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Abstract

Let G be a primitive permutation group of finite degree n containing a subgroup H which fixes k
points and has r orbits on A, the set of points it moves. An old and important theorem of Jordan says
that if r = 1 and k > 1 then G is 2-transitive; moreover if H acts primitively on A then G is
(k + 1 (-transitive. Three extensions of this result are proved here: (i) if r = 2 and k > 2 then G is
2-transitive, (ii) if r = 2, n > 9 and H acts primitively on both of its two nontrivial orbits then G is
^-primitive, (iii) if r = 3, n > 13 and / / acts primitively on each of its three nontrivial orbits, all of
which have size at least 3, then G is (k — l)-primitive.

1980 Mathematics subject classification (Amer. Math. Soc): 20 B 20.

Introduction

In 1871 Jordan proved the following result (see Theorem I of Jordan (1871) or
Theorems 13.1, 13.2 of Wielandt (1964)): let G be a primitive permutation group
on a finite set fi and suppose that G has a subgroup H which fixes at least one
point of fi and is transitive on A = supp(//), the set of points not fixed by H.
Then G is 2-transitive; moreover if H is primitive on A then G is (k + l)-fold
transitive where k = | fix H \ .

This result has played a large part in the study of permutation groups since
then (see for instance §13 of Wielandt (1964)). In fact Theorem I of Jordan (1871)
gives more information than stated above: G is (k + l)-fold transitive provided
that H is transitive on A and for all/3= \, H admits at most one congruence on A
of modulus/. Marggraff (1892) generalised this, showing that the same conclusion
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holds if H is transitive on A and for all/s= \, H admits at most /congruences on
A of modulus/.

Two questions which arise from these results are: (a) what can be said about a
primitive group G which has a subgroup H having r orbits on supp(//), where
r > 1? (b) what more can be said if we make assumptions about the action of H
on its orbits? The purpose of this paper is to give some answers to these questions
in the cases r = 2 and r — 3. For r = 2 we prove Theorems 1 and 2:

THEOREM 1. Let G be a primitive group of degree n on a finite set £2 and suppose
that G has a subgroup H fixing at least two points of SI and having two orbits 2 , , 2 2

on supp(//). Then G is 2-transitive.

THEOREM 2. // , with the hypotheses of Theorem 1, H is primitive on 2 , and on~2.2
and | 2 | | s» 3, | 2213= 3 then one of the following holds:

(i) G is k-fold primitive {where k = | fix H |),
(ii) n = 9, k = 3 and G is ASL(2,3) or AGL(2,3).

Theorem 2 is best possible, for there are many simply primitive groups G in
which the stabiliser Ga has two nontrivial orbits and acts primitively on both. The
hypotheses of Theorem 2 are also considered in Antopolski (1971), where such a
group G is shown to be 2-transitive.

For the case r — 3 we prove:

THEOREM 3. Let G be primitive on a finite set U with a subgroup H such that
| f i x / / | = k and H has 3 orbits 2 , , 2 2 , 2 3 on supp(//). Suppose that H acts
primitively on each 2, and | 2, |3= 4 (/ — 1,2,3). Then G is (k - \)-fold primitive.

Again Theorem 3 is best possible, for there is a simply primitive group G in
which Gap has three nontrivial orbits and acts primitively on each of them (see
Example 3.3). The general cases r = 3, r = 4, r = 5 are considered in Liebeck
(1977), where it is proved that G has rank at most r + 1, thus verifying a
conjecture of Wielandt (1971) in these cases. It is very likely that the methods of
this paper will extend to prove further results for small values of r.

This paper is divided into four sections. In the first Theorem 1 is proved; the
proof relies heavily on the graph theory associated with a permutation group as
described in Neumann (1977). The second section consists of a proof of Theorem
2; here a different approach is taken—the orbits 2 , , 2 , of H are 'built up' step
by step until they become orbits of Ga for some a E fi. Then a theorem of O'Nan
(1975) on 2-transitive but not 2-primitive groups is used to complete the proof.
The proof of Theorem 3, given in the fourth section, runs along similar lines. In
Section 3 some examples of primitive groups having subgroups with few orbits
and several fixed points are presented.
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13] Extensions of a theorem of Jordan 157

The notation used is that of Wielandt (1964), except that for a subset A of 12 we

write G(4), G{A} for the pointwise and setwise stabilisers of A in G, respectively.

1. Proof of Theorem 1

Before proving Theorem 1 we briefly outline the results in Neumann (1977)

which we shall need. Let G be a transitive permutation group on a finite set 12 and

let a E 12. There is a 1-1 correspondence between the orbits Ao, A , , . . . , A^ of G on

12 X 12 and the orbits Fo, F , , . . . , Ts of Ga on 12 given by

ri. = r / ( a ) = { Y G Q | ( « , Y ) G A 1 . } .

For ; s* 1 we define the Trgraph to be the directed graph on 12 in which there is an

edge from yS to y if and only if (/?, y) G A,. We denote by F* the suborbit paired

with F;. If F, is self-paired then the F,-graph is undirected.

Suppose now that G is primitive on 12. Then all the F,-graphs are connected

(Lemma 3 of Neumann (1977)). For anyj, k define

^Jo ^k = { ( 0 , Y ) | J 8 = £ y and there exists 8 G 12 with (/?, S) G A ; , ( S , y ) G A * } .

Let Tj o Tk be the corresponding union of suborbits. The following result is taken

from Theorems 3 and 4 of Neumann (1977).

RESULT A. (i) Suppose that for /? E F,, Ga/i is transitive on F, and that | F(-1> 1,

| F• | > 1. Then Y* ° F- is a single suborbit of size greater than | F, | and | F. | .

(ii) If s 3* 2 and Ga acts 2-transitively on F ; /or some i > 1 then T* ° F( is a single

suborbit of size greater than | F,• | .

