Bull. Aust. Math. Soc. **90** (2014), 264–274 doi:10.1017/S0004972714000021

SOME RESULTS ON COMPARING TWO INTEGRAL MEANS FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS

DAH-YAN HWANG[™] and SILVESTRU SEVER DRAGOMIR

(Received 22 December 2013; accepted 29 December 2013; first published online 10 April 2014)

Abstract

Some better estimates for the difference between the integral mean of a function and its mean over a subinterval are established. Various applications for special means and probability density functions are also given.

2010 Mathematics subject classification: primary 26D15; secondary 26D10.

Keywords and phrases: Grüss inequality, Ostrowski's inequality, integral means, special mean, probability density function.

1. Introduction

The classical Ostrowski integral inequality [19] stipulates a bound between a function evaluated at an interior point and the average of the function over an interval. More precisely,

$$\left|\frac{1}{b-a}\int_{a}^{b}f(x)\,dx - f(x)\right| \le \left(\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right)(b-a)\|f'\|_{\infty} \tag{1.1}$$

for all $x \in [a, b]$, where $f' \in L_{\infty}(a, b)$, that is,

$$||f'||_{\infty} = \operatorname{ess\,sup}_{t \in [a,b]} |f'(t)| < \infty,$$

and $f : [a, b] \to \mathbb{R}$ is a differentiable function on (a, b). Here, the constant 1/4 is sharp in the sense that it cannot be replaced by a smaller constant.

It is worth noticing that this inequality plays a key role in adaptive numerical quadrature rules. For various results and generalisations concerning Ostrowski's inequality, see [1, 2, 4, 9, 11-13, 15-17, 20-24] and the references therein.

^{© 2014} Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

In [10], Dragomir and Wang introduced the following inequality of Ostrowski–Grüss type:

$$\left|\frac{1}{b-a}\int_{a}^{b} f(x)\,dx - f(x) - \left(\frac{a+b}{2} - x\right)\frac{f(b) - f(a)}{b-a}\right| \le \frac{1}{4}(b-a)(\Gamma - \gamma),\tag{1.2}$$

where $f : [a, b] \to \mathbb{R}$, is a differentiable function on (a, b) and $\gamma \le f'(x) \le \Gamma$ for all $x \in [a, b]$. There are many improvements and refinements of the right-hand side of (1.2) in the literature. See, for instance, [6, 8, 11, 12, 14].

On the other hand, in [3], Barnett *et al.* compared the difference of two integral means as in the following Theorem 1.1 in which the function has the first derivative bounded where it is defined. The results are also a generalisation of (1.1) and were applied to probability density functions, special means, Jeffreys divergence in information theory and the sampling of continuous streams in statistics.

THEOREM 1.1. Let $f : [a,b] \to \mathbb{R}$ be an absolutely continuous function with the property that $f' \in L_{\infty}[a,b]$. Then, for $a \le c < d \le b$, we have the inequalities

$$\left|\frac{1}{b-a}\int_{a}^{b}f(u)\,du - \frac{1}{d-c}\int_{c}^{d}f(u)\,du\right|$$

$$\leq \left(\frac{1}{4} + \left(\frac{\frac{a+b}{2} - \frac{c+d}{2}}{b-a-d+c}\right)^{2}\right)(b-a-d+c)||f'||_{\infty}$$

$$\leq \frac{1}{2}\left(b-a-d+c\right)||f'||_{\infty}.$$
 (1.3)

The constant 1/4 is best possible in the first inequality and 1/2 is best in the second one.

The purpose of this article is to establish, by using a variant of the Grüss inequality, some improvements on Theorem 1.1 in which f' may not belong to L_{∞} . Applying these results, some new inequalities for special means and probability density functions will also be given in Sections 3 and 4, respectively.

2. Preliminary lemmas and main results

The following lemma is the known Grüss inequality; see [18, page 295].

