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Proof of a positivity conjecture of M. Kontsevich

on non-commutative cluster variables

Kyungyong Lee and Ralf Schiffler

Abstract

We prove a conjecture of Kontsevich, which asserts that the iterations of the
non-commutative rational map Fr : (x, y)→ (xyx−1, (1 + yr)x−1) are given by non-
commutative Laurent polynomials with non-negative integer coefficients.

1. Introduction

Let K = k(x, y) be the skew field of rational functions in the non-commutative variables x and
y, where the ground field k is Q or any field containing Q, for example Q(q). For any positive
integer r, let Fr be the Kontsevich automorphism of K, which is defined by

Fr(λ) = λ for all λ ∈ k and Fr :
{
x 7→ xyx−1,
y 7→ (1 + yr)x−1.

(1)

For more information, see [Kon11].
The main achievement of this paper is the proof of a special case of the following conjecture.

Conjecture 1 (Kontsevich). For all positive integers r1, r2 and for all m> 0, the expressions

(Fr2 ◦ Fr1)m(x) and (Fr2 ◦ Fr1)m(y)

are non-commutative Laurent polynomials in x and y with non-negative integer coefficients.

We shall prove the conjecture in the r1 = r2 case by providing an explicit combinatorial
formula for these expressions as a sum over certain sets of lattice paths β, where each summand
is a Laurent monomial given by the weight of the paths in β. As a direct consequence of this
formula, we have the following result.

Theorem 1.1. Conjecture 1 holds whenever r1 = r2.

Let us point out that if the variables x and y were commutative, then the automorphism
Fr would describe precisely the exchange relations for the mutations in a skew-symmetric
cluster algebra Ar of rank 2, and our above-mentioned formula would be a non-commutative
version of a formula for the cluster variables in Ar that we obtained earlier; see [LS12]. Our
non-commutative formula also represents (a slight modification of) the generators of the non-
commutative rank-2 cluster algebra introduced by DiFrancesco and Kedem in [DK11, § 8].

In the special cases where (r1, r2) = (2, 2), (4, 1) or (1, 4), the conjecture has been proved by
DiFrancesco and Kedem in [DK10]. Moreover, the expressions in Conjecture 1 were shown to be
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Laurent polynomials for any choice of (r1, r2) by Berenstein and Retakh [BR11] and, earlier, in
the r1 = r2 case by Usnich [Usn10].

2. Main result

Fix a positive integer r > 2.

Definition 2.1. Let {cn} be the sequence defined by the recurrence relation

cn = rcn−1 − cn−2

with the initial condition c1 = 0, c2 = 1. When r = 2, cn = n− 1. When r > 2, it is easy to see
that

cn =
1√
r2 − 4

(
r +
√
r2 − 4
2

)n−1

− 1√
r2 − 4

(
r −
√
r2 − 4
2

)n−1

=
∑
i>0

(−1)i
(
n− 2− i

i

)
rn−2−2i.

For example, for r = 3, the sequence cn takes the following values:

0, 1, 3, 8, 21, 55, 144, . . . .

In order to state our theorem, we fix an integer n> 4. Consider a rectangle with vertices
(0, 0), (0, cn−2), (cn−1 − cn−2, cn−2) and (cn−1 − cn−2, 0). In what follows, by the diagonal we
mean the line segment from (0, 0) to (cn−1 − cn−2, cn−2). A Dyck path is a lattice path from (0, 0)
to (cn−1 − cn−2, cn−2) that proceeds by north or east steps and never goes above the diagonal.

Definition 2.2. A Dyck path below the diagonal is said to be maximal if no subpath of
any other Dyck path lies above it. The maximal Dyck path, denoted by Dn, consists
of (w0, α1, w1, . . . , αcn−1 , wcn−1), where w0, . . . , wcn−1 are vertices and α1, . . . , αcn−1 are edges,
such that w0 = (0, 0) is the south-west corner of the rectangle, αi connects wi−1 and wi, and
wcn−1 = (cn−1 − cn−2, cn−2) is the north-east corner of the rectangle.

Remark 1. The word obtained from Dn by forgetting the vertices wi and replacing each
horizontal edge by the letter x and each vertical edge by the letter y is (by definition) the
Christoffel word of slope cn−2/(cn−1 − cn−2).

Example 1. Let r = 3 and n= 5. Then D5 is illustrated as follows.
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Proof of a positivity conjecture of M. Kontsevich

Definition 2.3. Let vi be the upper endpoint of the ith vertical edge of Dn. More precisely, let
i1 < · · ·< icn−2 be the sequence of integers such that αij is vertical for any 1 6 j 6 cn−2. Define
a sequence v0, v1, . . . , vcn−2 of vertices by v0 = (0, 0) and vj = wij .

We introduce certain special subpaths called colored subpaths. These colored subpaths are
defined by certain slope conditions as follows.