PROOF OF THEOREM 1. Let G be a primitive permutation group of degree n on 12

and assume that G has a subgroup H fixing at least 2 points and having 2 orbits

2 , , 2 2 on supp( / / ) , the support of H (that is, 12 \ f i x / / ) . Suppose for a

contradiction that G is not 2-transitive. Let Xbe a subgroup of G with | supp( X) \

maximal subject to the following conditions:

(a) | fix X | > 2 ,

(b) X has at most 2 orbits on supp( X).

By Jordan's Theorem, X has precisely 2 orbits A,, A2 on supp(A'). Write

A - A, U A2 and d, = | A , | (/ = 1,2).

LEMMA 1.0. Suppose g G G is such that A,g n A, ^ 0 a«i/ A,g ^ A,. Then

A2g n A ^ 0 a/id | Ag U A | > n - 1.

PROOF. Let Y = (X, XK). The nontrivial orbits of Y consist of unions among

the sets A,, A2, A,g and A2g. Suppose that A 2 g D A = 0 . Then the nontrivial
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orbits of Y are either
(i) A2g and A,g U A, U A2 (if A,g n A 2 ^ 0 ) , or
(ii) A2g, A2 and A,g U A, (if A,g n A2 = 0 ) .

In case (i) we may choosey G Xs such that Aly D A, ¥= 0 and A,^ f l i 2 ^ 0 .
Let Z = (X, Xy). If | supp(Z) | = | supp(A') | then Z has just 1 nontrivial orbit,
so G is 2-transitive by Jordan's Theorem, which is not so. Hence | supp(Z) |>
supp(X) | . However Z has at most 2 nontrivial orbits and certainly A2g C fix Z,

so | fix Z | s* 2 and Z contradicts our choice of X. In case (ii) we may pick y G Xg

with A, j n A, # 0 and A,^ / A,; then (X, Ar>>) gives a similar contradicition.
Hence A2g n A ^ 0 . Finally, suppose that | Ag U A | < n - 2. Then | fix y | s*

2. Clearly Y has at most 2 nontrivial orbits, so by choice of X we must have
supp(y) = supp(A'). But then since Atg D A, ¥= 0 and A,g ¥= A,, Y has just 1
nontrivial orbit, so G is 2-transitive by Jordan's Theorem. This contradiction
shows that | Ag U A \> n — 1, proving the lemma.

We continue the proof of Theorem 1 in a series of steps.

STEP 1.1. We have | fix X\< {n < | A | . For suppose that | A |< {n. Since G is
primitive we may choose g G G such that A,g n A, ¥= 0 and A,g ¥= A,. By
Lemma 1.0 then, A2g ( 1 4 / 0 and | Ag U A \> n - 1. However

|Ag U A| =|Ag| +|A| - | A g n A| < \n + \n - 2 = n - 2,

which is a contradiction.

STEP 1.2. Let a G fix X and let Tl,...,Ts(s> 2) be the nontrivial orbits of Ga.

Suppose that A, and A2 lie in different orbits, say A, C F,, A2 C F2. Then A,, A2

are blocks of imprimitivity for G^\ G j 2 respectively. Further, either A, = F, or

A 2 = r2.
Note that the last part of Step 1.2 follows from the first, for if A, C F, and

A2 C F2 then by the first part, | A,, | < \ | F,. | (/ = 1,2), so | A | < {n, contradicting
Step 1.1.

Suppose that A, is not a block for Gj1 and pick g G Ga such that A,g / A, and
A , g n A 1 ? t 0 . By Lemma 1.0, A2g n A / 0 and AgUA = fi\{a}, from
which it follows that 5 = 2, A,g U A, = F,, A2g U A2 = F2 and A2g D A2 ¥= 0.
Let 0, = F,\A, (/ = 1,2). Then 0 , ^ 0 since A, is not a block for Ga

r', so
i < | ©,!<</,.

We complete Step 1.2 in the following stages:
(a) 0 , is a block for Gj1. For otherwise there exists h G Ga with Qxh / 0 , and

®xh n 0 , / 0 , forcing | A/? U A | < n — 1, which contradicts Lemma 1.0.
(b) F,, F2 are self-paired suborbits of G. For Ga acts 2-transitively on the block

system for G^1 which contains 0 , . Hence 2 divides | G | and (b) follows.
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(c) We have A2 C F2. Suppose on the contrary that A2 = F2. Then if fi G G, we
have A'*: Ga/3, so Gaj8 is transitive on F2. But then by Result A, F2 ° F, is a
suborbit of G of size greater than | F, | and | F21 , which is a contradiction.

Hence 1 *£ | 021 < d2 and as for (a), @2 is a block for G^2. For i = 1,2 let 6$. be
the block system for G^' containing 0, and let ki = | %k .

(d) We h a v e G a { 8 | ) = G a { e 2 } - A l s o k { = k 2 = k and there e x i s t g 2 , . . . , g k G G a

such that% = {0,, 0 ,g2 , . . . ,S,gk} (/ = 1,2). For if there exists h G Ga{e2, \ Ga{0])

then | A/i U A |< n — 1, contradicting Lemma 1.0. The last part follows if we take
{1, g2, . . . ,gk) to be a set of coset representatives for C7a{e|) in G.

As described at the beginning of this section, for ft G 12 we write F,(/3), F2(/S)
for the nontrivial orbits of Gp (so F, — F,(a), F2 = F2(a)).

(e) One of the following holds:

(ii) fi G T2(y) for all / ) £ 0 2 j £ A,.
For suppose that (ii) is false. Then there exist /? G 0 2 , y G A, such that fi G F,(y).
Since X < Gap and Xis transitive on A, this means that fi G F, (Y) for all y G A,.
It follows that fig2 G r,(yg2) for all y G A,; however /?g2 G A2 and 0 , C A,g2.
Hence fi' G F,(Y') for some fi' G 0 , , y' G A2 and we see that (i) holds by
considering the actions of G a { e ) and X.