LEMMA 2.1. Let $f, g : [a, b] \to \mathbb{R}$ be two integrable functions such that $\phi \leq f(x) \leq \Phi$ and $\gamma \leq g(x) \leq \Gamma$ for all $x \in [a, b]$ where $\gamma, \Gamma, \phi, \Phi$ are constants. Then we have the inequality

$$\begin{aligned} \left| \frac{1}{b-a} \int_a^b f(x)g(x) \, dx - \frac{1}{b-a} \int_a^b f(x) \, dx \frac{1}{b-a} \int_a^b g(x) \, dx \right| \\ &\leq \frac{1}{4} (\Phi - \phi) (\Gamma - \gamma), \end{aligned}$$

and the constant 1/4 is the best possible.

https://doi.org/10.1017/S0004972714000021 Published online by Cambridge University Press

Further, Cheng and Sun [7] established the following variant of Grüss's inequality. For extensions in the general case of the Lebesgue integral on measurable spaces, the sharpness of the constant 1/2 as well as the corresponding discrete version, see [5].

LEMMA 2.2. Let $f, g : [a, b] \to \mathbb{R}$ be two integrable functions such that $\gamma \leq g(x) \leq \Gamma$ for all $x \in [a, b]$ where γ and Γ are constants. Then we have the inequality

$$\begin{aligned} \left| \frac{1}{b-a} \int_a^b f(x)g(x) \, dx - \frac{1}{b-a} \int_a^b f(x) \, dx \frac{1}{b-a} \int_a^b g(x) \, dx \\ &\leq \frac{1}{2} \left(\Gamma - \gamma \right) \frac{1}{(b-a)} \int_a^b \left| f(x) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \, dx. \end{aligned}$$

The following lemma has been obtained by Barnett *et al.* in [3].

LEMMA 2.3. Let $f : [a,b] \to \mathbb{R}$ be an absolutely continuous function and $a \le c < d \le b$. Denote by $K_{c,d} : [a,b] \to \mathbb{R}$, the kernel given by

$$K_{c,d}(s) = \begin{cases} \frac{a-s}{b-a} & \text{if } s \in [a,c], \\ \frac{s-c}{d-c} + \frac{a-s}{b-a} & \text{if } s \in (c,d), \\ \frac{b-s}{b-a} & \text{if } s \in [d,b]. \end{cases}$$

Then we have the representation

$$\frac{1}{b-a}\int_{a}^{b}f(u)\,du - \frac{1}{d-c}\int_{c}^{d}f(u)\,du = \int_{a}^{b}K_{c,d}(s)f'(s)\,ds.$$

Our main results are as follows.

THEOREM 2.4. Let $f : [a, b] \to \mathbb{R}$ be an absolutely continuous function such that $\gamma \le f'(x) \le \Gamma$ for all $x \in [a, b]$ where γ and Γ are constants. Then we have the inequality

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{d-c} \int_{c}^{d} f(u) \, du - \frac{b-c-d+a}{2(b-a)} (f(b) - f(a)) \right|$$

$$\leq \frac{1}{4} (b-a+c-d) (\Gamma - \gamma),$$
(2.1)

where $a \le c < d \le b$.

PROOF. Take $f(x) = K_{c,d}(x)$ and g(x) = f'(x) in Lemma 2.1. Since $K_{c,d}(c) \le K_{c,d}(x) \le K_{c,d}(d)$ for all $x \in [a, b]$, by Lemma 2.1,

$$\begin{aligned} \left| \frac{1}{b-a} \int_{a}^{b} K_{c,d}(x) f'(x) \, dx - \frac{1}{b-a} \int_{a}^{b} K_{c,d}(t) \, dt \frac{1}{b-a} \int_{a}^{b} f'(x) \, dx \right| \\ & \leq \frac{1}{4} (K_{c,d}(d) - Kc, d(c)) (\Gamma - \gamma). \end{aligned}$$

Further, by Lemma 2.3,

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{d-c} \int_{c}^{d} f(u) \, du \right| - \frac{1}{b-a} \int_{a}^{b} K_{c,d}(t) \, dt (f(b) - f(a)) \right|$$

$$\leq \frac{1}{4} (b-a) (K_{c,d}(d) - K_{c,d}(c)) (\Gamma - \gamma).$$

Now, since

[4]

$$\int_{a}^{b} K_{c,d}(t) dt = \frac{b-c-d+a}{2}, \quad K_{c,d}(c) = \frac{a-c}{b-a}, \quad K_{c,d}(d) = \frac{b-d}{b-a},$$

by the above inequality we deduce the desired inequality (2.1).

This completes the proof of Theorem 2.4.

