A NOTE ON MATHIEU FUNCTIONS

by M. BELL
(Received 27th February, 1957 ; revised 9th July, 1957)
The Mathieu functions of integral order [1] are the solutions with period π or 2π of the equation

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+(a-2 q \cos 2 z) y=0 \tag{1}
\end{equation*}
$$

The eigenvalues associated with the functions ce_{N} and se_{N}, where N is a positive integer, denoted by a_{N} and b_{N} respectively, reduce to

$$
a_{N}=b_{N}=N^{2}
$$

when q is zero. The quantities a_{N} and b_{N} can be expanded in powers of q, but the explicit construction of high order coefficients is very tedious. In some applications the quantity of most interest is $a_{N}-b_{N}$, which may be called the " width of the unstable zone ". It is the object of this note to derive a general formula for the leading term in the expansion of this quantity, namely

$$
\begin{equation*}
a_{N}-b_{N}=\frac{q^{N}}{2^{2 N-3}\{(N-1)!\}^{2}} \tag{2}
\end{equation*}
$$

Suppose first that N is an odd integer. Then there is an expansion

$$
\begin{equation*}
\mathrm{ce}_{N}(z)=\sum_{n=1,3,5 \ldots . .} \alpha_{N}^{n} \phi_{n} \tag{3}
\end{equation*}
$$

where
These functions ϕ satisfy

$$
\begin{equation*}
\phi_{n}=\sqrt{ }(2 / \pi) \cos n z . \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} \phi_{n}}{d z^{2}}+n^{2} \phi_{n}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\pi} \phi_{n} \phi_{m} d z=\delta_{n m} . \tag{6}
\end{equation*}
$$

On substituting (3) in (1), one obtains the algebraic equations

$$
\begin{equation*}
\left(a_{N}-l^{2}\right) \alpha_{N}^{l}=\sum_{m}\{l m\} \alpha_{N}^{m}, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\{l m\}=\int_{0}^{\pi}\left[\phi_{l} \phi_{m} 2 q \cos 2 z\right] d z \tag{8}
\end{equation*}
$$

Explicitly,

$$
\begin{array}{ll}
\{11\}=q, & \\
\{l m\}=q & \text { if }|l-m|=2, \tag{9}\\
\{l m\}=0 & \text { otherwise. }
\end{array}
$$

The equation (7) is solved by the method, well-known in mathematical physics, of Brillouin [2] and Wigner [3]. Imposing the normalisation $\alpha_{N}^{N}=1$ (to all orders in q), one may rewrite (7) as

$$
\begin{align*}
\alpha_{N}^{l} & =\frac{1}{a_{N}-l^{2}} \sum_{m}\{l m\} \alpha_{N}^{m} \quad(l \neq N), \tag{10}\\
a_{N}-N^{2} & =\sum_{m}\{N m\} \alpha_{N}^{m_{2}} \quad(l=N) . \quad \ldots \ldots \tag{11}
\end{align*}
$$

For $q=0$ one has, of course, $\alpha_{N}^{l}=\delta_{N l}$; with this as starting point, and treating a_{N} as a known parameter, one solves equation (10) by iteration. When the result is substituted into equation e (11), one finds that

$$
\begin{align*}
a_{N}-N^{2}=\{N N\} & +\Sigma\{N l\} \frac{1}{a_{N}-l^{2}}\{l N\}+\ldots \\
& +\Sigma\{N l\} \frac{1}{a_{N}-l^{2}}\{l m\} \frac{1}{a_{N}-m^{2}}\{m n\}+\ldots+\frac{1}{a_{N}-w^{2}}\{w N\}+\ldots, \tag{12}
\end{align*}
$$

where the summations are over all odd integral values, except N itself, of the intermediate indices $l, m, n \ldots$. Equation (12) involves the unknown a_{N} on the right-hand side; solution by iteration yields an explicit power series for a_{N}. The first n terms of the power series are determined entirely by the first n terms on the right-hand side of (12).