We assume without loss of generality that (i) holds.
(0 Let tj — | 0,: | (; = 1,2). Then f, > d2. Suppose that ?, < d2. First we show

that the F,-graph has no triangles. To do this we choose fi G 0 , and show that fi
is joined in the F,-graph to no point of F,. By (e), fi G F, (Y) for all y G A2. If
fi G r,(5) for some 8 G A, then fi G F,(8) for all S G A, (by the action of X), so
the valency t>,(fi) of fi in the F,-graph satisfies

However v^fi) = | F, |= di + ?,, from which it follows that /, > d2, contrary to
assumption. Hence fi is joined in the F,-graph to no point of A,. If fi G F,(5) for
some 8 G 0 , then by (e), fi and 8 have at least d2 mutual adjacenices in the
F,-graph. However a G F,(/?) and a, fi have at most ?, — 1 mutual adjacencies in
the F,-graph, so tx — 1 > d2 which is not so. Hence fi is joined in the F,-graph to
no point of F, and we have shown that the F,-graph has no triangles.

Now let fi' G 0 2 and suppose y8' G F,(v) for some y G 02.Then/?'g2 G r,(yg2)
and fi'g2, yg2 G A2, so fi, fi'g2, yg2 form a triangle in the F,-graph, which is a
contradiction. Since the F2-graph is connected (Lemma 3 of Neumann (1977))
there exists 8 G F2 with fi' G F,(8); it must be the case that 5 G A2. Hence
0 ' G F,(5)forall5 G A2.

Finally, if fi' G F,(y) for some y G 0 , then fi', y, 8 form a triangle in the
F,-graph for any 8 G A2. Hence fi' G F,(y) for all y G A,. Consequently
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But then vx(fi) = dx + d2, so /? must be joined in the F,-graph to some point of
r , U 0 2 . This we have seen above to be impossible. This contradiction establishes

(0-
Now we can complete Step 1.2. Let ft E 0 , . Then t>,(/?) = | F, | = ktx, and

k > 3. By (f) we have /, > d2 > t2, so
ktx > tx + 2?, > /, + d2 + t2 = | 0 , | +1 F21 .

Thus vx(/i) > | F2 U 0 , | and so /? G F,(y) for some y G A,, hence for all y G A,.
By (e) then, 0 G F,(y) for all y £ A ( = A, U A2). It follows that for each j ,
8 G F,(e) for all 8 G 0 ,g ; , e G Ag;. Also Agy = (F, U F2) \ ( 0 , U 02)gy. Conse-
quently in the F2-graph, points of 0,g7 can be joined only to points of
( 0 , U Q2)gr Let ( 8 e 0 , , y £ 0 ,g2 . Then fi G F,(y) and £, y have no mutual
adjacencies in the F2-graph. However y G F,(a) and a, y have at least one mutual
adjacency in the F2-graph since the F2-graph is connected.

This final contradiction completes Step 1.2.

STEP 1.3. Let a G fix X and letTx,...,Ts be the nontrivial orbits of Ga. Then each

F, (/ = 1 , . . . ,s) is a union of sets of the form A -g (j = 1 or 2) where g G G and

To see this, let

W= (Xs\gGG,Xg^Ga).

Then W < Ga and W is weakly closed in Ga with respect to G, so by Theorem 3.5
of Wielandt (1964), Ga - NG(W) is transitive on fix W. Hence fix W= {«} and
so for any y G F; there exists gy G G such that XK-< < Ga and y G supp( X8-') =
Agy. Step 1.3 follows.

We can now finish the proof of Theorem 1. First suppose that A,, A2 lie in
different suborbits of G, say A, C F,, A2 C F2. By Step 1.2 we may assume that
A, = F,. Choose t such that F, D fix X ̂  0 and

|F,| = max{|r, |: F, n fix A1^ 0 } ,

so that / s* 2. Let /? G F, n fix X; then X < Gap. Hence if A2 = F2 then by Result
A, one of T* ° Ax and Fr* ° A2 is a suborbit of G of size greater than | F, | , | A,
and | A21 , which is clearly impossible. And if A2 C F2 then F,* ° A, gives a similar
contradiction (for then | F, | > \ F21 by choice of F,).

Thus we may suppose that A,, A2 lie in the same suborbit of G, say A, U A2 C
F,. By Step 1.3 there exists g G G such that Xs < Ga and, say, A,g C F2.
Certainly | F21<| A | by Step 1.1, so A2g C F, for some / ¥= 2. Hence A,g, A2g lie
in different suborbits of G and now the argument of the previous paragraph
yields a contradiction with Xg replacing X and A,g replacing A, (/ = 1,2).

This completes the proof of Theorem 1.
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2. Proof of Theorem 2

Before embarking on the proof of Theorem 2 we prove a lemma necessary to
the proof.

LEMMA 2.0. Let G be a 2-transitive permutation group of degree n > 9 on £2, and
suppose that for a G fi, Ga has a system % of blocks of imprimitivity in £2 \ {a} with
blocks of size 2. Assume further that if B — {/?, y} G 9> then Ga/iy acts primitively
on ® \ {B}. Then n = 9 and G is ASL(2, 3) or AGL(2, 3).

