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Abstract

In this paper, we propose new Metropolis–Hastings and simulated annealing algorithms
on a finite state space via modifying the energy landscape. The core idea of landscape
modification rests on introducing a parameter c, such that the landscape is modified
once the algorithm is above this threshold parameter to encourage exploration, while the
original landscape is utilized when the algorithm is below the threshold for exploitation
purposes. We illustrate the power and benefits of landscape modification by investigat-
ing its effect on the classical Curie–Weiss model with Glauber dynamics and external
magnetic field in the subcritical regime. This leads to a landscape-modified mean-field
equation, and with appropriate choice of c the free energy landscape can be transformed
from a double-well into a single-well landscape, while the location of the global mini-
mum is preserved on the modified landscape. Consequently, running algorithms on the
modified landscape can improve the convergence to the ground state in the Curie–Weiss
model. In the setting of simulated annealing, we demonstrate that landscape modifica-
tion can yield improved or even subexponential mean tunnelling time between global
minima in the low-temperature regime by appropriate choice of c, and we give a conver-
gence guarantee using an improved logarithmic cooling schedule with reduced critical
height. We also discuss connections between landscape modification and other accel-
eration techniques, such as Catoni’s energy transformation algorithm, preconditioning,
importance sampling, and quantum annealing. The technique developed in this paper
is not limited to simulated annealing, but is broadly applicable to any difference-based
discrete optimization algorithm by a change of landscape.
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metastability; landscape modification; energy transformation
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1. Introduction

Given a target Gibbs distribution with Hamiltonian function H and temperature ε, the
Metropolis–Hastings (MH) algorithm is a popular and important Markov chain Monte Carlo
algorithm that has been applied to various sampling and optimization problems in a wide
range of disciplines, including but not limited to Bayesian computation, statistical physics, and
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theoretical computer science. While there are many improved variants of the MH algorithm
that have been investigated in the literature, this paper centres around a method that is known
as landscape modification. This technique is particularly suitable in the context of stochastic
minimization with respect to H, either by running the MH algorithm at a low enough tem-
perature ε or by driving the temperature ε to zero as in simulated annealing. The core idea
of landscape modification relies on targeting a modified Hamiltonian function instead of H,
where the modification or the transformation is based upon two parameters, namely f and the
threshold parameter c. On the part of landscape of H that is below c, the original landscape is
utilized, which allows for exploitation and concentration of the MH algorithm at low temper-
atures. On the other hand, on the region of the landscape of H which is above c, the function
f is applied to transform this part of the landscape to encourage and facilitate exploration of
the chain. More precisely, the acceptance–rejection probability on this part is increased by the
transformation, which consequently leads to a higher transition rate for the modified MH chain,
which promotes exploration.

The advantage of landscape modification stems from the notion of critical height, which
measures the difficulty of the landscape in a broad sense. With appropriate tuning of both f
and c, the critical height is reduced, which leads to an improved simulated annealing algorithm
or, for instance, reduced mean crossover time or relaxation time in the Curie–Weiss (CW)
model, which we shall discuss in detail.

We now summarize and highlight the key achievements and contributions of this paper:

1. We propose and analyse MH algorithms with landscape modification. In Section 2,
we first define a new MH algorithm using a modified Hamiltonian function. In general,
the corresponding acceptance–rejection probability in the modified MH is of integral
form, but we show that this integral can be readily calculated upon specializing to vari-
ous choices of f , such as linear, quadratic, or square root functions. This is then followed
by an example of landscape modification in the Ehrenfest urn with a linear Hamiltonian
in Section 2.4, where we prove an upper bound on the spectral gap with polynomial
dependence on the dimension, whereas the same technique yields an exponential depen-
dence on the dimension for the classical MH. We provide a discussion on possible
strategies for tuning f and c in Section 2.5. In the final subsection, that is, Section 2.6, we
elaborate on the similarities and differences between landscape modification and other
acceleration techniques in the Markov chain Monte Carlo literature, such as Catoni’s
energy transformation algorithm [1, 2], preconditioning of the Hamiltonian, importance
sampling, and quantum annealing [3].

2. We obtain improved mean crossover time and relaxation time in the CW model
with landscape modification. In Section 3, we investigate the effect of landscape mod-
ification on the CW model. We first consider the CW model under a fixed external
magnetic field in the subcritical regime, where the free energy landscape, as a function
of the magnetization, has two local minima. Using a Glauber dynamics with landscape
modification, we introduce a new mean-field equation, and with appropriate choice of c,
we transform the free energy landscape from a double-well into a single-well landscape,
while preserving the location of the global minimum on the modified landscape. As a
result, running algorithms on the modified landscape can accelerate the convergence
towards the ground state. We prove a subexponential mean tunnelling time in such a
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setting and discuss related metastability results. Similar results are then extended to the
random-field CW model.

3. We obtain an improved simulated annealing algorithm with an improved loga-
rithmic cooling schedule. In Section 4, we consider the simulated annealing setting
by driving the temperature down to zero. We define a clipped critical height c∗ (that
depends on the threshold parameter c) associated with the improved simulated anneal-
ing algorithm, and prove tight spectral gap asymptotics based on this parameter. This
leads to similar asymptotic results concerning the total-variation mixing time and the
mean tunnelling time in the low-temperature regime. Utilizing existing results concern-
ing simulated annealing with time-dependent target function, we prove a convergence
guarantee for the landscape-modified simulated annealing on a finite state space with
an improved logarithmic cooling schedule. These theoretical results on improved con-
vergence are corroborated by numerical experiments on a travelling salesman problem,
in Section 4.1.

This paper can be seen as a sequel to an earlier work by the author [4]. The original motiva-
tion for landscape modification is from Fang et al. [5], who propose a variant of overdamped
Langevin diffusion with state-dependent diffusion coefficient. Choi [4] applies this idea of
state-dependent noise via landscape modification in the setting of kinetic simulated annealing
and develops an improved kinetic simulated annealing algorithm with a convergence guaran-
tee. In the present paper, we recognize that this idea of landscape modification can also be
applied to the finite-state-space setting in MH and simulated annealing, and investigate the
benefits and speed-ups that this technique can bring, in particular, to the analysis of the CW
model and stochastic optimization. While the technique developed in Choi [4] can readily be
applied to gradient-based continuous optimization algorithms, we emphasize that the landscape
modification technique proposed in this paper can be analogously implemented in essentially
all discrete optimization algorithms by a change of landscape and is not limited to simulated
annealing or the CW model.

1.1. Notation

Throughout this paper, we adopt the following notation. For x, y ∈R, we let x+ =
max{x, 0} denote the non-negative part of x, and we write x ∧ y = min{x, y}. For two functions
g1, g2 : R→R, we say that g1 =O(g2) if there exists a constant C > 0 such that for suffi-
ciently large x, we have |g1(x)|� Cg2(x). We write g1 = o(g2) if limx→∞ g1(x)/g2(x) = 0, and
we write g1 ∼ g2 if limx→∞ g1(x)/g2(x) = 1. We say that g1(x) is a subexponential function if
limx→∞ 1

x log g1(x) = 0.

2. Metropolis–Hastings with landscape modification

Let X be a finite state space, let Q = (Q(x, y))x,y∈X be the transition matrix of a reversible
proposal chain with respect to the probability measure μ = (μ(x))x∈X , and let H : X →R be
the target Hamiltonian function. Denote by M0 = (M0(x, y))x,y∈X the infinitesimal generator
of the continuized classical MH chain X0 = (X0(t))t�0, with proposal chain Q, and with target

distribution being the Gibbs distribution π0(x) ∝ e− 1
ε
H(x)μ(x) at temperature ε > 0. Recall that

its dynamics is given by
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M0(x, y) = M0
ε (Q, π0)(x, y)

:=
⎧⎨
⎩

Q(x, y) min
{

1, e
1
ε

(H(x)−H(y))
}

= Q(x, y)e− 1
ε

(H(y)−H(x))+ if x 	= y,

−∑z:z	=x M0(x, z) if x = y.

We shall explain the superscript of 0 in both M0 and π0 in Definition 1 below.
Let us denote the ground-state energy level or the global minimum value of H by Hmin :=

minx∈X H(x). Instead of directly targeting the Hamiltonian H in the Gibbs distribution, we
instead target the following modified or transformed function Hf

ε,c at temperature ε:

Hε(x) =Hf
ε,c(x) :=

∫ H(x)

Hmin

1

f ((u − c)+) + ε
du, (2.1)

where the function f and the parameter c are chosen to satisfy the following assumptions.

Assumption 1.

1. The function f : R+ →R
+ is differentiable and non-decreasing, and it satisfies

f (0) = 0.

2. The parameter c satisfies c �Hmin.

While it is impossible to calculate Hf
ε,c without knowing Hmin a priori, in an MH chain

what matters is the difference of the energy function. For x, y ∈X , we see that

Hf
ε,c(y) −Hf

ε,c(x) =
∫ H(y)

H(x)

1

f ((u − c)+) + ε
du,

which does not depend on Hmin. In the special case where we choose f = 0, the above equa-
tion reduces to H0

ε,c(y) −H0
ε,c(x) = 1

ε
(H(y) −H(x)). On the other hand, in the case where

c <H(x) <H(y) and f is chosen such that f (z) > 0 whenever z > 0, we have

Hf
ε,c(y) −Hf

ε,c(x) � 1

f (H(x) − c) + ε
(H(y) −H(x)) <

1

ε
(H(y) −H(x)).

Since f is assumed to be non-decreasing in Assumption 1, the greater the difference between
H(x) and c, the smaller the upper bound is in the first inequality in the above equa-
tion; thus, the smaller we expect Hf

ε,c(y) −Hf
ε,c(x) to be, and the higher the transition rate

Q(x, y) exp
{

− (Hf
ε,c(y) −Hf

ε,c(x))
}

is. This is the sense in which the landscape is modified.

