matrix. Then
(a) A can be diagonalised by an orthogonal transformation if and only if
(b) every eigenspace SA of A possesses an orthonormal basis.

REMARKS. In (b), no hypothesis is made concerning the dimension of
5A; in fact (b) implies that the dimension of 5A equals the multiplicity of 1.
An orthonormal basis is equivalent to an orthogonal basis containing no q.n.
vectors. By Lemma 3, it is not sufficient to assume merely a basis for SA,
containing no q.n. vectors. By Lemma 2, if SA has dimension greater than 1,
then SA contains q.n. vectors; hypothesis (b) concerns a basis for SA, not all
vectors in SA.

The proof that (a) => (b) is trivial. The proof that (b) => (a) adapts a
standard proof for real symmetric matrices; (b), with Theorem 2, is just
sufficient to prevent the occurrence of q.n. vectors in the construction.
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PROOF that (b) => (a). If the union of the orthonormal bases of the
5A is not an orthonormal basis for Cn, then this union consists of orthonormal
vectors wx, w2, • • •, wr, where r < n.

By Theorem 2, there are vectors wr+1, • • •, wn such that

p = [Wl, w2, • • •, wn]

is an orthogonal matrix. Consequently

where D is a diagonal matrix of eigenvalues of A, and B = \w\Aw^\
(i, j = r-\-\, • • ', n) is also a complex symmetric matrix. The set of eigen-
values of B, with repetitions, coincides with the set of eigenvalues of A,
with repetitions, minus those occurring as diagonal elements of D.

Since r < n, B has an eigenvalue X, and a corresponding eigenvector g.
Corresponding to A and g, A has an eigenvalue 1, and an eigenvector Ph,
where h = {0, g}, and Ph lies in the eigenspace SA of A. Now Ph is linearly
independent of w1, • • -, wT, for if

2 ^wt+pph = o
then, for 1 <S / ^ r,

1

i.e. Xj-{-{l • 0 = 0. So Xj = 0, /? = 0. Therefore SA is «o^ spanned by a subset
of wt, • • •, wr. This contradiction shows that the union of the orthonormal
bases of the 5A is a basis for Cn. The orthogonal matrix whose columns are
these basis vectors therefore diagonalises A.

4. Invariant subspaces

The diagonalisation process fails if there is an invariant subspace
for which every basis contains a q.n. vector, or equivalently, by Lemma 6,
if every basis consists of q.n. vectors. Some properties of such subspaces are
as follows.

LEMMA 9. If S is a subspace of Ca, and every basis of S consists entirely
of q.n. vectors, then S has dimension d ^ ^q.

PROOF. Let ux, • • •, ud be a basis for S, where, without loss of generality,
ux may be assumed to be of the form ux = {1, a, ft, • • •}. Since ux is q.n.,
<*2+/?2+ ••• = —!. Since the (q— l)-vector {—ix, —ifi, • • •} constitutes,
trivially, an orthonormal set, there exists, by Theorem 2, an orthonormal
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basis for CQ_1 which contains this vector. There exists, therefore, an ortho-
gonal transformation R of Ca which leaves the first coordinate unchanged,
and which maps ut on vx = {1, i, 0, • • •}.

For 2 sS j ^ n, let RUJ = yjZjt where y} is constant, zt = {ajt bjt cjt • • •},
and a,, = 0 or 1. In the basis for RS, y}Zj may be replaced by

Since every vector in S is q.n., z,-—v1 is q.n., and this holds if and only if

0 = (a,-l *

since also Zj is q.n., this condition reduces to bj = ia^. So, for 2 ^ j 5S n,
if aj = 0, then the first two coordinates of z, vanish; if as = 1, the first
two coordinates of zt—v± vanish. Consequently, RS has a basis consisting
of vt and (»— 1) vectors v2, • • -, vn, for each of which the first two coordinates
vanish.

This process can now be applied to v2, • • •,vn, considering only coor-
dinates 3, 4, • • •, q; and so on. The process cannot terminate with a single
vector, since a 1-vector cannot be q.n., hence d ^ \q.

REMARKS. In particular, if q is even, and d = \q, let G denote the
subspace of 5 spanned by the vectors

gl = {1, *, 0, 0, 0, 0, 0, • • •},
g2 = {0, 0, 1, *, 0, 0, 0, • • •},
g3 = {0. 0, 0, 0, 1, *, 0, • • •}, etc.