PROOF. If n = 9 the conclusion is easily seen to be true (see Sims (1970)), so
assume that « > 9. Let Bi = {6, e} G % \ {B} and write L = Ga/iy. Now if L{Se)

has an orbit on <$ \ {B, #,} of size 2 or 1 then since it is primitive, L"'^(S} has
orderp or 2p where/? = {(n — 3) is prime. But then G contains an element which
is a product of 1 or 2 /7-cycles and fixes at least 3 points, contradicting Theorem
13.10 of Wielandt (1964). Hence every orbit of L{Se) on 9> \ {B, 5,} has size 3 or
more, so GapySe fixes no points in S2 \ {a, /8, y, S, e}. This means that the unique
third fixed point of GpS lies in {a, y, e}, which is impossible as G/iSa, GpSy, GpSc fix
y, a, a respectively.

Now let G be primitive of degree n on fi and suppose that G has a subgroup H
which has 2 nontrivial orbits 2 , , 2 2 of size at least 3 and acts primitively on both
of them. If n = 9 it is easy to see that (ii) of Theorem 2 holds, so we assume that
n > 9. To prove Theorem 2 it is enough to show that G is 2-primitive if k 3s 2
(where k = | fix H\), for then the obvious induction argument will establish the
result. Suppose then that k > 2 but G is not 2-primitive. Let 2 = 2, U 2 2 and
define

? = {x G G|2, x n 2 T* 0 and 2,• x £ 2 for some / G {1,2}}

so that S ^ 0 by Theorem 8.1 of Wielandt (1964). Pick g G S with | 2g U 2 | as
small as possible. We may assume that 2, g D 2 ¥= 0 and 2, g <£ 2.

STEP 2.1. We have 2 2 g n 2 ^ 0 . For suppose that 2 2 g n 2 = 0 . Now
2, g D 2,. |> 0 for some; G {1,2}. If | 2, g D 2 , |> 2 choose a, /? G 2, g n 2y.

Since Hg is primitive on 2, g there exists x G Hg such that

a x G 2 , / ? j t G 2 1 g \ 2 .

Then x G §. But 2 2 g % 2x, so | 2 U 2.x | < | 2 U 2g | , contradicting the choice
of g. And if 1 2 ^ 0 2 ^ = 1 , say 2, g n 2y = {«}, then any x G Hs with
ax G 2, g \ 2 contradicts the choice of g.
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Let / / , = (// , //«>. By Step 2 .1 , / / , has dnontrivial orbits A,,. . . ,Ad where rf is
1 or 2. Write 0, = A, . \2 ( / = \,...,d).

STEP 2.2. Ifd-2 then | 0,• |=£ 1 /or / = 1,2. We prove this for / = 1; the case
/ = 2 is covered by the same argument. Suppose first that | 0 , |s=| 2 , | . Then by
choice of g, 2 , is a block for //,A|. This forces 2 , C 2g, for if not then there exists
x G H8 fixing 2 , \ 2 g and mapping an element of 2 , to an element of 0 , ,
contradicting the fact that 2 , is a block for //f1. However, since Hs is primitive
on 2,-g we have | 2 , n 2 , g | < 1 for i = 1,2. This forces | 2 , | < 2 as 2 , C 2g.
This contradiction shows that | 0 , | < | 2 , | . Hence by choice of g, 0 , is a block
for //,A| and consequently | 0 , |s£ 1.

STEP 2.3. If d - 1 then | 0 , | < 2 and 0 , is a block for //,A'. To see this, suppose
that | 0 , |s* 3. Then | 2 , g \ 2 \> 2 for some i, so since Hg is primitive on 2, g
there exists h G Hs such that 0 , h =£ 0 , and 0 , h D 0 , ^ 0 . By choice of g it
must be the case that h (£ S, so we may assume that

2 , A C S and 2 2 / i C 9 , .

This implies that 2 2 C 2g, and so

|01| = | 2 g | - | 2 g n 2 | = | 2 | - | 2 2 | - | 2 g n 2 1 | < | 2 1 | .

First we show that //A| is primitive. Let F be a block for //f1 with r n 22 ¥= 0
and | T |> 1. Now T n 22 is a block for H^\ so either 22 C T or | T n 221= 1.
If | r n 2, | = 1 then T n 0, = 0 , I r n 2, I = 1 and I r I = 2. This forces Th (h
as above) to contain a point of 2 and a point of 0,, which is impossible as Th is a
block for //A|. Hence 22 C T, from which it follows without difficulty that
F — A,, using the fact that 2yg intersects both 2, and 22 nontrivially for somey
(since d — 1).

Hence //,A| is primitive. It follows from Theorem 1 that //f1 is also 2-transitive
(this can also be deduced here using elementary arguments).

Finally, choose a G 0,. Since //f1 is 2-transitive there exists k G H]a such that
2, A: n 0, ^ 0 . Then certainly 2, k £ 2. Since | 0 , | < | 2 , | we have 2, k n 2 ^
0 . Hence < :£§ . However, as k G Hia we have

2A: U 2 C A,\{a}

so that k contradicts the choice of g.
This contradiction shows that | 0 , |< 2. Clearly by choice of g, 0, is a block

for H\\ so Step 2.3 is complete.

Note that in both cases d — 1 and rf = 2we have [ 2g \ 2 | < 2, so g is such that
j 2g U 2 | is minimal subject to the condition 2g ^ 2. In particular 2g U 2 C S2
since k > 2, and so I fix //, I > 1.
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Suppose now that d = 1, so that | 0 , | < 2 and 0 , is a block for //f'. Let F be a
proper block for //f' with F D 0 , ^ 0 . If 2 , C F or 2 2 C F then F = A, since
2, g intersects both 2 , and 2 2 for some /'. Hence F C 0 , . Thus the only proper
block systems for //f' are the trivial one and the one containing 0 , . If | fix // , | > 2
then Theorem I of Jordan (1871) (stated in the Introduction) shows that G is
3-transitive, which is not so. Hence | fix // , | = 1. But now if | 0 , | = 1 then //f1 is
primitive, so G is 2-primitive, which is not the case; and if | 0 , | = 2 then Lemma
2.0 gives a contradiction.