Definition 2.4. For any i < j, let si,j be the slope of the line through vi and vj . Let s be the
slope of the diagonal, that is, s= s0,cn−2 .

Definition 2.5 (Colored subpaths). For any 0 6 i < k 6 cn−2, let α(i, k) be the subpath of Dn

defined as follows (for illustrations see Example 2).

(1) If si,t 6 s for all t such that i < t6 k, then let α(i, k) be the subpath from vi to vk. Each
of these subpaths will be called a blue subpath; see Example 2.

(2) If si,t > s for some i < t6 k, then:

(2a) if the smallest such t is of the form i+ cm − wcm−1 for some integers 3 6m6 n− 1
and 1 6 w < r − 1, then let α(i, k) be the subpath from vi to vk; each of these subpaths
will be called a green subpath, and when m and w are specified we will say that the
subpath is (m, w)-green;

(2b) otherwise, let α(i, k) be the subpath from the immediate predecessor of vi to vk; each
of these subpaths will be called a red subpath.

Note that every pair (i, k) defines exactly one subpath α(i, k). We call these subpaths the
colored subpaths of Dn. We denote the set of all these subpaths together with the single edges
αi by P(Dn), that is,

P(Dn) = {α(i, k) | 0 6 i < k 6 cn−2} ∪ {α1, . . . , αcn−1}.

Now we define a set F (Dn) of certain sequences of non-overlapping subpaths of Dn. This set
will parametrize the monomials in our expansion formula.

Definition 2.6. Let F (Dn) be the collection of all sets {β1, . . . , βt} such that:

• t> 0 and βj ∈P(Dn) for all 1 6 j 6 t;

• if j 6= j′, then βj and βj′ have no common edge;

• if βj = α(i, k) and βj′ = α(i′, k′), then i 6= k′ and i′ 6= k;

• if βj is (m, w)-green, then at least one of the cm−1 − wcm−2 preceding edges of vi is
contained in some βj′ .

For each β ∈F (Dn), we say that αi is supported on β if and only if αi ∈ β or αi is contained
in some blue, green or red subpath βj ∈ β. The support of β, denoted by supp(β), is defined to
be the union of the αi that are supported on β.
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Definition 2.7. For each β ∈F (Dn) and each i ∈ {1, . . . , cn−1}, let

β[i] =



x−1yr if αi is not supported on β and αi is horizontal;

x−1yr−1 if αi is not supported on β and αi is vertical;

x−1y0 if αi ∈ β and αi is horizontal;

x−1y−1 if αi ∈ β and αi is vertical;

x0y0 if αi is horizontal and αi ∈ α(j, k) ∈ β for some j, k;

x0y−1 if αi is vertical, αi−r+1 is horizontal,
and αi, αi−r+1 ∈ α(j, k) ∈ β for some j, k;

x1y−1 if αi and αi−r+1 are vertical and αi, αi−r+1 ∈ α(j, k) ∈ β for some j, k;

x−1y−1 if αi is the first (vertical) edge of a red subpath α(j, k) in β.

Note that the last three cases exhaust all possibilities for αi being a vertical edge contained
in some α(j, k) in β, because if in addition αi−r+1 /∈ α(j, k), then αi must be the first vertical
edge of a red subpath.

Recall from the introduction that the Kontsevich automorphism Fr is given by

Fr :
{
x 7→ xyx−1,
y 7→ (1 + yr)x−1.

(2)

Let F−1
r be the inverse of Fr, namely,

F−1
r :

{
x 7→ (1 + xr)y−1,
y 7→ yxy−1.

(3)

Consider a sequence {rn}n∈Z of positive integers. For any positive integer n, let

xn = (Frn ◦ · · · ◦ Fr2 ◦ Fr1)(x) = Frn(· · · Fr2(Fr1(x)) · · · )

and

yn = (Frn ◦ · · · ◦ Fr2 ◦ Fr1)(y),

and let

x−n = (F−1
r−n+1

◦ · · · ◦ F−1
r−1
◦ F−1

r0 )(x) and y−n = (F−1
r−n+1

◦ · · · ◦ F−1
r−1
◦ F−1

r0 )(y).

Let x0 = x and y0 = y.

Conjecture 1 (Kontsevich). Let r1 and r2 be arbitrary positive integers. Assume that r2i+1 =
r1 and r2i = r2 for every i ∈ Z. Then, for any integer n, both xn and yn are non-commutative
Laurent polynomials of x and y with non-negative integer coefficients.

We are now ready to state our main result. For monomials Ai in K, we let
∏m
i=1 Ai denote

the non-commutative product A1A2 · · ·Am.