REMARK 2.5. Inequality (2.1) is a generalisation of (1.3). If we set d = c + h with $c + h \in (a, b)$, then, by (2.1),

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{h} \int_{c}^{c+h} f(u) \, du - \frac{b-2c-h+a}{2(b-a)} (f(b) - f(a)) \right|$$

$$\leq \frac{1}{4} (b-a+h)(\Gamma - \gamma).$$

Now letting $h \to 0^+$ yields

$$\left|\frac{1}{b-a}\int_{a}^{b}f(x)\,dx - f(c) - \left(\frac{a+b}{2} - c\right)\frac{f(b) - f(a)}{b-a}\right| \le \frac{1}{4}(b-a)(\Gamma-\gamma). \tag{2.2}$$

We note that (2.2) is the Ostrowski–Grüss type inequality obtained by Dragomir and Wang in [10].

COROLLARY 2.6. Let f, f', γ and Γ be defined as in Theorem 2.4 and a + b = c + d. Then

$$\left|\frac{1}{b-a}\int_{a}^{b}f(u)\,du - \frac{1}{d-c}\int_{c}^{d}f(u)\,du\right| \le \frac{1}{2}(c-a)(\Gamma-\gamma).$$
(2.3)

PROOF. Since a + b = c + d, by Theorem 2.4, Corollary 2.6 holds immediately. **REMARK** 2.7. For $\Gamma \gamma > 0$, (2.3) is an improvement on (1.3) provided that a + b = c + d.

For any $x \in (a, b)$ and some $\delta > 0$, let the function $F(x, \cdot) : [-\delta, \delta] \to \mathbb{R}$ be defined by

$$F(x,t) = \frac{1}{t} \int_{x-t/2}^{x+t/2} f(u) \, du.$$

We obtain the following corollary.

COROLLARY 2.8. Assume that the function $f : [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b] and $\gamma < f'(t) < \Gamma$, for $t \in [a, b]$. Then the function $F(x, \cdot)$ is locally Lipschitzian and the Lipschitzian constant is $\frac{1}{4}(\Gamma - \gamma)$ and is independent of x.

PROOF. Assume that $x \in (a, b), t_1, t_2 \in [-\delta, \delta]$, with $t_2 > t_1$. For $[x - t_1/2, x + t_1/2] \subset [x - t_2, x + t_2] \subset (a, b)$, by Corollary 2.6,

$$\left|\frac{1}{t_2}\int_{x-t_2/2}^{x+t_2/2}f(u)\,du - \frac{1}{t_1}\int_{x-t_1/2}^{x+t_1/2}f(u)\,du\right| \le \frac{1}{4}(t_2 - t_1)(\Gamma - \gamma)$$

which shows that

$$|F(x,t_2) - F(x,t_1)| \le \frac{1}{4}(t_2 - t_1)(\Gamma - \gamma),$$

Similarly, for $t_1 > t_2$,

$$F(x, t_2) - F(x, t_1) \le \frac{1}{4}(t_1 - t_2)(\Gamma - \gamma)$$

and then

$$F(x, t_2) - F(x, t_1) \le \frac{1}{4} |t_2 - t_1| (\Gamma - \gamma),$$

which proves the corollary.

I

REMARK 2.9. We note that, for $\Gamma \gamma > 0$, Corollary 2.8 is an improvement on Corollary 2.4 in [3].

THEOREM 2.10. Let $f : [a, b] \to \mathbb{R}$ be an absolutely continuous function. Then we have the inequality

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{d-c} \int_{c}^{d} f(u) du - \frac{b-c-d+a}{2(b-a)} (f(b) - f(a)) \right| \leq \frac{b-a+c-d}{2(b-a)} \int_{a}^{b} \left| f'(x) - \frac{f(b)-f(a)}{b-a} \right| dx,$$
(2.4)

where $a \le c < d \le b$.

PROOF. Set f(x) = f'(x) and $g(x) = K_{c,d}(x)$ in Lemma 2.2. Since $K_{c,d}(c) \le K_{c,d}(x) \le K_{c,d}(d)$ for all $x \in [a, b]$, by Lemma 2.2,

$$\left| \frac{1}{b-a} \int_{a}^{b} K_{c,d}(x) f'(x) \, dx - \frac{1}{b-a} \int_{a}^{b} K_{c,d}(t) \, dt \frac{1}{b-a} \int_{a}^{b} f'(x) \, dx \right|$$

$$\leq \frac{1}{2(b-a)} (K_{c,d}(d) - Kc, d(c)) \int_{a}^{b} \left| f'(x) - \frac{f(b) - f(a)}{b-a} \right| dx.$$