Consequently d — 2 and the orbits of Ht are 2) = 2, U 0, where | ©,-1 < 1
(/ = 1,2). Write 2 ' = 2g U 2. Now define g,, g2,... inductively as follows: for
/ — 1,2,..., g,. £ G is chosen such that | 2 ' g, U 2 ' | is minimal subject to the
condition 2 ' g, i= 2 ' ; and 2 / + ' = 2 ' gt U 2' . By the above considerations the
group Hi+l = (H,, Hf') has 2 nontrivial orbits 2',+ 1, 2 2

+ 1 . Clearly there is a
positive integer 5 such that 112 \ 2 J | = 1. Then fix Hs — {a}, say, and Hs has the 2
nontrivial orbits

2* = 2, U 0. U 0,1 U • • • U0/"1 (/ = 1,2)

where all | 0/1 < 1. If w, = | 0,• U 0,' U • • • U 0 / ~ ' | then Hs is (u, + Intransitive
on 2;. Since i c > 2 w e have w, + u2 > 1.

We can now complete the proof of Theorem 2. If G is not 2-transitive then 2 j ,
2 j are the nontrivial orbits of Ga, and Ga cannot be 2-transitive on both of them
by Result A(ii). Hence we may assume that 2f — 2 , . But then 2 , o 2 2 is a
suborbit of G of size greater than | 2 , | and | 221 by Result A(i), which is a
contradiction.

Hence G is 2-transitive. Finally, since G is not 2-primitive, one of the following
must hold:

(a) <$> = {2{, 2 2 ) is a block system for Ga on fi \ {a},
(b) Ga has a block system on S2 \ {a} with blocks of size 2, each containing 1

point from 2{ and 1 from 2 2 .
In case (b) Lemma 2.0 gives a contradiction. In case (a) the kernel K of the action
of Ga on <$ contains Hs, so K acts 2-transitively on both of its orbits 2J (/ = 1,2).
Hence by Theorem D of O'Nan (1975), G is a normal extension of PSL(m, q) in
its natural 2-transitive representation on PG(m — \,q) for some m, q. But the
stabiliser of a point in such an extension of PSL{m, q) cannot have a block
system with 2 blocks.

This contradiction completes the proof of Theorem 2.

REMARK. An obvious modification of the proof (in Step 2.2) shows that the
restrictions | 2 , | > 3 in Theorem 2 are unnecessary providing we exclude the
groups PSL{2,1) of degree 7 and AGL(3,2) of degree 8.
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3. Some examples 

In this section we present some examples of primitive groups having subgroups 
with several fixed points and few nontrivial orbits. 

E X A M P L E 3.1. Let G be a group with ASL(d, q) < G < AGL(dy q) acting on a 
¿/-dimensional vector space V over GF(q) (d > 2, q a prime power). Then the 
pointwise stabiliser G(W) of a (d — l)-dimensional subspace W of Facts semireg-
ularly with degree qd — qd~x on V\W and has | AGL(d, q): G | nontrivial orbits. 
This number of orbits can be any positive integer dividing q — 1; in particular it 
can be 2 (if q is odd) or 3 (if q = l(mod 3)). Notice that the actions of G{W) on its 
orbits are primitive if and only if d = 2, q is prime and G is ASL(d, q); if d = 2, 
q = 3 then G(W) has 2 orbits of size 3 and 3 fixed points (see conclusion (ii) of 
Theorem 2). 

E X A M P L E 3.2. Let G be PGL(d, q) (d > 3) acting on PG(d - 1, q), the set of 
1-dimensional subspaces of V and let {u, , . . . ,vd) be a basis for V. For r < J put 
A„ = {(v)\ (v) C (vr,... ,vs)}. Then Ga/3 has two nontrivial orbits for any 
a. /? G PG(d - 1, 4 ) . For 5 =£ d - 1 let Hs be the subgroup (g G G ( ¡ V ) | A ! + K i , g 
C A 2 i / } . Then / / j has two nontrivial orbits and fix Hs = A,s. 

Since 'M 2 1 ' is PSL(3,4) acting on PG(2,4), considerations similar to the above 
give examples of subgroups of M 2 2 , M 2 3 , M 2 4 (in their representations of degrees 
22, 23, 24 respectively) having two nontrivial orbits of sizes either (a) 3 and 16 or 
(b) 8 and 8. 

E X A M P L E 3.3. As promised in the Introduction here is an example of a simply 
primitive group G such that Ga/3 has 3 nontrivial orbits and acts primitively on 
each of them. Let G be the Higman-Sims simple group HS acting with degree 100, 
as described in Higman and Sims (1968). Then G has rank 3 and Ga 2= M22 has 
nontrivial orbits of sizes 22, 77. If (3 is a point in the orbit of size 22 then 
Gap = PSL(3,4) and Gaf3 has 3 nontrivial orbits of sizes 21, 21 and 56, acting 
2-transitively on the orbits of size 21 and primitively on that of size 56. 

In fact this is the only known example of a simply primitive group G in which 
Gap has 3 primitive orbits; for it is easy to see that such a group must have rank 3 
and act 2-primitively on one of its suborbits. The known examples of such rank 3 
groups are listed in Atkinson (1977) and HS is the only one satisfying our 
requirements. 

4. Proof of Theorem 3 

As for the proof of Theorem 2 we require a preliminary lemma. 
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LEMMA 4.0. Let G be a 2-transitive group of degree n s* 13 on ft and suppose that
Ga has a system % of blocks of imphmitivity with blocks of size 3 satisfying the
following conditions:

(i) if B = {B, y, 8} £ L^> the GapyS has a subgroup H with 3 nontrivial orbits 2 , ,
2 2 , 2 3 on ft \ {a, B, y, §}, eacft 7/2 ' being primitive,

(ii) for any B' G<3>\{£}, | 5 ' n 2 , | = 1 ( / = 1,2,3).
Then n = 13 and G is PSL(3, 3).