Intuitively speaking, when the algorithm is above the threshold parameter c, the landscape
is modified so that the transition rate is higher, to encourage exploration, while the original
landscape is utilized for exploitation when the algorithm is below c.

To illustrate the effect of the proposed transformation, we plot the function

H(x) = cos(2x) + 1

2
sin(x) + 1

3
sin(10x)

as in Monmarché [6] and compare this landscape with that of Hf
ε,c in Figure 1, where we take

ε ∈ {0.25, 0.5, 0.75, 1}, c = −1.5, and f (z) = z. With these choices of parameters, we compute
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FIGURE 1. Landscape of 1
ε
H and Hf

ε,c + 1
ε
Hmin, where H(x) = cos(2x) + 1

2 sin(x) + 1
3 sin(10x), ε ∈

{0.25, 0.5, 0.75, 1}, c = −1.5, and f (z) = z.

that

Hf
ε,c(x) = 1

ε
(min{c,H(x)} − min H) + ln

(
1 + 1

ε
(H(x) − c)+

)
.

In view of the above equation, we plot and compare 1
ε
H(x) and Hf

ε,c(x) + 1
ε
Hmin in Figure 1

on the domain X = {−5 + k
1000 10; k = 1, 2, . . . , 1000}. The shift of + 1

ε
Hmin is necessary to

make these two landscapes match exactly in the region where {x; H(x) � c}, so that they are
on the same scale. When x ∈ (−4, −2) in Figure 1, we can see that the gradient of Hf

ε,c is
smaller than that of 1

ε
H; thus it is easier to climb up the hill in this region (i.e. there is a higher

transition rate). From the plot we also note that both 1
ε
H (the solid red curve) and Hf

ε,c (the
dashed blue curve) have exactly the same set of stationary points.

Keeping in mind the ideas and notation above, we are now ready to introduce the MH chain
with landscape modification.

Definition 1. (Metropolis–Hastings with landscape modification.) Let H be the target
Hamiltonian function, and let Hf

ε,c be the landscape-modified function at temperature ε intro-
duced in (2.1), where f and c satisfy Assumption 1. The continuized Metropolis–Hastings
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chain with landscape modification Xf
ε,c = (Xf

ε,c(t)
)

t�0 has target distribution π f (x) = π
f
ε,c(x) ∝

e−Hf
ε,c(x)μ(x) and proposal chain Q, and its infinitesimal generator Mf = (Mf (x, y)

)
x,y∈X is

given by

Mf (x, y) = Mf
ε,c

(
Q, π f )(x, y) :=

⎧⎨
⎩

Q(x, y)e−(Hf
ε,c(y)−Hf

ε,c(x))+ if x 	= y,

−∑z:z	=x Mf (x, z) if x = y.

Note that when f = 0, the above dynamics reduces to the classical MH X0.

We now fix some notation and recall some important concepts and results from the literature
on Markov chains. We endow the Hilbert space �2

(
π

f
ε,c
)

with the usual inner product weighted

by the invariant measure π
f
ε,c : for g1, g2 ∈ �2

(
π

f
ε,c
)
,

〈g1, g2〉π f
ε,c

:=
∑
x∈X

g1(x)g2(x)π f
ε,c(x),

and for p > 1 we denote the �p norm by ‖·‖
�p(π f

ε,c)
. We write λ2

(−Mf
ε,c
)

for the spectral gap of

Mf
ε,c; that is,

λ2
(−Mf

ε,c

)
:= inf

l∈�2(π f
ε,c) :π f

ε,c(l)=0

〈−Mf
ε,cl, l〉

π
f
ε,c

〈l, l〉
π

f
ε,c

. (2.2)

Analogously, we denote by λ2
(−M0

ε

)
the spectral gap of M0

ε .
In the upcoming sections, we shall investigate and compare the total-variation mixing time

between the MH chains with and without landscape modification. For any probability measures
ν1, ν2 with support on X , the total-variation distance between ν1 and ν2 is

||ν1 − ν2||TV := sup
A⊂X

|ν1(A) − ν2(A)| = 1

2

∑
x∈X

|ν1(x) − ν2(x)|.

The worst-case total-variation mixing time is defined to be

tmix
(
Mf

ε,c, 1/4
)

:= inf

{
t; sup

x
||Pf

t (x, ·) − π f
ε,c||TV < 1/4

}
,

where
(
Pf

t = eMf
ε,ct
)

t�0 is the transition semigroup of Xf
ε,c.

Besides the mixing time, we will also be interested in various hitting times of the MH
chain. These variables naturally appear when we discuss metastability results in the CW model
in Section 3 or in discrete simulated annealing in Section 4. For any A ⊂X , we write τ

f
A :=

inf
{
t � 0; Xf

ε,c(t) ∈ A
}
, and the usual convention that inf ∅ = ∞ applies. Similarly, we define

τ 0
A to be the first hitting time of the set A for the MH chain X0. When A = {x}, we shall simply

write τ
f
x = τ

f
{x} (resp. τ 0

x = τ 0{x}). Also, we denote by Ex( · ) (resp. Px( · )) the mathematical
expectation (resp. probability) of the Markov chain with initial state at x ∈X .

One crucial notion that quantifies the possible benefits of landscape modification is the
concept of critical height, which in a broad sense measures the difficulty of the landscape. We
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now recall this classical notion, which originates from the literature on simulated annealing
and metastability. A path from x to y is any sequence of points x0 = x, x1, x2, . . . , xn = y such
that Q(xi−1, xi) > 0 for i = 1, 2, . . . , n. For any x 	= y, such a path exists as the proposal chain
Q is irreducible. We write χx,y for the set of paths from x to y, and elements of χx,y are denoted
by γ = (γi)n

i=0. Given a target function U defined on X , the highest value of U along a path
γ ∈ χx,y, known as the elevation, is defined to be

Elev(U , γ ) := max{U (γi); γi ∈ γ },
and the lowest possible highest elevation along paths from x to y is

G(x, y) = G(U , x, y) := min{Elev(U , γ ); γ ∈ χx,y}. (2.3)

The associated critical height of U is then defined to be

L(U ) := max
x,y∈X

{G(x, y) − U (x) − U (y)} + min U .

Another related notion is the clipped critical height c∗, which is defined to be

c∗(U , c) := max
x,y∈X

{(G(U , x, y) ∧ c) − (U (x) ∧ c) − (U (y) ∧ c)} + min U .

One can understand c∗ as if we are optimizing with respect to the function U ∧ c. In Section 3,
we shall consider U to be the free energy with and without landscape modification that arises
in the CW model, while in Section 4, when we investigate an improved simulated annealing
algorithm, we take U to be either H or Hf

ε,c. We refer readers to Figure 4 in Section 4, where
we offer a visual illustration of the notion of critical height.

To simulate Xf
ε,c practically, we would need to evaluate the acceptance–rejection probability,

which amounts to the following integration:

exp
(−(Hf

ε,c(y) −Hf
ε,c(x)

)
+
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if H(y) �H(x),

exp

(
−1

ε
(H(y) −H(x))

)
if c �H(y) >H(x),

exp

(
−1

ε
(c −H(x)) − ∫H(y)

c
1

f (u − c) + ε
du

)
if H(y) > c �H(x),

exp

(
−∫H(y)

H(x)

1

f (u − c) + ε
du

)
if H(y) >H(x) > c.

(2.4)

In the following three subsections, we evaluate the above integrals (2.4) with f chosen to be
a linear, quadratic, or cubic function, respectively.

2.1. Linear f : Metropolis–Hastings with logarithmic Hamiltonian and Catoni’s energy
transformation algorithm

In this subsection, we specialize to f (u) = u. It turns out we can understand the landscape
modification as if the Hamiltonian is on a logarithmic scale whenever H(x) > c.
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For x, y ∈ {H(y) >H(x) � c}, since

∫ H(y)

H(x)

1

u − c + ε
du = ln

(H(y) − c + ε

H(x) − c + ε

)
,

substituting the expression into (2.4) gives

exp
(−(Hf

ε,c(y) −Hf
ε,c(x)

)
+
)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if H(y) �H(x),

exp

(
−1

ε
(H(y) −H(x))

)
if c �H(y) >H(x),

exp

(
−1

ε
(c −H(x))

)
ε

H(y) − c + ε
if H(y) > c �H(x),

H(x) − c + ε

H(y) − c + ε
if H(y) >H(x) > c.

This resulting dynamics Mf coincides with the energy transformation method introduced
by Catoni [1, 2] on {H(y) >H(x) > c}, which is based on a logarithmic Hamiltonian. We
refer readers to Section 2.6 for a more detailed account of the connection between landscape
modification and Catoni’s energy transformation.

2.2. Quadratic f : Metropolis–Hastings with arctan Hamiltonian

In this subsection, we take f (u) = u2. In this case, the effect of the landscape modification
gives an inverse-tangent-transformed Hamiltonian whenever H(x) > c.

For x, y ∈ {H(y) >H(x) � c}, using the inverse-tangent difference formula we obtain

∫ H(y)

H(x)

1

(u − c)2 + ε
du =

√
1

ε

(
arctan

(√
1

ε
(H(y) − c)

)
− arctan

(√
1

ε
(H(x) − c)

))

=
√

1

ε
arctan

⎛
⎝

√
1
ε
(H(y) −H(x))

1 + 1
ε
(H(y) − c)(H(x) − c)

⎞
⎠ ,

and substituting the above expression into (2.4) gives

exp
(−(Hf

ε,c(y) −Hf
ε,c(x)

)
+
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if H(y) �H(x),

exp

(
−1

ε
(H(y) −H(x))

)
if c �H(y) >H(x),

exp

(
−1

ε
(c −H(x)) −

√
1
ε

arctan

(√
1
ε
(H(y) − c)

))
if H(y) > c �H(x),

exp

(√
1

ε

(
arctan

(√
1
ε
(H(x) − c)

)
− arctan

(√
1
ε
(H(y) − c)

)))
if H(y) >H(x) > c.
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2.3. Square root f : Metropolis–Hastings with sum of square root and logarithmic
Hamiltonian

In the final example, we let f (z) = √
z for z � 0. For x, y ∈ {H(y) >H(x) � c}, consider the

integral∫ H(y)

H(x)

1√
u − c + ε

du = 2

((√
H(y) − c −√H(x) − c

)
− ε ln

(√H(y) − c + ε√H(x) − c + ε

))
.