Further, by Lemma 2.3,

$$\begin{aligned} \left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{d-c} \int_{c}^{d} f(u) \, du - \frac{1}{b-a} \int_{a}^{b} K_{c,d}(t) \, dt (f(b) - f(a)) \right| \\ & \leq \frac{1}{2} (K_{c,d}(d) - K_{c,d}(c)) \int_{a}^{b} \left| f'(x) - \frac{f(b) - f(a)}{b-a} \right| dx. \end{aligned}$$

Now, using the fact that

$$\int_{a}^{b} K_{c,d}(t) dt = \frac{b-c-d+a}{2}, \quad K_{c,d}(c) = \frac{a-c}{b-a}, \quad K_{c,d}(d) = \frac{b-d}{b-a},$$

by the above inequality we get the desired inequality (2.4). This completes the proof of Theorem 2.10. $\hfill \Box$

268

REMARK 2.11. Inequality (2.4) is a generalisation of (1.3). If we set d = c + h with $c + h \in (a, b)$, then, by (2.4),

$$\begin{aligned} \left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{h} \int_{c}^{c+h} f(u) \, du - \frac{b-2c-h+a}{2(b-a)} (f(b) - f(a)) \right| \\ & \leq \frac{1}{4} (b-a+h) \int_{a}^{b} \left| f'(x) - \frac{f(b)-f(a)}{b-a} \right| dx. \end{aligned}$$

Now letting $h \to 0^+$ yields

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f(c) - \left(\frac{a+b}{2} - c \right) \frac{f(b) - f(a)}{b-a} \right|$$

$$\leq \frac{1}{4} (b-a) \int_{a}^{b} \left| f'(x) - \frac{f(b) - f(a)}{b-a} \right| dx.$$
 (2.5)

We note that the condition imposed upon f' in (2.5) is weaker than that in (2.2) given by Dragomir and Wang [10].

COROLLARY 2.12. Let f and f' be defined as in Theorem 2.10 and a + b = c + d. Then

$$\left| \frac{1}{b-a} \int_{a}^{b} f(u) \, du - \frac{1}{d-c} \int_{c}^{d} f(u) \, du \right| \\ \leq \frac{c-a}{b-a} \int_{a}^{b} \left| f'(x) - \frac{f(b) - f(a)}{b-a} \right| dx.$$
(2.6)

PROOF. Since b - d = c - a, using (2.4), (2.6) holds immediately. This completes the proof of the corollary.

REMARK 2.13. We note that the condition imposed upon f' in Corollary 2.12 is weaker than that in Corollary 2.6.

3. Applications to special means

In the following, we shall consider logarithmic, identric and generalised logarithmic means of two positive real numbers. We take

$$L(\alpha,\beta) = \frac{\beta - \alpha}{\log\beta - \log\alpha}, \qquad \alpha,\beta \in \mathbb{R}^+, \alpha \neq \beta,$$
$$I(\alpha,\beta) = \frac{1}{e} \left(\frac{\beta^{\beta}}{\alpha^{\alpha}}\right)^{1/(\beta-\alpha)} \qquad \alpha,\beta \in \mathbb{R}^+, \alpha \neq \beta,$$
$$L_p(\alpha,\beta) = \left(\frac{\beta^{p+1} - \alpha^{p+1}}{(p+1)(\beta - \alpha)}\right)^{1/p}, \qquad p \in \mathbb{R} \setminus \{-1,0\}, \alpha,\beta \in \mathbb{R}^+, \alpha \neq \beta$$

where \mathbb{R}^+ is the set of positive real numbers.

PROPOSITION 3.1. Let $a, b, x, y \in \mathbb{R}$, $0 < a \le c < d \le b$, a + b = c + d and $p \in \mathbb{R} \setminus \{-1, 0\}$. *Then*

$$|L_p^p(a,b) - L_p^p(c,d)| \le \frac{1}{2}(c-a)|p(b^{p-1} - a^{p-1})|.$$
(3.1)

PROOF. The proof is immediate from Corollary 2.6 with $f(x) = x^p, x \in \mathbb{R}^+$, $p \in \mathbb{R} \setminus \{-1, 0\}$.