PROOF. If n — 13 the conclusion is easily seen to be true (see Sims (1970)) so
assume that n > 14. Let B' = {/?', y', 8'} G % \ {B} with B' G 2, , y' G 2 2 ,
8' E 23 . Since H < Ga and B' is a block for Ga we have i/^, = Hy, = Hs,. By the
argument in the proof of Lemma 2.0 every nontrivial orbit of GapySp,y.s. has size 3
or more. Now the G-translates of {a} U B form the blocks of a Steiner system
S(2,4, n) (see Case 1 on page 274 of Atkinson (1973)); however by the previous
sentence the unique block containing {B, B'} must be contained in
{a, B, y, 8, B', y', 8'}, which is impossible.

Now let G be a primitive group of degree n on £2 and suppose that G has a
subgroup H which has 3 nontrivial orbits 2 , , 2 2 , 2 3 of size at least 4 and acts
primitively on each of them. To prove Theorem 3 it is sufficient to show that G is
2-primitive if k 3= 3. Suppose then that k > 3 and G is not 2-primitive. We mimic
the proof of Theorem 2. Thus let 2 = 2 , U 2 2 U 2 3 and define

S = {x E G|2,.Y n 2 7*= 0 , 2,.x g 2 for some; G {1,2,3}}.

Choose g G § with | 2g U 2 | minimal. Let 7/, = (H, Hg) have nontrivial orbits
A , , . . . ^ and write 0, = A , \ 2 (/' = \,...,d). Copying the proofs of Steps 2.1,
2.2 and 2.3 we have

STEP 4.1. We have 2, g n 2 ^ 0 for i = 1,2,3 (so d *s 3). If d = 3 then
| B, |< 1 (/ = 1,2,3) and if d = 2 then | 0 , |< 2, | 021< 1 (where we take A, to
contain two of the 2;).

However the next step does not yield so easily.

STEP 4.2. If d — 1 then | 0 , |< 3. Suppose that | 0 , |s* 4. As in the proof of Step
2.3 there exists 6 G Hg such that 2 m h C 0 , and 2 m C 2g for some m G {1,2,3}.
We may take m = 1. Thus

2, * c e , , 2, C 2 g .

Again it is easy to see that 7/f1 is primitive, so by Jordan's Theorem A, = ft.
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We first show that Hi is 2-transitive. Let « E 8 , and let F , , . . . ,TS be the orbits
of Hia on S2\{a}. Suppose that Hx is not 2-transitive, so that s > 2. For
; = 1,... ,s let Bl• = {j I 2y C F,}. We obtain a contradiction in the following three
stages.

(A) I Bl | 3= 2 for some i. For suppose that | 5, | < 1 for all /'. Then by choice of g,
if j G B, then 2y. is a block for / / £ . Since | 0 , | < | 2 | it follows that F, = 2y for
some /', j . Choose Tk of maximal size in

{r,|r,. = 2, for some/, j}

and choose F, of maximal size in

Then by Result A, F,* ° F^ is a suborbit of Hx of size greater than | F, | and | F^ | ,
which is a contradiction.

(B) If j , k G Bf for some i then |2y-| = | 2 t | . To see this, first suppose that
I Bt. | = 2 and F, n 0 , ^ 0 . Now if 2yx n 0 , ^ 0 for some x G / / l a then
2y-jc C 0 , by choice of g. Hence H[^ is imprimitive and it is easy to see that 2;-,
2^ are conjugate blocks for Hf^, so that | 2y-1 = | 2fc .

Next, if I 5,1 = 3 and F, D 0 , ¥= 0 then either 2y., 2A are conjugate blocks or
% = {2,_ U 2,2, 2 ( j , F, n 0,} is a block system for H& (where {/,, i2, i3) =
{1,2, 3}). In the latter case the kernel K of the action of HXa on % contains H, so
is primitive on 2, and hence on 2, U 2, . Thus we may picky G K such that

2, v =£ 2 , and 2, v n 2, ^ 0 .

Then ( i / , Hy) has only 2 nontrivial orbits 2 , U 2, and 2 ; , so //, is 2-transitive
by Theorem 1, contradicting our assumption. If | 5, |= 3 and F- D 0 , = 0 we
obtain a similar contradiction unless 2y, 2^. are conjugate blocks for H^.

Finally, if | B, | = 2, F, n 0 , = 0 and | 2y | ^ | 2fc | then H^ is primitive. The
third orbit 2/ is contained in a block system % for Hfy for some / , and the kernel
K of the action of HXa on $ contains an element y such that 2 y j =£ 2^. Then
(// , 7/^> has only 2 nontrivial orbits and yields a contradiction by Theorem 1
again.

(C) For some i, / / 2 ; is regular of prime degree. Since | 0 , |s* 4 there exists
; G {1,2 3} such that | 2 , g \ 2 |> 2. Suppose that //"• is not regular of prime
degree and choose a G 2, g \ 2 . We first show that | 2 , | = | 221 = | 231 . If | £!_,• | = 3
for somey this follows from (B), so we suppose (using (A)) that

Assume first that 1 G 5 , , that is, 2 , C F,. Recall that 2 , C 2g and h G Hg is
such that 2 , A C 0 , . We have | 2 2 | = | 231 by (B).
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If 2 2 C 2gthen

|0,| = |2g|-|2gn2|<|23|

so F2 = 2 2 U 2 3 (for otherwise there exists x E HXa such that 2 3 x C 0 , , which is
impossible). Hence for /J G 0 , \ {a} we have

(S2US,)i/,^S2US3

since otherwise 2 2 U 2 3 is a fixed set of (H]a, Hxp)= Hx. Now (B) applied to the
orbits of H]/3 gives | 2 , | = | 221 = | 231 .