Substituting the expression into (2.4) gives

exp
(−(Hf

ε,c(y) −Hf
ε,c(x)

)
+
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if H(y) �H(x),

exp

(
−1

ε
(H(y) −H(x))

)
if c �H(y) >H(x),

exp

(
−1

ε
(c −H(x)) − 2

√H(y) − c

)(√H(y) − c + ε

ε

)2ε

if H(y) > c �H(x),

exp
(
2
√H(x) − c − 2

√H(y) − c
) (√H(y) − c + ε√H(x) − c + ε

)2ε

if H(y) >H(x) > c.

Remark 1. (Use of landscape modification for sampling.) This paper focuses on investigat-
ing the acceleration effect of landscape modification in stochastic optimization and simulated
annealing. However, the technique of landscape modification can also be applied to sampling
from multimodal distributions. The paper Zhang and Choi [7] analyses the use of landscape
modification for sampling. We now briefly describe the setting therein. Suppose that we
are interested in sampling from a multimodal distribution that we denote by ν(x) ∝ e−H(x).
Applying the idea of landscape modification, we then construct an MH chain with the
transformed Hamiltonian function

Hf
1,c,α(x) =

∫ H(x)

Hmin

1

αf ((u − c)+) + 1
du, (2.5)

so that its stationary distribution is given by ν
f
1,c,α(x) ∝ e−Hf

1,c,α(x). We note that the parameter
α � 0, introduced in (2.5), controls the bias between the distribution ν and its landscape-
modified counterpart ν

f
1,c,α . If we anneal this parameter by sending αt → 0 as t → ∞, then

ν
f
1,c,αt

converges weakly to the target distribution ν. As a result, we are able to construct a
non-homogeneous MH chain that converges to ν in the long run while enjoying the benefits of
landscape modification.

2.4. A Metropolized Ehrenfest urn with landscape modification

In this section, we discuss a Metropolized Ehrenfest urn model; our exposition closely fol-
lows that of Deuschel and Mazza ([8], Section 5.1.2). Let us first briefly fix the setting. We
consider the state space X = {0, 1, . . . , d} with d ∈N and take a linear Hamiltonian H(x) = x,
where Hmin = 0. The proposal birth–death chain has generator Q given by Q(x, x + 1) =
1 − x/d, Q(x, x − 1) = x/d, Q(x, x) = −1 and zero otherwise, and we note that the station-
ary measure of Q is μ(x) ∝ 2−d(d

x
). With these choices, the classical Metropolized dynamics is
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M0
ε (x, x + 1) = Q(x, x + 1)e− 1

ε , M0
ε (x, x − 1) = Q(x, x − 1), and π0(x) ∝ e− 1

ε
xμ(x). It is shown

in Deuschel and Mazza ([8], Equation (5.1.1)) that

λ2
(−M0

ε

)
� λ2(−Q)

1∑d
x=0 e− 1

ε
xμ(x)

= d

2

2d(
1 + e− 1

ε

)d . (2.6)

At a fixed temperature ε, we note that the upper bound in (2.6) is exponential in d.
Now, we consider the landscape-modified MH with f (z) = z and c = 1. With these parame-

ters, we compute

H(x) =
∫ x

0

1

(u − 1)+ + ε
du = 1

ε
+ ln

(
(x − 1)+ + ε

ε

)
.

Using Deuschel and Mazza ([8], Equation (5.1.1)) leads to

λ2
(−Mf

ε,c=1

)
� λ2(−Q)

1∑d
x=0 e−H(x)μ(x)

= d

2

2de
1
ε

ε
�d/2�−1+ε

(
d

�d/2�
) ∼ d3 1

ε
e

1
ε , (2.7)

where we use Stirling’s formula, which gives, for large enough d,

(
d

�d/2�
)

∼ 2d

√
π�d/2� .

As a result, the upper bound in (2.7) gives a polynomial dependency on d, at the tradeoff
of an exponential dependency on 1

ε
. In retrospect this result is not surprising, since we are

working with a logarithmic Hamiltonian and hence the asymptotics is in the polynomial of d
instead of 2d. This section serves as a warm-up example to prepare us for discussing the more
complicated CW model in Section 3.

2.5. Tuning strategies for f and c

In this section, we discuss tuning strategies for f and the threshold parameter c in the context
of using the MH chain with landscape modification for stochastic optimization.

First, the function f controls how the landscape is transformed above the threshold param-
eter c. For example, taking a linear f (z) = z gives a logarithmic transformation, while taking
a quadratic f (z) = z2 yields an arctan transformation, as shown in Sections 2.1 and 2.2. In
general, we recommend using f (z) = z2, since the arctan transformation is uniformly bounded
above by π/2, which facilitates exploration on the part of the landscape above c by giving a
higher transition rate compared with the choice of f (z) = z. However, we suspect that in numer-
ical investigations, and depending on the target Hamiltonian H, there are possibilities of using
a linear f to yield improved convergence towards the global minimum.

Second, as we shall see in Section 4, the threshold parameter c controls the clipped critical
height c∗, and ideally it should be set as close to Hmin as possible. This is possible if we
have information about the value Hmin, which is the case for some statistical physics and
theoretical computer science models [9, 10]. In general, however, we may not have access to
the value Hmin, and one general method is to tune the threshold parameter adaptively by setting
the value at time t to be the running minimum up to time t generated by the chain. However,
the resulting process becomes non-Markovian because of the adaptive tuning. Another adaptive
tuning strategy is to set the value of c at time t to be ct =H(yt) − d, where yt is the proposed
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state at time t generated by the proposal chain and d � 0 is a fixed number. In this way, the
transition rate of the landscape-modified MH chain is always greater than or equal to that of
the MH chain without landscape modification. We shall numerically investigate this tuning
strategy and report positive results in Section 4.1.

As far as this paper is concerned, we assume a fixed c in all of the main theoretical results.
We shall postpone to future work a systematic numerical study of investigating various choices
of f and tuning strategies for c on benchmark functions, as well as a theoretical analysis of
adaptively tuning c by the running minimum generated by the algorithm in an MH chain with
landscape modification.

2.6. Connections between landscape modification and other acceleration techniques

In this section, we outline conceptual similarities and differences between MH with land-
scape modification and other common acceleration techniques in the literature for MH and
simulated annealing.

2.6.1. Catoni’s energy transformation algorithm. Let α1 � 0, α2 � 0, α3 > −Hmin be three
parameters. In Catoni [1, 2], the author introduces the energy transformation algorithm by
transforming the Hamiltonian H to

Fα1,α2,α3 (x) := α1H(x) + α2 log (H(x) + α3) .

Recall from Section 2.1 that MH with landscape modification can be considered as a state-
dependent version of energy transformation if we take f (z) = z, α3 = −c + ε, with α1, α2
chosen in a state-dependent manner:

α1(x) = 1{H(x)�c}, α2(x) = 1{H(x)>c}.

Note that MH with landscape modification can give rise to other kinds of energy transfor-
mation through different choices of f ; see for example the quadratic case or the square root
case in Section 2.2 or 2.3, respectively. The idea of mapping or transforming the function from
H to F(H) with F being strictly increasing and concave can be dated back to R. Azencott.

2.6.2. Preconditioning of the Hamiltonian. Landscape modification can be understood as a
state-dependent preconditioning of the Hamiltonian H. Recall that in (2.4) we compute the
acceptance–rejection probability in MH by

exp
(−(Hf

ε,c(y) −Hf
ε,c(x)

)
+
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if H(y) �H(x),

exp

(
−1

ε
(H(y) −H(x))

)
if c �H(y) >H(x),

exp

(
−1

ε
(c −H(x)) − ∫H(y)

c
1

f (u−c)+ε
du

)
if H(y) > c �H(x),

exp

(
−∫H(y)

H(x)

1

f (u − c) + ε
du

)
if H(y) >H(x) > c.

On the set {c �H(y) >H(x)}, the acceptance–rejection probability is the same as the origi-
nal MH to allow for exploitation, while on the set {H(y) > c �H(x)} and {H(y) >H(x) > c},
the acceptance–rejection probability is higher than that of the original MH to encourage
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exploration of the landscape. Therefore, there is a higher transition rate of moving to other
states when the algorithm is above the threshold c.

2.6.3. Importance sampling. In importance sampling, the target distribution is altered for
possible benefits and speed-ups such as variance reduction. In landscape modification, the

target distribution in MH is altered from the original Gibbs distribution π0(x) ∝ e− 1
ε
H(x) to

π
f
ε,c(x) ∝ e−Hf

ε,c(x), while the set of stationary points is preserved in the sense that H and Hf
ε,c

share the same set of stationary points. In importance sampling, however, the set of stationary
points need not be preserved between the altered Hamiltonian and the original Hamiltonian.

2.6.4 Quantum annealing. In quantum annealing [3], given a target Hamiltonian H and an ini-
tial Hamiltonian Hinit that is usually easy to optimize, we optimize a time-dependent function
Qt defined, for t ∈ [0, T], by

Qt(x) := A(t)Hinit(x) + B(t)H(x),

where A(t) and B(t) are smooth annealing schedules that satisfy A(T) = B(0) = 0 and T is the
total annealing time. We also choose A(t) to be decreasing and B(t) to be increasing on the
interval [0,T].