PROPOSITION 3.2. Suppose that $a, b, x, y \in \mathbb{R}$, and $0 < a \le c < d \le b$ with a + b = c + d. Then

$$|L^{-1}(a,b) - L^{-1}(c,d)| \le \frac{(c-a)(b^2 - a^2)}{2a^2b^2}.$$
(3.2)

PROOF. The result follows from Corollary 2.6 with f(x) = 1/x.

PROPOSITION 3.3. Suppose that $a, b, c, d \in \mathbb{R}$, and $0 < a \le c < d \le b$ with a + b = c + d. Then

$$\left|\log\left(\frac{I(a,b)}{I(c,d)}\right)\right| \le \frac{(c-a)(b-a)}{2ab}.$$
(3.3)

PROOF. The result follows from Corollary 2.6 with $f(x) = \log x$.

REMARK 3.4. We note that the upper bounds in (3.1)–(3.3) are less than those of (4.1)–(4.3) in [3], respectively.

4. Applications for PDFs

In the following, assume that $f : [a, b] \to \mathbb{R}^+$ is a probability density function of a certain random variable *X* and $F : [a, b] \to \mathbb{R}^+$, $F(t) = \int_a^t f(x) dx$ is its cumulative distribution function. Then we have the following propositions.

PROPOSITION 4.1. Let f and F be as above. Then

$$\left|F(t) - \frac{t-a}{b-a} + \frac{(b-t)(t-a)}{2(b-a)}(f(b) - f(a))\right| \le \frac{(b-t)(t-a)}{4}(\Gamma - \gamma),$$

provided that $\gamma < f'(t) < \Gamma, t \in [a, b]$.

PROOF. Taking c = a and d = t in (2.1), we have the desired inequality immediately. \Box

Similarly, taking c = a and d = t in (2.4), we have the following proposition.

PROPOSITION 4.2. Let f and F be as above. Then

$$\left| F(t) - \frac{t-a}{b-a} + \frac{(b-t)(t-a)}{2(b-a)} (f(b) - f(a)) \right|$$

$$\leq \frac{(b-t)(t-a)}{2(b-a)} \int_{a}^{b} \left| f'(x) - \frac{f(b) - f(a)}{b-a} \right| dx$$

REMARK 4.3. The conditions imposed upon f' in Propositions 4.1 and 4.2 are both weaker than that in Proposition 3.1 in [3].

Some other inequalities for the function $F(\cdot)$ are embodied in the following propositions.

PROPOSITION 4.4. Let f and F be as above and let

$$E_t(X) = \int_a^t uf(u) \, du, \quad u \in [a, b].$$

Then

$$\left|\frac{(b-E(X))(t-a)}{b-a} + E_t(X) - tF(t) - \frac{(b-t)(t-a)}{2(b-a)}\right| \le \frac{(b-t)(t-a)}{4}(\Gamma - \gamma)$$

provided that $\gamma < f(t) < \Gamma, t \in [a, b]$.

PROOF. Taking f = F, c = a and d = t in (2.1),

$$\left|\frac{1}{b-a}\int_{a}^{b}F(x)\,dx - \frac{1}{t-a}\int_{a}^{t}F(u)\,du - \frac{b-t}{2(b-a)}\right| \le \frac{b-t}{4}(\Gamma-\gamma). \tag{4.1}$$

Since

$$\int_{a}^{b} F(x) dx = b - E(X),$$

$$\int_{a}^{t} F(x) dx = tF(t) - \int_{a}^{t} uF(u) du = tF(t) - E_t(X),$$

by (4.1), we have the desired inequality.

Similarly, taking f = F, c = a and d = t in (2.4), we have the following result.

PROPOSITION 4.5. Let f, F and $E_t(x)$ be as above. Then, for $t \in [a, b]$,

$$\frac{|(b - E(X))(t - a)|}{b - a} + E_t(X) - tF(t) - \frac{(b - t)(t - a)}{2(b - a)}$$
$$\leq \frac{(b - t)(t - a)}{2(b - a)^2} \int_a^b |(b - a)f(x) - 1| \, dx.$$

REMARK 4.6. We note that the conditions imposed upon f in Propositions 4.4 and 4.5 are both weaker than that of Proposition 3.2 in [3].