Then G is the image of S by a suitable orthogonal transformation. The
maximal subspace orthogonal to G is G itself (compare Lemma 1), for, if
w = {a, b, c, d, • • •} is orthogonal to G, then 0 = a+bi — c-\-di = • • •, so
w = {a, ai, b, bi, • • •} e G; and conversely.

Let M be a symmetric q X q matrix, all of whose eigenvalues are zero,
and all of whose eigenvectors are q.n. Let 5 denote the eigenspace of M,
i.e. the subspace spanned by its eigenvectors. By the construction of Lemma
7, there is an orthogonal transformation R of Ce which maps a basis for S,
say wlt • • ', wa (where d is the dimension of S) onto the vectors glt • • -, gd

(which span a subspace, Gd say, of G). Since gs = RWj (1 5S j :£ d), and

weSoMw = 0o (RMR')Rw = 0,

the symmetric matrix RMR' has Gd as its eigenspace.
If, in particular, d = \q (thus q is even), then the eigenspace of M

is an orthogonal map of G, so that the subspace V spanned by the rows, or
columns, of M is orthogonal to S. Since the maximal subspace orthogonal
to S is S itself, V C S, so V consists entirely of q.n. vectors, and each column
of M is a q.n. vector. Conversely, let M be a symmetric qxq matrix, all of
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whose eigenvalues are zero, and such that the subspace V spanned by the
columns of M contains only q.n. vectors, and has dimension \q. Then S,
the eigenspace of M, is orthogonal to V, and since V is an orthogonal map
of G, the maximal subspace orthogonal to V is V; hence S CV, and the
eigenspace of M contains only q.n. vectors.

Lemma 9 shows that d rgi \q; the case d < \q can occur, as is shown by
the example

i C
- 1 iC
iC

(9) M =
0

where C ̂  0. Here M has all eigenvalues zero, and all eigenvectors are
multiples of {1, i, 0}.

LEMMA 10. Given any subspace S of Cn, there exists a (complex) sym-
metric matrix A for which S is an eigenspace.

PROOF. From Lemma 7 (Corollary), 5 is a direct sum of orthogonal
subspaces with o.n. bases, and subspaces containing only q.n. vectors.
Using the construction of Lemma 9, there is an orthogonal transformation
R which reduces these subspaces to direct sums of the following subspaces
(specified by their basis vectors):

(10) (a) {1}; (b) {1, i}.

Corresponding to these subspaces, suitable matrices are

(11) (a) [0]; G - 3
Thus, for example, the subspace spanned by the vectors {1, i, 0, 0},
{0, 0, 1, i} is an eigenspace of the matrix

"1 i 0 0]
i — 1 0 0
0 0 1 i
0 0 i — l j

(12)

which is of block diagonal form, the blocks being the relevant matrices
from (11).

In general, the required matrix A = R' BR, where B is a block
diagonal matrix of the required blocks from (11).

5. Symmetric normal form

Let A be any symmetric nxn matrix. The normal form given by
Gantmacher [2] (page 9) shows that there is a (complex) orthogonal matrix
Q such that Q'AQ is of block diagonal form
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"l

0
0

0
B2
0

0
0

(13)

where each block B is either (i) a 1 x 1 submatrix consisting of an eigenvalue
of A, or (ii) B = XI-\-M, where M is a qxq matrix, all of whose eigenvalues
are zero, and (by a direct calculation from the Gantmacher form) all of
whose eigenvectors are q.n., and X is an eigenvalue of A. The same X may
correspond to several blocks. The remarks following Lemma 9 show that,
by suitable choice of Q, the eigenspace of M is spanned by d vectors
{1, i, 0, 0, 0, • • •}, {0, 0, 1, i, 0, • • •}, etc., where d ^ \q. The derivation of
the Gantmacher form from the Jordan normal form shows that the blocks
can be chosen to have each d = 1; but, for the present, d will not be so
restricted.