For the functions se_{N} there is an expansion of the form (3), the functions ϕ_{n} being replaced by

$$
\begin{equation*}
\phi_{n}^{\prime}=\sqrt{ }(2 / \pi) \sin n z . \tag{13}
\end{equation*}
$$

These satisfy relations analogous to (5) and (6), and we find an equation like (12), except that a_{N} is everywhere replaced by b_{N} and $\{l m\}$ by

$$
\{l m\}^{\prime}=\int_{0}^{\pi}\left[\phi_{i}^{\prime} \phi_{m}^{\prime} 2 q \cos 2 z\right] d z .
$$

Explicitly,

$$
\begin{align*}
& \{l 1\}^{\prime}=-q, \\
& \{l m\}^{\prime}=q \quad \text { if }|l-m|=2, \tag{14}\\
& \{l m\}^{\prime}=0
\end{align*} \quad \text { otherwise. } .
$$

The equations for a_{N} and b_{N} differ only through the difference between $\{11\}$ and $\{11\}^{\prime}$. Moreover it is clear from (12) and (14) that these quantities cannot effectively appear until the N th terms on the right-hand sides, nor therefore until the N th terms in the power series, so that the explicit series for $a_{N}-N^{2}$ and $b_{N}-N^{2}$ will be identical for terms of order lower than q^{N}. Examining the N th terms, one finds that, to lowest order in q,

$$
\begin{equation*}
a_{N}-b_{N}=\frac{2 q^{N}}{\left[N^{2}-(N-2)^{2}\right]^{2}\left[N^{2}-(N-4)^{2}\right]^{2} \ldots\left[N^{2}-1\right]^{2}} \tag{15}
\end{equation*}
$$

where $a_{N}=b_{N}=N^{2}$ is used as a sufficient approximation in the denominator. The resulting expression reduces, with a little manipulation, to (2).

When N is an even integer the expansions used are

$$
\begin{equation*}
\mathrm{ce}_{N}(z)=\underset{n=0,2,4 \ldots}{\sum} \alpha_{N}^{n} \phi_{n}, \quad \operatorname{se}_{N}(z)=\underset{n=2,4, \ldots}{\sum} \alpha_{N}^{\prime n} \phi_{n}^{\prime}, \tag{16}
\end{equation*}
$$

with

$$
\phi_{0}=1 / \sqrt{ } \pi, \quad \phi_{n}=\sqrt{ }(2 / \pi) \cos n z, \quad \phi_{n}^{\prime}=\sqrt{ }(2 / \pi) \sin n z .
$$

We again obtain expressions similar to (12), except that now the intermediate indices are even rather than odd integers, including zero for ce_{N} but not for se_{N}. We now find for the latter

$$
\begin{array}{ll}
\{l m\}^{\prime}=q & \text { if }|l-m|=2, \\
\{l m\}^{\prime}=0 & \text { otherwise. }
\end{array}
$$

The quantities $\{l m\}$ appropriate to ce_{N} are the same as $\{l m\}^{\prime}$ except that there now occur $\{l 0\}$ and $\{0 l\}$, which are zero except for

$$
\begin{equation*}
\{20\}=\{02\}=\sqrt{ } 2 q . \tag{17}
\end{equation*}
$$

Again $\left(a_{N}-N^{2}\right)$ and $\left(b_{N}-N^{2}\right)$ do not differ until the N th term of the series, when the quantities (17) first effectively appear, and one readily finds in lowest order

$$
a_{N}-b_{N}=\frac{2 q^{N}}{\left[N^{2}-(N-2)^{2}\right]^{2}\left[N^{2}-(N-4)^{2}\right]^{2} \ldots N^{2}},
$$

which again reduces to (2).
The formula gives a good approximation to the width only for sufficiently small q. On comparing with the tables in reference [1] it is found that for $q=1$, the error in the estimation of $a_{N}-b_{N}$ is $1 \cdot 6,10 \cdot 1,2 \cdot 0,0 \cdot 7$, and $0 \cdot 1$ per cent. for $N=1,2,3,4,5$ respectively.

I thank Mr W . Walkinshaw for suggesting this problem, and Dr J. S. Bell for drawing my attention to Brillouin-Wigner perturbation theory. I am also indebted to the referee for remarks which led to improvements in the presentation.

REFERENCES

1. N. W. McLachlan, The theory and application of Mathieu functions (Oxford, 1947).
2. L. Brillouin, J. de Phys., 4 (1933), 1.
3. E. P. Wigner, Math. u. naturw. Anz. Ungar. Akad. Wiss., 53 (1935), 475.

Atomic Energy Research Establishment
 Harwell