Let us consider the beta function

$$B(p,q) := \int_{a}^{b} t^{p-1} (1-t)^{q-1} dt, \quad p,q > -1$$

and the incomplete beta function

$$B(x; p, q) := \int_{a}^{x} t^{p-1} (1-t)^{q-1} dt, \quad p, q > -1.$$

If we define

$$f(t) = t^{p-1}(1-t)^{q-1},$$

we get

$$f'(t) = t^{p-2}(1-t)^{q-2}(p-1-(p+q-2)t).$$

It is obvious that in the case p > 1 and q > 1, we obtain that f(x) is increasing on [0, (p-1)/(p+g-2)] and decreasing on [(p-1)/(p+g-2), 1], and then

$$0 \le f(t) \le \frac{(p-1)^{p-1}(q-1)^{q-1}}{(p+q-2)^{p+q-2}}$$

for $t \in [0, 1]$; in the case p > 1 and q < 1, f(t) is increasing on [0, 1]; and in the case p < 1 and q > 1, f(t) is decreasing on [0, 1].

Now, consider the random variable *X* having the pdf $g(t) = f(t)/B(p,q), t \in (0, 1)$. For $p \neq 1, q \neq 1, p + q \neq 0$ and $p + q \neq 2$, we have

$$\begin{split} &\int_{0}^{1} f(t) \, dt = B(p,q), \\ & E(X) = \frac{1}{B(p,q)} \int_{0}^{1} t^{p} (1-t)^{q-1} \, dt = \frac{B(p+1,q)}{B(p,q)} = \frac{p}{p+q}, \\ & E_{x}(X) = \frac{1}{B(p,q)} \int_{0}^{x} t^{p} (1-t)^{q-1} \, dt = \frac{B(x;p+1,q)}{B(p,q)}, \\ & F(x) = \frac{1}{B(p,q)} \int_{0}^{x} t^{p-1} (1-t)^{q-1} \, dt = \frac{B(x;p,q)}{B(p,q)}; \end{split}$$

for p > 1, q < 1, we have

$$\begin{split} \int_0^1 |f(t) - B(p,q)| \, dt &= \int_0^{B(p,q)} (B(p,q) - f(t)) \, dt + \int_{B(p,q)}^1 (f(t) - B(p,q)) \, dt \\ &= 2B^2(p,q) - 2B(B(p,q);p,q); \end{split}$$

and for p < 1, q > 1, we have

$$\begin{split} \int_0^1 |f(t) - B(p,q)| \, dt &= \int_0^{B(p,q)} (f(t) - B(p,q)) \, dt + \int_{B(p,q)}^1 (B(p,q) - f(t)) \, dt \\ &= 2B(B(p,q);p,q) - 2B^2(p,q). \end{split}$$

Using Propositions 4.4 and 4.5, we may state the following results.

PROPOSITION 4.7. Let X be a beta random variable with p > 1 and q > 1. Then we have the inequality

$$\left| \left(\frac{qx}{p+q} - \frac{(1-x)x}{2} \right) B(p,q) + B(x;p+1,q) - xB(x;p,q) \right| \\ \leq \frac{(1-x)x}{4} \cdot \frac{(p-1)^{p-1}(q-1)^{q-1}}{(p+q-2)^{p+q-2}}$$

for all $x \in [0, 1]$.

PROPOSITION 4.8. Let X be a beta random variable. Then, for $x \in [a, b]$, we have the inequality

$$\begin{split} \left| \left(\frac{qx}{p+q} - \frac{(1-x)x}{2} \right) &B(p,q) + B(x;p+1,q) - xB(x;p,q) \right| \\ &\leq \begin{cases} (1-x)x(B^2(p,q) - B(B(p,q);p,q)), & \text{if } p > 1, q < 1\\ (1-x)x(B(B(p,q);p,q) - B^2(p,q)), & \text{if } p < 1, q > 1 \end{cases} \end{split}$$

REMARK 4.9. Proposition 4.7 provides a different inequality from that of Proposition 3.3 in [3]. We also note that the result from Proposition 4.8 is an extension of the result from Proposition 3.3 in [3] for the case p > 1 and q < 1, and the case p < 1 and q > 1.