In simulated annealing with landscape modification, we also optimize a time-dependent
function Hf

εt,c which shares the same set of stationary points as the target H. In quantum
annealing, Hinit and H do not necessarily share the same set of stationary points. We mention
the works Del Moral and Miclo [11], Löwe [12], and Frigerio and Grillo [13] for simulated
annealing with time-dependent energy function.

3. The Curie–Weiss model with landscape modification

In this section, we demonstrate the power of landscape modification by revisiting the Curie–
Weiss (CW) model. With an appropriate choice of parameters, the landscape of the CW free
energy is modified and the local minimum is eliminated while the global minimum is preserved
on the transformed function. As a result, landscape modification convexifies the free energy
from a double-well to a single-well as a function of the magnetization.

Let us first recall the setting of the CW model of a ferromagnet with external field h ∈R

and fix some notation. We shall follow the setting of Bovier and den Hollander ([14], Chapters
13–14). Let X = {−1, 1}N be the set of possible configurations of the CW model with N ∈N.
The CW Hamiltonian is given, for σ = (σi)N

i=1 ∈X , by

HN(σ ) := − 1

2N

N∑
i,j=1

σiσj − h
N∑

i=1

σi = −N

2
mN(σ )2 − hNmN(σ ) =: NE (mN(σ )) ,

where mN(σ ) = (1/N)
∑N

i=1 σi is the empirical magnetization. Consider the continuized
Glauber dynamics by picking a node uniformly at random and flipping the sign of the selected
spin, while targeting the Gibbs distribution with the CW Hamiltonian HN at temperature ε.
The resulting Metropolis dynamics is given by

Pε,N(σ, σ ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1/N)e− 1
ε

(HN (σ ′)−HN (σ ))+ if
∥∥σ − σ ′∥∥

1 = 2,

−∑η:η 	=σ Pε,N(σ, η) if σ = σ ′,

0 otherwise,

where ‖·‖1 is the l1 norm on X .
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The dynamics of the empirical magnetization (m0(t))t�0 can be described by lumping the
Glauber dynamics to give

M0
N(m, m′) = M0

ε,N(m, m′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − m

2
e− 1

ε
N(E(m′)−E(m))+ if m′ = m + 2N−1,

1 + m

2
e− 1

ε
N(E(m′)−E(m))+ if m′ = m − 2N−1,

−∑m′:m′ 	=m M0
ε,N(m, m′) if m = m′,

0 otherwise,

on the state space N := {−1, −1 + 2N−1, . . . , 1 − 2N−1, 1} with the image Gibbs distribu-
tion

π0
N(m) = π0

ε,N(m) ∝ e− 1
ε

NE(m)
(

N
1+m

2 N

)
2−N, m ∈ N,

as the stationary distribution. Note that the dependency on ε is suppressed in the notation of
M0

N and π0
N . Define

IN(m) := − 1

N
ln

((
N

1+m
2 N

)
2−N

)
,

I(m) := 1

2
(1 + m) ln(1 + m) + 1

2
(1 − m) ln(1 − m),

gε,N(m) := E(m) + εIN(m),

where I(m) is the Cramér rate function for coin tossing. Then the image Gibbs distribution can
be written as

π0
ε,N(m) ∝ e− 1

ε
Ngε,N (m),

lim
N→∞ IN(m) = I(m),

gε(m) := lim
N→∞ gε,N(m) = E(m) + εI(m).

The quantity gε is called the free energy of the CW model. The stationary points of gε satisfy
the classical mean-field equation

m = tanh

(
1

ε
(m + h)

)
. (3.1)

To seek the ground state(s) of the free energy, we consider modifying the landscape of the
CW Hamiltonian from HN to

Ef
ε,c(m) :=

∫ E(m)

d

1

f ((u − c)+) + ε
du, (3.2)

Hf
ε,c,N(σ ) := N · Ef

ε,c(m(σ )), (3.3)
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where d ∈R can be chosen arbitrarily, since we are only interested in the difference of Ef
ε,c.

The infinitesimal generator of the magnetization (mf (t))t�0 is

Mf
ε,c,N(m, m′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − m

2
e−N(Ef

ε,c(m′)−Ef
ε,c(m))+ if m′ = m + 2N−1,

1 + m

2
e−N(Ef

ε,c(m′)−Ef
ε,c(m))+ if m′ = m − 2N−1,

−∑m′:m′ 	=m Mf
ε,c,N(m, m′) if m = m′,

0 otherwise,

with stationary distribution

π
f
ε,c,N(m) ∝ e−NEf

ε,c,N (m)
(

N
1+m

2 N

)
2−N = e−Ngf

ε,c,N (m)
, m ∈ N,

where

gf
ε,c,N(m) := Ef

ε,c(m) + IN(m).

By taking the limit N → ∞, we find that the free energy in the landscape-modified CW
model is

gf
ε,c(m) := Ef

ε,c(m) + I(m).

Setting the derivative of gf
ε,c equal to zero gives the landscape-modified mean-field

equation:

m = tanh

(
m + h

f ((E(m) − c)+) + ε

)
. (3.4)

Observe that if we take f = 0, then (3.4) reduces to the classical mean-field equation in (3.1).

3.1. Main results

Without loss of generality, assume the external magnetic field is h < 0. In the subcritical
regime where 1

ε
> 1, it is known that there are two local minima of gε . We denote the global

minimum of gε by m∗− < 0 and the other local minimum by m∗+ > 0, where |m∗−| > m∗+, and let
z∗ be the saddle point between m∗− and m∗+. We also write m∗−(N) (resp. m∗+(N)) for the closest
point in Euclidean distance to m∗− (resp. m∗+) on N .

Theorem 1. (Landscape modification in the subcritical regime.) Suppose 1
ε

> 1, h < 0, and f,c
are chosen as in Assumption 1.

1. (Convexification of the free energy gε and subexponential mean crossover time.) If
we choose c ∈ [E(m∗−), E(m∗+)), c < h2/2, −h − √

h2 − 2c � z∗, and for m ∈ [ − h −√
h2 − 2c, −h + √

h2 − 2c],

m > tanh

(
m + h

f ((E(m) − c)+) + ε

)
,
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then m∗− is the only stationary point of the modified free energy gf
ε,c, which is a global

minimum. Consequently, we have subexponential mean crossover time on the modified
landscape

lim
N→∞

1

N
log Em∗+(N)

(
τ

f
m∗−(N)

)
= 0, (3.5)

while the mean crossover time on the original landscape is exponential in N, 1/ε, and
the original critical height gε(z∗) − gε(m∗+) with

lim
N→∞

1

N
log Em∗+(N)

(
τ 0

m∗−(N)

)
= 1

ε
(gε(z∗) − gε(m∗+)).

2. If we choose c ∈ [E(m∗+), E(z∗)] and assume in addition that f is twice differentiable and
satisfies f ′(0) = f ′′(0) = 0, then there exists

z∗ = arg max
m∗−�m�m∗+

gf
ε,c(m),

and as N → ∞,

Em∗+(N)

(
τ

f
m∗−(N)

)
= exp

(
N
(

gf
ε,c(z∗) − gf

ε,c(m∗+)
))

× 2

1 − |z∗|

√
1 − z∗2

1 − m∗2+
2πN/4√(

−
(

gf
ε,c

)′′
(z∗)
) (

gf
ε,c

)′′ (
m∗+
) (1 + o(1)).

Consequently,

lim
N→∞

1

N
log Em∗+(N)

(
τ

f
m∗−(N)

)
= gf

ε,c(z∗) − gf
ε,c(m∗+)

= 1

ε
(c − E(m∗+)) +

∫ E(z∗)

c

1

f ((u − c)+) + ε
du

+ (I(z∗) − I(m∗+)
)

� 1

ε
(gε(z∗) − gε(m∗+)) = lim

N→∞
1

N
log Em∗+(N)

(
τ 0

m∗−(N)

)
.

Before we present the proof, we interpret the results in Theorem 1 intuitively: in Item 1, on
the one hand we would like to choose c small enough so that the mapping

m �→ tanh

(
m + h

f ((E(m) − c)+) + ε

)

is flattened and only intersects the straight line m �→ m at the global minimum m∗−. In this way

the landscape of gf
ε,c is transformed from a double-well to a single-well landscape, while the

location of the global minimum at m∗− is preserved as that in the original landscape gε . This is
illustrated in Figures 2 and 3. On the other hand, we cannot choose c to be too small if we are
interested in seeking the ground state of gε , since otherwise, if c < E(m∗−), then m∗− may no
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FIGURE 2. Plots of the free energy gε and the modified free energy gf
ε,c + Emin with h = −0.05 and

f (z) = z at temperature ε = 1/1.5, where Emin = minm∈[−1,1] E(m). We shift the modified free energy by
Emin so that it is on the same scale as the original free energy gε .

FIGURE 3. Plots of the mean-field equation (3.1) and the modified mean-field equation (3.4) with h =
−0.05 and f (z) = z at temperature ε = 1/1.5.

longer be the global minimum in the transformed free energy gf
ε,c. This consequently yields a

mean crossover time on the modified landscape that is subexponential in N, while the original
mean crossover time is exponential in N, 1/ε, and the original critical height gε(z∗) − gε(m∗+).
In Item 2 of Theorem 1, we choose a larger value of c compared with that in Item 1. Although
the transformed free energy gf

ε,c is not a convex function, it has a smaller critical height than
the original free energy gε . This gives a reduced exponential dependence on the modified mean
crossover time compared with the original mean crossover time.