For the special case where all eigenvalues of A are zero, an alternative
proof of (13) is outlined, showing how submatrices M with all eigenvectors
q.n. occur. The proof is by induction; assume that, for some r ^ n,
Q'AQ= |Q KI , where Q is orthogonal, and K is rxr complex symmetric.
If K has an eigenvalue (necessarily zero) and a corresponding eigenvector z
which is not q.n., then, by Theorem 2, there is an orthogonal matiix P,
containing z as one column, such that P'KP = | 0 KA , where K* is
( r - l ) x ( r - l ) symmetric. Then Q*'AQ* = [jj £ , ] , where Q* = Q [I °p~\
is orthogonal. The induction begins with K = A, Q — I, and ends when tli t
final K* is either zero, or has an eigenspace containing only q.n. vectors.

Let F denote the matrix obtained from M by deleting all but the first
2d rows and columns. If now F is partitioned into 2x2 submatrices

(14) F =
n

1 21

12
722

F
F,

then the requirement that Mw = 0 for each eigenvector w of M shows that
Frgv — 0 (r, s = 1, • • •, d), where v = {1, »}• Thus Frs and Fsr have the
respective forms

«=l*y -y\'
where a, fi, y, d are constants. But since M is symmetric, F'ra = F^, which
implies that a = /S = y = d. Therefore

(16) Fn=Ftr = cnT,

where the crs form a symmetric d x d matrix C, and
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Since F has rank d, C is non-singular. The columns of F are q.n., and
pairwise orthogonal. The matrix F may be written as a direct product of
matrices: F = TxC.

If d < \q, partition M in the form

-g
where F is a 2<2x2rf matrix, H is a. q' xq' matrix, where q' = q—2d, and /
is a <?' x 2d matrix. Since Mw = 0 for each eigenvector w of iW, the elements
of / are related by Mr2s = iMr_ 2t_1 (2d < r ^ q, 1 :£ s r£j i ) , but it does
not follow that Mr+lt2t_x = iMr2s_1 as in the case for r ^ 2d. Thus / is
of the form

(19) / = tfi,iPi,Pt,iP,,--',Pi,iP*].

where each (ik is a ^'-vector; but / does not decompose into submatrices T
(compare (9)).

Denote by <j>t(M) (resp. <j>t(H)) the sum of all principal txt minors of
M (resp. H). The determinants which contribute to <j>t{M), but not to (f>t{H),
for t 5S q', are of the forms:

(i) containing (part of) column 2s—1 of M (and the corresponding
row) for some s in 1 5S 2s—1 < 2d; but not column s;

(ii) as for (i), but with 2s and 2s—1; interchanged;
(iii) containing both (part of) column 2s—1 and column 2s, for some

s in 1 ^ 2s—1 < 2d.

Now determinant (iii) = 0, since (column 2s) = i (column 2s—1);
and to each determinant (i) there corresponds a (ii) with the same s, the
other rows and columns being the same (and conversely); the extraction
of a factor i from both column 2s and row 2s of (ii) shows that determinant
(ii) == i2xdeterminant (i). Therefore <f>t{M) = <f>t(H), for t ^ q'. Since the
<j>t{M) (resp. (f>t(H)) are, apart from sign, the coefficients of the charac-
teristic equation of M (resp. H), and all eigenvalues of M are zero, it
follows that all eigenvalues of H are zero. But it does not follow that all
eigenvectors of H are q.n.; (9) is a counter example, where H = [0] has
{1} as a non-q.n. eigenvector.

If H has a non-q.n. eigenvector, then the reduction (13) of A to block
diagonal form may be applied to H. Thus there is a complex orthogonal
transformation Q which reduces H to the form
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where H1 has all its eigenvalues zero, and all its eigenvectors q.n. The
orthogonal transformation

applied to M, has this effect; this transformation also replaces J by QXJ,
which is also of the form (19). The following theorem has therefore been
proved:

THEOREM 4. If A is a complex symmetric matrix, then there is a complex
orthogonal matrix P such that P'AP has the block diagonal form (13). Each
block B is either a 1 x 1 submatrix consisting of an eigenvalue of A, or a qxq
symmetric submatrix of the form XI-\-E, where X is an eigenvalue of A, E has
all its eigenvalues zero, all its eigenvectors quasi-null, and its eigenspace
of dimension d 5S \q. The matrix E has the partitioned form

(20) £ =

J

r

E1 J

where F has the form given by (14) and (16), J has the form (19), and E1 has
all its eigenvalues zero, and all its eigenvectors quasi-null.

It follows that a similar reduction may be applied to the submatrix
E\, leading recursively to a representation of M in terms of submatrices
of the respective forms of F, J, and zero matrices. (The zero matrices do
not always occur, but are required, e.g., in (9).)