If 2 2 £ 2g, 2 3 % 2g then either ( 2 2 U 2 3 ) (#« ) a = 2 2 U 2 3 or (B) applied to
the orbits of Hla gives | 2 , | = | 2 2 | = | 231 ; so suppose ( 2 2 U 23)(77g)a = 2 2 U
2 3 . Let 0 E 2 , g \ 2 with /? ¥= a. Since we have assumed that {Hgf--g is not
regular we have

It is easy to see that 2, g must intersect 2 2 U 2 3 nontrivially, so

if 1 E Bv Similar arguments yield
Now (B) applied to the orbits of 77I/S gives | 2 ,

We have now shown that 12,1 = 12,1 = 12,\ \ - \ ^ 2 \

the same conclusion if 2 G Bx or 3 E B{. Hence in all cases,

|2 , | = | 2 2 | = | 2 3 | .

Now we may choose a (G 2, g \ 2 ) such that 2 / / | O ¥= 2 . We have

|0,H2g|-|2g n 2| <|2g|-|2,| = 2|2,|.

By the argument of Step 1.3 any nontrivial orbit of Hla has size at least | 2
Hence since | 0 , | < 2 | 2 , | and 2 / / , a ¥= 2, HXa must have precisely 2 nontrivial
orbits F,, F2 with either

(1) 2,. = r, , 2,2 U 2,3 C r2, or
(2) s,. c r,, 2,2 u 2J3 = r3

where {/,, /2, /'3} = {1,2,3}. In case (1) the suborbit F2 ° F, gives the usual
contradiction by Result A. In case (2), for any j8 G F, \ 2 , , one of the following
possibilities must hold:

(a) the orbits of HXp are as in case (1) above,
(b) HXp has an orbit 2, U 2y for some /, j ,
(c) 2tf1/? = 2.

Since (H]a, Hxfi)= //, for all /? G F , \ 2 / | and | F, \ 2 , i \>\ 2^ | ^ 4, it is clear
that (a) must hold for some /?. This gives a contradiction as in case (1).

This finishes the proof of (C).
Now we can complete the proof of the 2-transitivity of //,. By (C), some / / 2 ' is

regular of prime degree p, say. Let K be the kernel of the action of H on 2,-. If
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K 1 then by Theorem 8.8 of Wielandt (1964), K has at most 2 nontrivial orbits, 
so // , is 2-transitive by Theorem 1. And if K = 1 then \H\ = p and so G contains 
an element which is a product of 1, 2 or 3 /7-cycles, contradicting Theorem 13.10 
of Wielandt (1964). 

Hence H] is 2-transitive. We obtain a final contradiction, proving Step 4.2, by 
showing that //, is 2-primitive. It is easy to see that the only possible proper, 
nontrivial block systems ® for Hla (a E 0 , ) are 

{ 2 „ 2 2 , 2 „ e , \ { « } } , {2,- U 2 „ , 2 , 3 , 0 , \ { a } } , 

{ 2 , i U 2 , 2 U 0 l \ { « } , 2 , 3 } 

where {/,, /'2, / 3} = {1,2,3}. In each case let K be the kernel of the action of Hla 

on lJD. In the first two cases K does not restrict faithfully to its orbits on fi \ {a}, 
and in the third case K is 2-transitive on each of its orbits (by Theorem 1). Now 
Theorem D and Proposition 4 of O'Nan (1975) show that none of these cases is 
possible. 

This completes Step 4.2. 

Note that in each of the cases d = l,d = 2, d = 3 we have | 2g \ 2 |*£ 3, so g is 
such that I 2g U 2 I is minimal subject to the condition 2g ^ 2. Hence 2g U 2 
C fi since k 3* 3, and so | fix / / , | s* 1. 

The argument presented after Step 2.3 (using Lemma 4.0 instead of Lemma 
2.0) shows that d cannot be 1. Consequently either d = 3 and H] has orbits 

2] = 2 , U 0 , ( | 0 , | < 1 , /= 1,2,3) 

or d = 2 and we may take // , to have orbits 

2 | = 2 , U 2 2 U 0 , and 2 2 = 2 3 U 0 2 (| 0 , |< 2, | 0 2 1 < 1). 

Write 2 1 = 2g U 2. Now for ; = 1,2,... choose g, £ G such that | 2 ' g, U 2 ' | is 
minimal subject to the condition 2 ' g, 2 ' . Write 2 ' + 1 = 2 ' g, U 2 ' and Hi+i = 
(//,, Hf'). For some r we have 2 r = fi \ {a} for some a G fi. Then by Steps 4.1, 
4.2 and the above reasoning (note however that we must use an obvious 
modification of Lemma 4.0 if some Hi has only 2 nontrivial orbits), the nontrivial 
orbits of Hr are of one of the following types: 

(i) 3 orbits 2,r = 2, U 0, U 0,' U • • • u è / " - 1 (i = 1,2,3, all | 0 / |< 1), 
(ii) 2 orbits 2[ = 2 , U 2 2 U 0 , U 0 | U • • • U 0 p 1 and 

2 r

2 = 2 3 U 0 2 U 0 2 U • •• U 0 2 ' H , (all |ej|< 2, | 02^'|< 1, | 0 , |< 2, | 0 2 1 < l ) . 