The power of landscape modification or energy transformation lies in tuning the parameter
c appropriately. One way to tune c is to use the running minimum generated by the algorithm
on the original free energy gε . Suppose we start in the well containing the local minimum
m∗+; setting c to be the running minimum eventually gives c = E(m∗+), and hence Item 2 of
Theorem 1 can be applied and the critical height on the modified landscape is reduced.

We illustrate Theorem 1 with a concrete numerical example in Figures 2 and 3, where we
take h = −0.05 and f (z) = z at temperature ε = 1/1.5. We numerically compute that m∗− =
−0.8863, m∗+ = 0.8188, and z∗ = 0.1524. As a result we have E(m∗−) = −0.4371, E(m∗+) =
−0.2943, and E(z∗) = −0.004. In the leftmost plots of Figures 2 and 3, we choose c = −0.4 ∈
[E(m∗−), E(m∗+)). We numerically check that the conditions in Item 1 of Theorem 1 are satisfied,
and we see that the location of the global minimum is the same for the blue curve as for the
orange curve. In the rightmost plots of Figures 2 and 3, we choose c = −0.2 ∈ [E(m∗+), E(z∗)].
We see that for the blue curve and the red curve, the locations of the two local minima are the
same, while the critical height is smaller than that in the original landscape gε .
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3.2. Proof of Theorem 1

Before we give the proof, let us first recall the concept of critical height and the notation L
as introduced in Section 2. In this section, we are interested in the CW model with and without
landscape modification, with free energy gf

ε,c,N and gε,N respectively. We therefore define the
analogous concepts of critical height by inserting a subscript of N. This leads us to

Hf
ε,c,N := L

(
gf
ε,c,N

)= max
x,y∈X

{
G
(
gf
ε,c,N, x, y

)− gf
ε,c,N(x) − gf

ε,c,N(y)
}

+ min
x∈N

gf
ε,c,N(x),

H0
ε,N := L(gε,N) = max

x,y∈X

{
G(gε,N, x, y) − gf

ε,N(x) − gε,N(y)
}

+ min
x∈N

gε,N(x),

where we recall that G is introduced in (2.3).
We now proceed with the proof.

Proof of Theorem 1. First we prove Item 1. We observe that {E(m) � c} = {m ∈ [ − h −√
h2 − 2c, −h + √

h2 − 2c]}. On this interval,

d

dm
gf
ε,c(m) = arctanh (m) − m + h

f ((E(m) − c)+) + ε
> 0,

and hence the modified free energy is strictly increasing on this interval. On the interval {m >

−h + √
h2 − 2c},

d

dm
gf
ε,c(m) = d

dm
gε(m) > 0,

as the original free energy is strictly increasing. On the interval {m < −h − √
h2 − 2c}, we also

have

d

dm
gf
ε,c(m) = d

dm
gε(m).

Thus, with these parameter choices, the only stationary point of gf
ε,c is m∗−, which is the global

minimum.
Next we proceed to proving (3.5). According to Löwe ([12], Theorem 2.1), for ξ1(N) a

polynomial function in N, we have

1

λ2

(
−Mf

ε,c,N

) � ξ1(N)eNHf
ε,c,N .

Using the random target lemma (Aldous and Fill, [15], Section 4.2) and the above inequality
leads to

π
f
ε,c,N(m∗−(N))Em∗+(N)

(
τ

f
m∗−(N)

)
�
∑
y∈N

π
f
ε,c,N(y)Em∗+(N)

(
τ f

y

)
� (|N | − 1)

1

λ2

(
−Mf

ε,c,N

)

� Nξ1(N)eNHf
ε,c,N . (3.6)
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Now, let m(N) := arg min gf
ε,c,N(m) and compute

gf
ε,c,N(m∗−(N)) − gf

ε,c,N(m(N)) = Ef
ε,c(m∗−(N)) − Ef

ε,c(m(N)) + IN(m∗−(N)) − IN(m(N))

= Ef
ε,c(m∗−(N)) − Ef

ε,c(m(N))

+ IN(m∗−(N)) − I(m∗−(N)) + I(m∗−(N)) − IN(m(N))

= Ef
ε,c(m∗−(N)) − Ef

ε,c(m(N))

+ [1 + o(1)]
1

2N
ln

(
πN
(
1 − m∗−(N)2

)
2

)

+ I(m∗−(N)) − I(m(N))

− [1 + o(1)]
1

2N
ln

(
πN
(
1 − m(N)2

)
2

)

→ 0 as N → ∞,

where we use Bovier and den Hollander ([14], Equation (13.2.5)) in the third equality, and
m∗−(N), m(N) → m∗− as N → ∞. The above computation combined with (3.6) yields

lim sup
N→∞

Em∗+(N)

(
τ

f
m∗−(N)

)
� lim

N→∞
1

N
log Hf

ε,c,N = 0. (3.7)

On the other hand, as the magnetization (mf (t))t�0 is a birth–death process, using
Equation (13.2.2) of Bovier and den Hollander [14], the mean hitting time can be calculated
explicitly as

Em∗+(N)

(
τ

f
m∗−(N)

)

=
∑

m,m′∈N ,m�m′
m∗−(N)<m�m∗+(N)

π
f
ε,c,N

(
m′)

π
f
ε,c,N(m)

1

Mf
ε,c,N

(
m, m − 2N−1

)

� 1

Mf
ε,c,N

(
m∗+(N), m∗+(N) − 2N−1

) = 2

1 + m∗+(N)
eN(Ef

ε,c(m∗+(N)−2N−1)−Ef
ε,c(m))+

� 2

1 + m∗+(N)
.

As a result, as m∗+(N) → m∗+ we have

lim inf
N→∞

1

N
log Em∗+(N)

(
τ

f
m∗−(N)

)
� 0. (3.8)

Using both (3.8) and (3.7) gives (3.5).
Next, we prove Item 2, the argument for which closely follows that of Bovier and den

Hollander ([14], Theorem 13.1). Since we choose c ∈ [E(m∗+), E(z∗)], we have E(m∗−) − c <
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E(m∗+) − c � 0, and hence the landscape-modified mean-field equation (3.4) has at least two
solutions m∗+ and m∗−, which are exactly the same as those of the original mean-field equation
(3.1). As the landscape-modified mean-field equation is continuous in m, there exists z∗ =
arg maxm∗−�m�m∗+ gf

ε,c(m) which also satisfies (3.4). Now, for m ∈ N we consider

N
(
Ef

ε,c(m − 2N−1) − Ef
ε,c(m)

)= N
∫ E(m)+2N−1(m+h−N−1)

E(m)

1

f ((u − c)+) + ε
du

→ 2(m + h)

f ((E(m) − c)+) + ε
as N → ∞.

If we take N → ∞ and m → z∗, we obtain

1

Mf
ε,c,N

(
m, m − 2N−1

) → 2

1 + z∗ exp

(
2(z∗ + h)+

f ((E(z∗) − c)+) + ε

)
= 2

1 − |z∗| ,

since, if z∗ > 0, then z∗ + h > 0 and satisfies the mean-field equation (3.4). Using the mean
hitting time formula again leads to the following, for any δ > 0:

Em∗+(N)

(
τ

f
m∗−(N)

)
=

∑
m,m′∈N ,m�m′

m∗−(N)<m�m∗+(N)

π
f
ε,c,N

(
m′)

π
f
ε,c,N(m)

1

Mf
ε,c,N

(
m, m − 2N−1

)

= e
N
[
gf
ε,c,N(z∗)−gf

ε,c,N(m∗+)
]

2

1 − |z∗| [1 + o(1)]

×
∑

m,m′∈N|m−z∗|<δ,|m′−m∗+|<δ

e
N
[
gf
ε,c,N (m)−gf

ε,c,N(z∗)
]
−N
[
gf
ε,c,N(m′)−gf

ε,c,N(m∗+)
]
. (3.9)

Using Stirling’s formula and the same argument as in Bovier and den Hollander ([14], Equation
(13.2.7)) yields

e
N
[
gf
ε,c,N(z∗)−gf

ε,c,N(m∗+)
]
= (1 + o(1))e

N
[
gf
ε,c(z∗)−gf

ε,c(m∗+)
]√

1 − z∗2

1 − m∗2+
.

Substitution into (3.9) gives

Em∗+(N)

(
τ

f
m∗−(N)

)

= e
N
[
gf
ε,c(z∗)−gf

ε,c(m∗+)
]

2

1 − |z∗|

√
1 − z∗2

1 − m∗2+
[1 + o(1)]

×
∑

m,m′∈N|m−z∗|<δ,|m′−m∗+|<δ

√
1 − m2

1 − z∗2

√
1 − m∗2+
1 − m′2 e

N
[
gf
ε,c(m)−gf

ε,c(z∗)
]
−N
[
gf
ε,c(m′)−gf

ε,c(m∗+)
]
. (3.10)
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We use a Laplace method argument to handle the sum in (3.10). Note that as f is assumed
to be twice differentiable with f (0) = f ′(0) = f ′′(0) = 0, this implies that gf

ε,c is three times
differentiable, and applying the third-order Taylor expansion gives

gf
ε,c(m) − gf

ε,c

(
z∗)= (m − z∗)2

2

(
gf
ε,c

)′′(z∗) +O
(

(m − z∗)3
)