References

- [1] G. A. Anastassiou, 'High order Ostrowski type inequalities', Appl. Math. Lett. 20 (2007), 616-621.
- [2] N. S. Barnett, C. Bus, E. P. Cerone and S. S. Dragomir, 'Ostrowskis inequality for vector-valued functions and applications', *Comput. Math. Appl.* 44 (2002), 559–572.
- [3] N. S. Barnett, P. Cerone, S. S. Dragomir and A. M. Fink, 'Comparing two integral means for absolutely continuous mappings whose derivatives are in L_∞[a, b] and applications', *Comput. Math. Appl.* 44 (2002), 241–251.
- [4] P. Cerone, W. S. Cheung and S. S. Dragomir, 'On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation', *Comput. Math. Appl.* 54 (2007), 183–191.
- [5] P. Cerone and S. S. Dragomir, 'A refinenement of the Grüss inequality and applications', *Tamkang J. Math.* 38 (2007), 37–49; Preprint, RGMIA Res. Rep. Coll., 5, 2002, 2, Article 14.
- [6] X. L. Cheng, 'Improvement of some Ostrowski–Grüss type inequalities', *Comput. Math. Appl.* 42 (2001), 109–114.
- [7] X. L. Cheng and J. Sun, 'A note on the perturbed trapezoid inequality', J. Ineq. Pure. and Appl. Math. 3 (2002), Article 29.
- [8] S. S. Dragomir, 'Bounds for some perturbed Chebyshev functionals', *J. Inequal. Pure Appl. Math.* 9 (2008), Art. 64.
- [9] S. S. Dragomir and A. Sofo, 'An inequality for monotonic functions generalizing Ostrowski and related results', *Comput. Math. Appl.* 51 (2006), 497–506.
- [10] S. S. Dragomir and S. Wang, 'An inequality of Ostrowski–Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules', *Comput. Math. Appl.* 33 (1997), 15–20.
- [11] S. S. Dragomir and S. Wang, 'Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules', *Appl. Math. Lett.* 11 (1998), 105–109.
- [12] I. Fedotov and S. S. Dragomir, 'An inequality of Ostrowski type and its applications for Simpson's rule and special means', *Math. Inequal. Appl.* 2 (1999), 491–499.
- [13] W. J. Liu, 'Several error inequalities for a quadrature formula with a parameter and applications', *Comput. Math. Appl.* 56 (2008), 1766–1772.
- [14] Z. Liu, 'Some Ostrowski–Grüss type inequalities and applications', *Comput. Math. Appl.* 53 (2007), 73–79.
- [15] Z. Liu, 'Some Ostrowski type inequalities', Math. Comput. Modelling 48 (2008), 949–960.
- [16] W. J. Liu, Q. L. Xue and S. F. Wang, 'Several new perturbed Ostrowski-like type inequalities', J. Inequal. Pure Appl. Math. 8 (2007), 6 Article 110.
- [17] M. Masjed-Jamei and S. S. Dragomir, 'A new generalization of the Ostrowski inequality and applications', *Filomat* 25 (2011), 115–123.

- [18] D. S. Mitrinović, J E Pečarić and A. M. Fink, *Classical and New Inequalities in Analysis* (Kluwer Academic Publishers, Dordrecht, 1993).
- [19] A. Ostrowski, 'Über die Absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert', Comment. Math. Helv. 10 (1938), 226–227.
- [20] B. G. Pachpatte, 'On an inequality of Ostrowski type in three independent variables', J. Math. Anal. Appl. 249 (2000), 583–591.
- [21] K. L. Tseng, S. R. Hwang and S. S. Dragomir, 'Generalizations of weighted Ostrowski type inequalities for mappings of bounded variation and their applications', *Comput. Math. Appl.* 55 (2008), 1785–1793.
- [22] K. L. Tseng, S. R. Hwang, G. S. Yang and Y. M. Chou, 'Improvements of the Ostrowski integral inequality for mappings of bounded variation I', *Appl. Math. Comput.* 217 (2010), 2348–2355.
- [23] N. Ujević, 'A generalization of Ostrowski's inequality and applications in numerical integration', *Appl. Math. Lett.* **17** (2004), 133–137.
- [24] Q. Xue, J. Zhu and W. Liu, 'A new generalization of Ostrowski-type inequality involving functions of two independent variables', *Comput. Math. Appl.* 60 (2010), 2219–2224.

DAH-YAN HWANG, Department of Information and Management, Taipei Chengshih University of Science and Technology, No. 2, Xueyuan Rd., Beitou, 112 Taipei, Taiwan e-mail: dyhuang@tpcu.edu.tw

SILVESTRU SEVER DRAGOMIR, Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia e-mail: sever.dragomir@vu.edu.au and School of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa [11]