S T E P 4.3. G is 2-transitive. Suppose false; then the rank of G is 3 or 4. If it is 4 
then the nontrivial orbits of Ga are 2f (/ = 1,2,3) and by Result A(ii), 2,r = 2, 
for some /. Hence if 2 • is of maximal size in {2, | 2,r = 2,} and 2^ is of maximal 

https://doi.org/10.1017/S1446788700023181 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023181


L I S ! Extensions of a theorem of Jordan 169 

size in {2,r | 2, C 2 '} then by Result A(i), 2* ° is a suborbit of G of size 
greater than | 2 . | and | 2£ | , which is impossible. Consequently G has rank 3 and 
Ga has as orbits either 

T, = 2[ U 2 2 , r2 = 2 r

3 ( 2 ; as in (i) above), or 
T, = 2[, T2 = 2 2 (2,r as in (ii) above). 

We suppose that the first case holds; it will easily be seen that the ensuing 
argument also applies to the second case. 

Thus we are assuming that T, = 2[ U 2 2 , T2 = 2 2 . Write G,° = 0, and let 

A,. = S ^ e ; - 1 and J ,= |A , | ( / = 1 , 2 , 3 ) . 

Since Hr is 2-transitive on some 2 ' , | G\ is even and so T,, T2 are self-paired 
suborbits of G. We deal separately with the cases I. | © p 1 U @ 2 ~ ' |> 0 and II. 
| 0 [ - ' u © r 1 1 = 0. 

I. The case | © ; _ l U 0 ^ ' |> 0. Choose y G 0 ^ ' , say. If | | = 0 then Gay 

is transitive on T2, giving the usual contradiction by Result A. Hence ©j" - 1 = {/?}, 
say. If /? G T2(5) for some 8 G A3 then, since Ga/3 is transitive on A3 we have 
/? G T2(5) for all S 6 A, and T2 U {a} is a component in the T2-graph, which is 
impossible by Lemma 3 of Neumann (1977). Hence the T2-graph has no triangles. 
If y G T2(5) for all 8 G A3 then since the T,-graph is connected, we have 
y G r,(^); since | T2(7) | = | A 3 1 +1 it follows that © ^ ' = {e}, say, and y G r2(e). 
But then y, 8, e form a triangle in the T2-graph for any 5 G A3, which is not so. 
Thus Y 6 r,(8) for all 8 G A3 and so y G T2(P). Now for some /' G {1,2} we 
have /8 G F2(8) for all 8 G A,; we may take ; = 1. Hence, since there are no 
triangles in the T2-graph, y G T2(8) for all 8 G A2. Consequently | 0 2

_ l | = 0; for 
if 0 2 ~ ' = {e}, say, then y, e have at least d2 mutual adjacencies in the T2-graph 
(the points of A2), whereas a, y have only 1 mutual adjacency (the point [S). Since 
y G r,(e) and y G r,(a) this is a contradiction. Thus, writing v2([S) for the 
valency of yS in the T2-graph, we have 

|r2|= d3 + 1 =v2{p) = dt +2 = v2(y) = d2+ 1. 

Counting edges in the T2-graph between T2 and T,, we obtain 

|r2|(d, + i)=|r,|. 
Since I T, J = dx + d2 + 1 this forces d3 to be 1 or 0, which is not so. 

II. The case | 0 p ' U © r ' | = 0. Certainly | 0 3

r ~ ' |= 1 here, say © p 1 = {/3}. 
Since I fix HI = k 3= 3 we have 

3 

U © r 2 * 0 . 
1= 1 

Suppose first that | 0 [ ~ 2 U 0 ^ 2 1 > 0, say © p 2 = {y}. If y G T2(8) for 8 G 
A 3 \ © 3 ~ 2 then since I> 2 (Y ) is d3 + 1 or d3 + 2, we have 0 2 ~ 2 = {e}, say, and 
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Y G r2(e). Then y, 8, e form a triangle in the F2-graph for any 8 G A 3 \ 0 3 ~ 2 ,
which cannot be so. Hence y G F,(8) for all 8 G A3 \ 0 p 2 . If y G T2(/3) then
y3 G F2(8) for all 8 G A,, so y G T2(8) for all 8 G A2 \ © r 2 and we have

and v2(y) is one of d2, d2 + 1 and d2 + 2. However | F2 | dx is either | F, | or
2 I F, I , which forces dx < 3, a contradiction. Thus y G r,(>8); this yields a similar
contradiction.

Finally, suppose that | 0 [~ 2 U 0 2 ~ 2 | = 0 and let 0 3 ~2 = {e}. We may assume
that yS G F2(6) for all 8 G A, and 0 G F,(8) for all 8 G A2. Hence

A/Ga/g = AI. for/ = 1 , 2 .

Now some points of A2 are joined to points of A3 in the F2-graph, so e G F2(8)
for all 8 G A2. From the action of Gap we see that y G F2(8) for all y G A3,
8 G A2. Pick 5, G A,, 82 G A2. Then a, 8, have 1 mutual adjacency in the
F2-graph, but a, 82 have d3 mutual adjacencies, which is a contradiction.

This completes Step 4.3.

Now we can finish the proof of Theorem 3. Suppose that the orbits of Hr are of
type (i) described above (just before Step 4.3). Now Ga is imprimitive on fi \ {a}
by assumption. Let A be a proper, nontrivial block for Ga. If | A | < 4 then it is
easy to see that | A | = 3 and Lemma 4.0 gives a contradiction. And if | A | > 4 we
can take the block system <$ containing A to be one of

{ 2 f , 2 2 , 2 5 } and {2f U 2 2 , 25}.

Let K be the kernel of the action of Ga on %, so that Hr < K. Then (using
Theorem 1 in the second case) K is 2-transitive on each of its orbits and we have a
contradiction by Theorem D of O'Nan (1975).

Similar arguments deal with the case where the orbits of Hr are of type (ii).
Thus Theorem 3 is proved.

REMARK. Again (see the remark at the end of Section 2) we can relax the
restrictions in Theorem 3 to | 2,13s 3, providing we exclude the group PSL(3,3)
of degree 13.
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