, (3.11)

gf
ε,c

(
m′)− gf

ε,c

(
m∗+
)= (m′ − m∗+)2

2

(
gf
ε,c

)′′(
m∗+
)+O

(
(m′ − m∗+)3

)
, (3.12)

where we use (gf
ε,c)′(z∗) = (gf

ε,c)′(m∗+) = 0. Now we observe that the sum in (3.10) is

(1 + o(1))
N

4

∫
R

∫
R

exp

[
1

2

(
gf
ε,c

)′′ (z∗) u2 − 1

2

(
gf
ε,c

)′′ (
m∗+
)

u′2
]

dudu′

= (1 + o(1))
N

4

2π√[
−(gf

ε,c
)′′

(z∗)
] (

gf
ε,c
)′′ (

m∗+
) ,

since
(
gf
ε,c
)′′

(z∗) < 0 and
(
gf
ε,c
)′′ (

m∗+
)
> 0. �

3.3. Extension to the random-field Curie–Weiss model

In Section 3.1, we discussed the classical CW model with landscape modification under a
fixed magnetic field. In this section, we consider the random-field CW model with landscape
modification. We discuss related metastability results and the ground-state free energy in such
a setting, with the aim of illustrating that landscape modification can also be applied in the
setting of a random energy landscape. Let us begin by recalling the random-field CW model.
We shall adapt the setting of Mathieu and Picco [16]. Let (hi)i∈N be a sequence of independent
and identically distributed random variables with P(hi = 1) = P(hi = −1) = 1/2. We consider
the random Hamiltonian function given, for a fixed θ > 0 and σ ∈ {−1, 1}N , by

HN(σ ) = HN(σ, ω) := −N

2
mN(σ )2 − θ

N∑
i=1

hi(ω)σi

= −N

2
(m+

N (σ ) + m−
N (σ ))2 − θN(m+

N (σ ) − m−
N (σ )),

where

mN(σ ) := (1/N)
N∑

i=1

σi, m+
N (σ ) := (1/N)

N∑
i=1; hi=1

σi, m−
N (σ ) := (1/N)

N∑
i=1; hi=−1

σi.

In the sequel, we shall suppress the dependency on ω. Denote the Gibbs distribution at
temperature ε on {−1, 1}N by

νN(σ ) ∝ exp

{
− 1

ε
HN(σ )

}
.
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Let N+ := |{i; hi = +1}|, N− := |{i; hi = −1}|, and define the random set

�N :=
(

−N+

N
, −N+

N
+ 2

N
, . . . ,

N+

N

)
×
(

−N−

N
, −N−

N
+ 2

N
, . . . ,

N−

N

)
.

For m = (m+, m−) ∈ �N , with slight abuse of notation we write

HN(m) = −N

2
(m+ + m−)2 − θN(m+ − m−) =: N · E(m),

where m+ and m− are the magnetization among the sites i where respectively hi = 1 and
hi = −1. Let π0

ε,N denote the image Gibbs distribution of νN by �N , where

π0
ε,N(m) ∝ exp

{
− 1

ε
Ngε,N(m)

}
,

gε,N(m) := −1

2
(m+ + m−)2 − θ (m+ − m−) − 1

1
ε
N

log

(
N+

N+
2 + m+ N

2

)(
N−

N−
2 + m− N

2

)
.

As N → ∞, by the strong law of large numbers, gε,N converges almost surely to the free energy
given by

gε(m) := −1

2
(m+ + m−)2 − θ (m+ − m−) + 1

2 1
ε

(
I(2m+) + I(2m−)

)
,

where I(m) is the Cramér rate function as introduced in Section 3. The critical points of gε

satisfy

m+ = 1

2
tanh

(
1

ε
(m+ + m− + θ )

)
, (3.13)

m− = 1

2
tanh

(
1

ε
(m+ + m− − θ )

)
. (3.14)

In this section, we shall only consider the subcritical regime where 1
ε

> cosh2 ( 1
ε
θ ). It can be

shown (see e.g. [16]) that there are exactly three critical points. Let m∗ > 0 be the unique
positive solution to the mean-field equation

m∗ = 1

2

(
tanh

(
1

ε
(m∗ + θ )

)
+ tanh

(
1

ε
(m∗ − θ )

))
.

The three critical points of gε are given by

m0 =
(

1

2
tanh

(
1

ε
θ

)
, −1

2
tanh

(
1

ε
θ

))
,

m1 =
(

1

2
tanh

(
1

ε
m∗ + 1

ε
θ

)
,

1

2
tanh

(
1

ε
m∗ − 1

ε
θ

))
,

m2 =
(

1

2
tanh

(
−1

ε
m∗ + 1

ε
θ

)
, −1

2
tanh

(
1

ε
m∗ + 1

ε
θ

))
,
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where m0 is the saddle point and m1, m2 are the two global minima. Consider the continuized
Glauber dynamics (σN(t))t�0 by picking a node uniformly at random and changing the sign
of the selected spin, while targeting the Gibbs distribution νN at temperature ε. Denote by
mN(t) := mN(σN(t)) the induced dynamics on the magnetization, and denote its infinitesimal
generator by M0

ε,N . This is proven to be a Markov chain in Mathieu and Picco [16], with
stationary measure π0

ε,N .
Now let us consider the landscape-modified Hamiltonian on �N ,

Ef
ε,c(m) :=

∫ E(m)

d

1

f ((u − c)+) + ε
du, (3.15)

Hf
ε,c,N(m) := N · Ef

ε,c(m), (3.16)

where d ∈R can be chosen arbitrarily since we are only interested in the difference of Ef
ε,c.

The transformed image Gibbs distribution is therefore

π
f
ε,c,N(m) ∝ exp{−Ngf

ε,c,N(m)},

gf
ε,c,N(m) := Ef

ε,c(m) − 1

N
log

(
N+

N+
2 + m+ N

2

)(
N−

N−
2 + m− N

2

)
.

The strong law of large numbers yields that as N → ∞, gf
ε,c,N converges almost surely to the

transformed free energy

gf
ε,c(m) := Ef

ε,c(m) + 1

2

(
I(2m+) + I(2m−)

)
.

The critical points of gf
ε,c satisfy the following landscape-modified mean-field equations:

m+ = 1

2
tanh

(
m+ + m− + θ

f ((E(m) − c)+) + ε

)
, (3.17)

m− = 1

2
tanh

(
m+ + m− − θ

f ((E(m) − c)+) + ε

)
. (3.18)

Note that (3.17) and (3.18) reduce to the classical case (3.13) and (3.14) if we take f = 0.
Consider the continuized Glauber dynamics (σ f

N(t))t�0 by picking a node uniformly at ran-
dom and changing the sign of the selected spin, while targeting the Gibbs distribution with
Hamiltonian εHf

ε,c,N at temperature ε. Denote by mf
N(t) := mf

N(σ f
N(t)) the induced dynamics

on the magnetization, and denote by Mf
ε,c,N its infinitesimal generator, which is a Markov

chain with stationary measure π
f
ε,c,N .

In the following, we shall consider the case where c ∈ [E(m1), E(m0)]. It can be seen that
the two global minima of gf

ε,c remain at m1, m2 with this choice of c. For any path γ m1,m0

connecting m1 and m0, we define

m3(γ m1,m0 ) := arg max{gf
ε,c(γi); γi ∈ γ m1,m0},

�gf
ε,c := min

γ m1,m0
m3(γ m1,m0 ) − gf

ε,c(m1) = min
γ m1,m0

m3(γ m1,m0 ) − gf
ε,c(m0),
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where �gf
ε,c is the critical height on the modified landscape. We also write �gε to denote the

critical height on the original landscape. Suppose that �gε is attained at m4, so that �gε =
gε(m4) − gε(m0); we deduce

�gf
ε,c � gf

ε,c(m4) − gf
ε,c(m0) =

∫ E(m4)

E(m0)

1

f ((u − c)+) + ε
du

+ 1

2

(
I
(
2m+

4

)+ I
(
2m−

4

))− 1

2

(
I
(
2m+

0

)+ I
(
2m−

0

))

� 1

ε

(
gε(m4) − gε(m0)

)= 1

ε
�gε .

In other words, the critical height of the free energy in the modified landscape is bounded
above by 1

ε
times the critical height of the free energy in the original landscape.

A direct application of Mathieu and Picco ([16], Theorem 2.7) yields the following result
on the asymptotics of the spectral gap.

Theorem 2. (Asymptotics of the spectral gap.) Suppose θ > 0, 1
ε

> cosh2
(

1
ε
θ
)

are fixed, and

m0 is the saddle point, while m1, m2 are the two global minima on the original free energy
landscape gε . For c ∈ [E(m1), E(m0)], we have P-almost surely that

lim
N→∞

1

N
log λ2(−Mf

ε,c,N) = −�gf
ε,c �−1

ε
�gε = lim

N→∞
1

N
log λ2(−M0

ε,N).

In essence, the relaxation time in the mean-field limit of the transformed generator Mf
ε,c,N is

asymptotically less than or equal to that of the original generator M0
ε,N.

This yields a reduced exponential dependence of the relaxation time on the modified
landscape, compared with the relaxation time on the original landscape.

4. Discrete simulated annealing with landscape modification

Unlike in previous sections of this paper, where the temperature parameter is fixed, in
this section we consider the non-homogeneous MH with landscape modification where the
temperature schedule (εt)t�0 is time-dependent and non-increasing and goes to zero as t → ∞.

We first recall the concept of critical height as introduced in Section 2. To be precise, we
define

Hf
ε,c := L

(Hf
ε,c

)= max
x,y∈X

{
G
(
Hf

ε,c, x, y
)

−Hf
ε,c(x) −Hf

ε,c(y)
}
, (4.1)

H0 := L(H) = max
x,y∈X

{G(H, x, y) −H(x) −H(y)} + min H, (4.2)

c∗ := c∗(H, c) = max
x,y∈X

{(G(H, x, y) ∧ c) − (H(x) ∧ c) − (H(y) ∧ c)} + min H, (4.3)

where Hf
ε,c is the critical height associated with the modified landscape, H0 is the critical height

associated with the original landscape H, and c∗ is the clipped critical height. We shall see in
the main results of this section that both Hf

ε,c and c∗ play fundamental roles in the relaxation
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FIGURE 4. Comparing the critical heights H0, Hf
1,c, c∗ on a one-dimensional landscape generated by H

with a local minimum at m and a global minimum, where we take ε = 1, f (z) = z, and the proposal chain
is of nearest-neighbour type, i.e. going left or right with probability 1/2.

time in the low-temperature regime and in determining the cooling schedule of an improved
simulated annealing algorithm running on the modified landscape.