REMARKS. AS already noted, a block diagonal form (13) exists in which
each d = 1; then each F is a 2x2 matrix cT, c being constant.

If d = \q, then M reduces to F. In this case, it is observed that the
columns of F, and consequently those of M, are orthogonal, and either q.n.
or null. Also, for d = \q, the decomposition into d 2 x 2 subblocks shows that
E can be reduced to a block diagonal matrix, with each diagonal block of
the form cT, the c being constants.

An example of the symmetric normal form is as follows (where
= - 1 ) :

' — ia.jp ijp 0-
iJP ia.JP 0

^ ..„ _ ^ 0 0 1
(21)

A

P

=
1
<x

"C
o

'AP =

X

X2

xp

"0
0
0

P '
<x-P
p\

C

-is
—i

p

0 "
2 — iB2

B2 p2 _
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6. Application to damped oscillations

The small damped oscillations of a linear system, with a finite number
of degrees of freedom, may be described by the matrix equation

(22) Nx+Kx+Lx = 0,

where the nxn matrices N, K, L will be assumed real symmetric, with N
and L positive definite, and £ is a w-vector function of time t. The three
matrices cannot, in general, be diagonalised by the same similarity trans-
formation. Although the equation is readily solved by other means, it is of
interest to note the relevance of complex symmetric matrices.

The equation may be written in the form Gu-\-Du = 0, where

G = l ? ?1. D = \ fL - f~\ K

Further simplification gives y+Ay = 0, where y = G+%u, and A =
is complex symmetric. If P'AP is the symmetric normal form for A, given
by Theorem 4, and w = P'y, then

(23) w+(P'AP)w = 0.

Let U-\-E be one of the block submatrices of P'AP; let z be the
corresponding partitioned part of w. Then the solution w of (23) is obtained
by combining, for each block, the solution z of z-\-(XI-\-E)z = 0, namely

z = e-xt(a+bt),

where a and b are constant vectors satisfying (for all t)

b+E(a+bt) = 0.

Thus Eb = 0, so that b is in the eigenspace of E; and Ea = — b.
If E = 0, then b = 0. If E ^ 0, then b is a quasi-null vector, of the

form b = {OL-^V, x2v, • • •, «.dv, 0, • • • 0}, where v = {1, i}, the <xk are constants,
and d ^ \q, where E is a qxq matiix. Denote (using (20))

- c a - - [ ? ] -

Then

( 2 4 ) Fa1+J'u2 = -bx

Ja1+Yat = 0.

From (19), J is of the form [plt ifilt • • •, pd, ipd], so that

J'a2 = {p'1a2v,---,P'da2v}.
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Therefore —Fax — J'ra2+&i is of the form {y^v, • • •, ydv}, where
ys = aLs-\-fi',a2. Let ax= {Xx, • • -, Xd}, where each Xs is a 2-vector. Since F

has the form given by (14) and (16),

s= l

so that TXS = ksv, where {k1, • • •, kd} = — C~1{y1, • • •, yd}. Substituting
T from (17), this gives

(25) Xs = k.e+g.v (s = 1, • • •, d)

where e = {1, 0}, v = {1, i], and the gs are arbitrary constants.
Now, from (24),

d

-Ya2 = Jax = ^ /3s^a since w'w = 0.
I

Denoting J = [/?!, • • •, /Sd] and ft = { î, • • •, ftd}, this becomes

-Ya2 = jk

using the previous expressions for ks and ys. Therefore

(26) (Y- /C-V' )«2 = 7C-i«.

The solution to the differential equation for z must contain q arbitrary
constants; of these, 2d are contributed by the two arbitrary ^-vectors a
and g. Consequently, either 2d = q, so that / , Y and a2 are eliminated,
or an additional q' = q—2d arbitrary constants are contributed by the
solution of (26) for the ^'-vector a2. The latter is only possible if the matrix
coefficient of a2 has zero rank, so that a2 is an arbitrary ^'-vector, and
JC'1, and therefore also / , is zero. In either case, ax is then determined
by (25).

Then the solution to (22) is completely determined for the case where
the complex symmetric matrix D cannot be diagonalised. This case corre-
sponds exactly to the situation when the solution to (22) is not simply a
sum of exponentials.
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