As an illustration to calculate and compare these critical heights, we consider a simple
one-dimensional landscape with a saddle point at s, a local (but not global) minimum at m,
and a single global minimum. At temperature ε = 1, the original critical height is attained
at H0 =H(s) −H(m) while the modified critical height is Hf

1,c =Hf
1,c(s) −Hf

1,c(m) �H0. In
this setting, depending on whether c is above or below H(m), the clipped critical height c∗ is

c∗ =
⎧⎨
⎩

0 if c �H(m) ,

c −H(m) if c >H(m) .

These critical heights are illustrated in Figure 4.

Our first result gives the asymptotic order of the spectral gap λ2

(
−Mf

ε,c

)
in terms of c∗ in

the low-temperature regime, which will be proven to be essential in obtaining a convergence
result for simulated annealing.

Theorem 3. Assume that f and min H� c � max H satisfy Assumption 1, and in addition for
all small enough z > 0 we have f (z) � z. Then there exist positive constants C2, C3, C4, depend-
ing on the state space X and the proposal generator Q but not on the temperature ε, and a
subexponential function

C1(ε) :=

⎧⎪⎪⎨
⎪⎪⎩

1

C2

(
1 + 1

ε
(max H− c)

)
exp

{
1

f (δ)
(max H− min H)

}
if c < max H,

1

C2
if c = max H,

where δ := minx;H(x)>c{H(x) − c}, such that

C−1
1 (ε)e− 1

ε
c∗ � C2e−Hf

ε,c � λ2(−Mf
ε,c) � C3e−Hf

ε,c � C4e− 1
ε

c∗
,
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where Hf
ε,c is introduced in (4.1) and c∗ is defined in (4.3). This leads to

lim
ε→0

ε log λ2(−Mf
ε,c) = −c∗.

As a corollary of Theorem 3, using the asymptotics of the spectral gap, we derive similar
asymptotics for the mixing time and tunnelling time on the modified landscape.

Corollary 1. (Asymptotics of mixing and tunnelling times in the low-temperature regime.)
Assume the same setting as in Theorem 3. Let Smin := arg min H(x) be the set of global minima
of H, let η ∈ Smin, and assume that σ, η attain H0 such that H0 = G0(σ, η) −H(σ ). Then the
following statements hold:

1.

lim
ε→0

ε log tmix(Mf
ε,c, 1/4) = c∗.

2.

lim
ε→0

ε log Eσ (τ f
η) = c∗ � H0 = lim

ε→0
ε log Eσ (τ 0

η ).

In particular, when c =Hmin, we have subexponential tunnelling time, as
limε→0 ε log Eσ (τ f

η) = 0 = c∗.
Note that in the case where both σ, η ∈ Smin with initial state σ , it is a reasonable choice to

pick the parameter c =H(Xf (0)) =H(σ ) =Hmin, and in this setting we have subexponential
tunnelling time on the modified landscape. For instance, in applications we may know about
a global minimizer σ , and by setting c =H(σ ) we can search for other possible global mini-
mizers owing to the subexponential tunnelling in the low-temperature regime. For a concrete
example, in the Widom–Rowlinson model with m ∈N particle types, Smin is precisely the set
of configurations in which all sites are occupied by particles of the same type, and hence both
Smin and Hmin are known in this model. In this direction, we refer interested readers to Nardi
and Zocca [9] and Zocca [10] for work on the energy landscape analysis of various statistical
physics models.

To prove the convergence result for simulated annealing with landscape modification, as
our target function Hf

ε,c depends on time through the cooling schedule, we are in the setting
of simulated annealing with time-dependent energy function as in Löwe [12]. We first present
the following auxiliary lemma, where we verify various assumptions from Löwe [12] in our
setting. We have included the statement of the lemma in this section, rather than with the
proofs later on, since it will be helpful for understanding the convergence result in Theorem 4
below.

Lemma 1. Assume the same setting as in Theorem 3. Let M := max H− min H, βt := 1/εt,
and assume the cooling schedule is

εt = c∗ + ε

ln (t + 1)

for ε small enough so that M + max H− c > ε > 0 and t � 0. Then we have the following:
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1. For all x ∈X and all t � 0,

0 � εtHf
εt,c(x) � M.

2. For all x ∈X , ∣∣∣∣ ∂∂t
εtHf

εt,c(x)

∣∣∣∣� 2M

( ln (1 + t))(1 + t)
.

3. Let Rt := supx
∂
∂t εtHf

εt,c(x) and B := 6M/(c∗ + ε). For all t � 0,

β ′
t M + βtRt �

3M

(c∗ + ε)(1 + t)
= B

2(1 + t)
.

4. Let

p := 2M

M + max H− ε − c
> 2

and

A :=

⎧⎪⎪⎨
⎪⎪⎩

1

C2(minx μ(x))(p−2)/p
exp

{
1

f (δ)
(max H− min H)

}
if c < max H,

1

C2(minx μ(x))(p−2)/p
if c = max H,

where C2, δ are as in Theorem 3, and we recall that μ is the stationary measure of the
proposal generator Q. For g ∈ �p(π f

εt,c), we have

∥∥∥g − π f
εt,c(g)

∥∥∥2

�p(π f
εt ,c)

� A(1 + t)〈−Mf
εt,cg, g〉

π
f
εt ,c

.

Remark 2. Items 1 and 2 correspond respectively to Equations (2.11) and (2.12) in Löwe [12],
while the lower bound of the spectral gap in Theorem 3 verifies Equation (2.13) in Löwe [12].
Assumptions (A1) and (A2) in Löwe [12] are checked in Items 3 and 4, respectively.

With the above lemma and the notation introduced there, we are ready to give one of the
main results of this paper, which concerns the large-time convergence of discrete simulated
annealing with landscape modification. The gain from landscape modification in simulated
annealing can be seen by operating a possibly faster logarithmic cooling schedule with clipped
critical height c∗, while in classical simulated annealing the critical height is H0. The possible
benefit thus depends on the tuning of c, since c∗ � c −Hmin. This result is analogous to the
result obtained in Choi [4] for improved kinetic simulated annealing. A similar improvement
of a logarithmic cooling schedule by means of reduction in critical height can be found in the
infinite swapping algorithm [17].

Theorem 4. Assume the same setting as in Theorem 3. Let A,B,p be the quantities introduced
in Lemma 1. Define

ε := p − 2

p
, K := 4(1 + 2AB)

1 − exp{− 1
2A − B} , Smin := arg min H, d := min

x;H(x)	=Hmin

H(x).
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Consider a cooling schedule of the following form: for any ε > 0 as in Lemma 1,

εt = c∗ + ε

ln (t + 1)
.

Under this cooling schedule, for any x ∈X \Smin and t � e1/ε − 1, we have

Px

(
τ

f
Smin

> t
)
� (1 + K

1
2ε )
√

π
f
εt,c(X \Smin) + π f

εt,c(X \Smin) → 0 as t → ∞.

Note that

π f
εt,c(X \Smin) �

⎧⎪⎪⎨
⎪⎪⎩

1

μ(Smin)
e− 1

εt
(d−Hmin) if c � d,

1

μ(Smin)
exp

{
− ∫ d

c
1

f (u−c)+εt
du

}
if Hmin � c < d.

Remark 3. (On tuning the threshold parameter c.) There are various ways to tune the param-
eter c for improved convergence. In Choi [4], we proposed to use the running minimum
generated by the algorithm to tune c. Note that in the setting of the CW model, the parameter
c can be tuned as explained earlier, in the second paragraph below Theorem 1.

4.1. Numerical illustrations

Before discussing the proofs of the main results above, we illustrate the convergence perfor-
mance of simulated annealing with landscape modification, which we call improved simulated
annealing (ISA), and compare it to the performance of the classical simulated annealing algo-
rithm (SA) for the travelling salesman problem (TSP). We first state the parameters that we
used to generate the numerical results:

• TSP and its objective function. We select 50 nodes uniformly at random on the grid
[0, 100] × [0, 100]. The objective is to find a configuration that minimizes the total
Euclidean distance with the same starting and ending point. Each node can only be
visited once.

• Initial configuration. Both ISA and SA have the same initialization. They are initialized
using the output of the nearest-neighbour algorithm: a node is randomly chosen as the
starting point, which is then connected to the closest unvisited node. This is repeated
until every node has been visited, and subsequently the last node is connected back to
the starting node.

• Proposal chain. Both ISA and SA share the same proposal chain: at each step, a
proposal move is generated using the 2-OPT algorithm [18].

• Acceptance–rejection mechanism. In SA, the proposed move is accepted with proba-
bility

min
{

1, eβ(H(x)−H(y))
}

,

while in ISA, the acceptance probability is computed as in Section 2.1. In other words,
we use a linear f in ISA. Both SA and ISA have the same source of randomness.
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TABLE 1. Summary statistics of IP on 1000 random TSP instances.

Sample mean 1.87%

Sample median 1.47%
Sample maximum 11.35%
Sample minimum −9.21%
Number of IP � 0 798
Number of IP < 0 202

• Cooling schedule. Both ISA and SA use the same logarithmic cooling schedule, of the
form

εt =
√

50

ln (t + 1)
.

• Choice of c in ISA. In this experiment, if we denote the proposal configuration at time t
by yt, we set c = ct to be

ct =H(yt) − 5.

This tuning strategy has been discussed in Section 2.5.

• Number of iterations. We run both ISA and SA for 100,000 iterations.

We generate 1000 random TSP instances. For each instance we compute what we call the
improvement percentage (IP) of ISA over SA, defined by

IP := 100
mint∈[0,100,000] H(X0(t)) − mint∈[0,100,000] H(Xf (t))

mint∈[0,100,000] H(X0(t))
.

The summary statistics of IP are provided in Table 1, while its histogram over these 1000
instances can be found in Figure 5. The code for reproducing these results can be found at
https://github.com/mchchoi/Improved-discrete-simulated-annealing.

The summary statistics in Table 1 and the histogram in Figure 5 offer empirical evidence
for using ISA over SA: out of the 1000 TSP instances, there are 798 instances in which the IP
is non-negative. The sample mean of the IP is approximately 1.87%, while its sample median
is 1.47%.

Next, in Figure 6, we investigate the difference between SA and ISA in a particular instance.
We see that SA (the blue curve) is stuck at a local minimum, while ISA (the orange curve) is
able to escape the local minimum, owing to the increased acceptance probability compared
with SA, and it reaches regions where the objective value is smaller than that of SA.

The rest of this section is devoted to the proofs of Theorem 3, Corollary 1, Lemma 1, and
Theorem 4.

4.2 Proof of Theorem 3

First, using the classical result of Holley and Stroock ([19], Theorem 2.1), it is immediate
that

C2e−Hf
ε,c � λ2(−Mf

ε,c) � C3e−Hf
ε,c .

For any arbitrary x1, x2 ∈ {H(x1) �H(x2)}, we deduce the following upper bound:
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FIGURE 5. Histogram showing IP of ISA over SA on 1000 randomly generated TSP instances.

FIGURE 6. TSP objective value against iteration of ISA and SA.
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Hf
ε,c(x1) −Hf

ε,c(x2)

=
∫ H(x1)

H(x2)

1

f ((u − c)+) + ε
du

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

ε
(H(x1) −H(x2)) if c �H(x1) >H(x2),

1

ε
(c −H(x2)) + ∫H(x1)

c
1

f (u − c) + ε
du if H(x1) > c �H(x2),

∫H(x1)
H(x2)

1

f (u − c) + ε
du if H(x1) >H(x2) > c,

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

ε
(H(x1) ∧ c −H(x2) ∧ c) if c �H(x1) >H(x2),

1

ε
(H(x1) ∧ c −H(x2) ∧ c) + ln

(
1 + 1

ε
( max H− c)

)
if H(x1) > c �H(x2),

1

f (δ)
(max H− min H) if H(x1) >H(x2) > c.

As a result, C−1
2 eHf

ε,c � e
1
ε

c∗
C1(ε). On the other hand, we have the following lower bound:

Hf
ε,c(x1) −Hf

ε,c(x2) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

ε
(H(x1) ∧ c −H(x2) ∧ c) if c �H(x1) >H(x2),

1

ε
(H(x1) ∧ c −H(x2) ∧ c) if H(x1) > c �H(x2),

1

f (H(x1) − c)
(H(x1) −H(x2)) if H(x1) >H(x2) > c,

and hence eHf
ε,c � e

1
ε

c∗
C−1

4 .

4.3. Proof of Corollary 1

We first prove Item 1. For a continuous-time reversible Markov chain, by Levin and Peres
([20], Theorems 12.5 and 20.6), we can bound the total-variation mixing time by relaxation
time via

1

λ2(−Mf
ε,c

) log 2 � tmix

(
Mf

ε,c, 1/4
)
� 1

λ2(−Mf
ε,c)

log

(
4

π
f
min

)
,

where

π
f
min := min

x
π f

ε,c(x) = μ(x∗)

Zf
ε,c

for some x∗ ∈ Smin, and

Zf
ε,c :=

∑
x∈X

e−Hf
ε,c(x)μ(x)
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is the normalization constant. Note that since ln Zf
ε,c → ln μ(Smin), we have

lim
ε→0

ε ln Zf
ε,c = 0.

Item 1 follows from collecting the above results together with Theorem 3.
Next, we prove Item 2. First, using the random target lemma ([15], Section 4.2), we have

π f
ε,c(η)Eσ

(
τ f
η

)
�
∑
x∈X

π f
ε,c(x)Eσ

(
τ f

x

)
� (|X | − 1)

1

λ2(−Mf
ε,c)

.

Since H(η) = 0 and Zf
ε,c � 1, upon rearranging and using Theorem 2 we obtain

lim sup
ε→0

ε log Eσ

(
τ f
η

)
� lim

ε→0
ε log

1

λ2

(
−Mf

ε,c

) = c∗.

Define the equilibrium potential and capacity of the pair (σ, η) as in Bovier and den
Hollander ([14], Chapter 7.2) to be respectively

hf
σ,η(x) := Px

(
τ f
σ < τ f

η

)
,

capMf
ε,c(σ, η) := inf

f :f |A=1,f |B=0
〈−Mf

ε,cf , f 〉
π

f
ε,c

= 〈−Mf
ε,chf

σ,η, hf
σ,η〉π f

ε,c
.

If we prove that

capMf
ε,c(σ, η) � 1

Zf
ε,c

⎛
⎝∑

x,y

μ(x)Q(x, y)

⎞
⎠ e− 1

ε
G0(σ,η), (4.4)

then the mean hitting time formula combined with the equilibrium potential and capacity
leads to

Eσ (τ f
η) = 1

capMf
ε,c (σ, η)

∑
y∈X

π f
ε,c(y)hf

σ,η(y)

� 1

capMf
ε,c(σ, η)

π f
ε,c(σ )hf

σ,η(σ ) � μ(σ )∑
x,y μ(x)Q(x, y)

e
1
ε

c∗
,

and the desired result follows, since

lim inf
ε→0

ε log Eσ

(
τ f
η

)
� c∗.

It therefore remains to prove (4.4). Define

�(σ, η) := {x ∈X ; G0(x, σ ) � G0(x, η)}.
Let 1A denote the indicator function of the set A; the Dirichlet principle of capacity gives

capMf
ε,c(σ, η) � 〈−Mf

ε,c1�(σ,η), 1�(σ,η)〉π f
ε,c

= 1

Zf
ε,c

∑
x∈�(σ,η),y/∈�(σ,η)

e− 1
ε (H(x)∨H(y))μ(x)Q(x, y)

� 1

Zf
ε,c

⎛
⎝∑

x,y

μ(x)Q(x, y)

⎞
⎠ e− 1

ε
G0(σ,η),
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where in the last inequality we use the fact that G0(σ, η) is the lowest possible highest elevation
between σ and η.

4.4. Proof of Lemma 1

We first prove Item 1. The lower bound is immediate, while the upper bound can be deduced
via

εtHf
εt,c � εt

∫ H(x)

Hmin

1

εt
du � M.

Next, we prove Item 2. We consider

∂

∂t
εtHf

εt,c(x) =Hf
εt,c(x)

(
∂

∂t
εt

)
+ εt

∂

∂t
Hf

εt,c(x)

=Hf
εt,c(x)

−c∗ − ε

( ln (t + 1))2

1

t + 1
+ εtε

′
t

∫ H(x)

Hmin

− 1

(f ((u − c)+) + εt)2
du.

This leads to ∣∣∣∣ ∂∂t
εtHf

εt,c(x)

∣∣∣∣� 2M

( ln (t + 1))(t + 1)
.

Thirdly, we prove Item 3. Using Item 2, we calculate that

β ′
t M + βtRt �

M

(c∗ + ε)(t + 1)
+ 2M

(c∗ + ε)(1 + t)
= 3M

(c∗ + ε)(1 + t)
.

Finally, we prove Item 4. Following exactly the same calculation as in the proof of Löwe
([12], Lemma 3.5), we see that

∥∥∥g − π f
εt,c(g)

∥∥∥2

�p(π f
εt ,c)

� A (1 + βt( max H− c)) eβt(c∗+M p−2
p )〈−Mf

εt,cg, g〉
π

f
εt ,c

� Aeβt(c∗+M p−2
p +max H−c)〈−Mf

εt,cg, g〉
π

f
εt ,c

.

The desired result follows if we let

ε = M(p − 2)

p
+ max H− c,

so that

p = 2M

M + max H− ε − c
.

4.5 Proof of Theorem 4

We would like to invoke the results in Löwe [12] for a time-dependent target function in
simulated annealing. In Lemma 1, Items 1, 2, 3, and 4, we verify that Equations (11) and (12)
and Assumptions (A1) and (A2), respectively, from Löwe [12] hold. Consequently, if we let
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ht(y) := Px(Xf
εt,c(t) = y)/π f

εt,c(y), then according to Holley and Stroock ([19], Lemma 1.7), its
�2 norm is bounded by

‖ht‖�2(π f
εt ,c)

� 1 + K
1
2ε ,

for t � e1/ε − 1. The desired result follows from exactly the same argument as in Löwe ([12],
Theorem 3.8).

Now we calculate π
f
εt,c(X \Smin). For c � d, we compute that

π f
εt,c(X \Smin) =

∑
x∈X \Smin

e−Hf
εt ,c(x)μ(x)∑

x∈X e−Hf
εt ,c(x)μ(x)

�
∑

x;H(x)�d μ(x)∑
x;H(x)�d exp{∫ d

H(x)
1
εt

du}μ(x)

� e− 1
εt

(d−Hmin) 1

μ(Smin)
.

On the other hand, for Hmin � c < d,

π f
εt,c(X \Smin) =

∑
x∈X \Smin

e−Hf
εt ,c(x)μ(x)∑

x∈X e−Hf
εt ,c(x)μ(x)

� 1

μ(Smin)
exp

{
−
∫ d

Hmin

1

f ((u − c)+) + εt
du

}

� 1

μ(Smin)
exp

{
−
∫ d

c

1

f (u − c) + εt
du

}
.
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