Theorem 2.1. If rn = r for all n, then for n> 4,

xn−1 =
∑

β∈F (Dn)

xyx−1y−1x

(cn−1∏
i=1

β[i]

)
x−1. (4)

Corollary 2.8. Conjecture 1 holds in the case where r1 = r2.
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Proof. The theorem implies that xn, for n> 0, is a non-commutative Laurent polynomial of x
and y with non-negative integer coefficients. The statements for xn with n < 0 and yn then follow
from a symmetry argument; see [DK10, § 2.3] or [BR11, Lemma 7]. 2

Remark 1. The right-hand side of equation (4) can be written as a double sum as follows:

xn−1 =
∑
ij ,kj

∑
β

xyx−1y−1x

(cn−1∏
i=1

β[i]

)
x−1, (5)

where the first sum is over all sequences 0 6 i1 < k1 < · · ·< i` < k` 6 cn−2 and the second sum
is over all β ∈F (Dn) whose colored subpaths are precisely the α(ij , kj) for 1 6 j 6 `.

Example 2. Let r = 3 and n= 5. We use the following presentation for monomials in K:

xa1yb1xa2yb2 · · · xam−1ybm−1xamybm ←→
(
a1 a2 · · · am−1 am
b1 b2 · · · bm−1 bm

)
.

These expressions are not necessarily minimal, i.e. some of the ai or bi are allowed to be zero.

The illustrations below show the possible configurations for β ∈F (Dn). If the edge αi is
marked , then αi can occur in β. Using the double sum expression of (5), we get that xn−1

is the sum of all the sums below. Let C = xyx−1y−1.

These configurations are grouped according to Remark 1: in the first picture there are no
colored subpaths; each of the next four pictures has precisely one blue subpath; the sixth picture
has a (3, 1)-green subpath, forcing the preceding edge to be included in β; the seventh
picture has a red subpath; and the last picture has a blue subpath and a red subpath.

∑
β⊂{α1,...,α8}

Cx

(cn−1∏
i=1

β[i]

)
x−1 =A1

∑
{α(0,1)}⊂β⊂{α(0,1)}∪{α4,...,α8}

Cx

(cn−1∏
i=1

β[i]

)
x−1 =A2

∑
{α(0,2)}⊂β⊂{α(0,2)}∪{α7,α8}

Cx

(cn−1∏
i=1

β[i]

)
x−1 =A3

∑
β={α(0,3)}

Cx

(cn−1∏
i=1

β[i]

)
x−1 =A4
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∑
{α(1,2)}⊂β⊂{α(1,2)}∪{α1,α2,α3,α7,α8}

Cx

(cn−1∏
i=1

β[i]

)
x−1 =A5

∑
{α(1,3)}∪{α3}⊂β⊂{α(1,3)}∪{α1,α2,α3}

Cx

(cn−1∏
i=1

β[i]

)
x−1 =A6

∑
{α(2,3)}⊂β⊂{α(2,3)}∪{α1,...,α5}

Cx

(cn−1∏
i=1

β[i]

)
x−1 =A7

∑
{α(0,1),α(2,3)}⊂β⊂{α(0,1),α(2,3)}∪{α4,α5}

Cx

( i=1∏
cn−1

β[i]

)
x−1 =A8,

where

A1 =
∑

δ1,δ2,...,δ8∈{0,1}

(
1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 2 − 3δ1 3 − 3δ2 2 − 3δ3 3 − 3δ4 3 − 3δ5 2 − 3δ6 3 − 3δ7 2 − 3δ8 0

)
,

A2 =
∑

δ4,δ5,...,δ8∈{0,1}

(
1 −1 0 1 −1 −1 −1 −1 −1 −1
1 −1 0 −1 3− 3δ4 3− 3δ5 2− 3δ6 3− 3δ7 2− 3δ8 0

)
,

A3 =
∑

δ7,δ8∈{0,1}

(
1 −1 0 1 0 0 0 −1 −1 −1
1 −1 0 −1 0 0 −1 3− 3δ7 2− 3δ8 0

)
,

A4 =
(

1 −1 0 1 0 0 0 0 1 −1
1 −1 0 −1 0 0 −1 0 −1 0

)
,

A5 =
∑

δ1,δ2,δ3,δ7,δ8∈{0,1}

(
1 −1 −1 −1 0 0 0 −1 −1 −1
1 2− 3δ1 3− 3δ2 2− 3δ3 0 0 −1 3− 3δ7 2− 3δ8 0

)
,

A6 =
∑

δ1,δ2∈{0,1}

(
1 −1 −1 −1 0 0 0 0 1 −1
1 2− 3δ1 3− 3δ2 −1 0 0 −1 0 −1 0

)
,

A7 =
∑

δ1,δ2,...,δ5∈{0,1}

(
1 −1 −1 −1 −1 −1 −1 0 1 −1
1 2− 3δ1 3− 3δ2 2− 3δ3 3− 3δ4 3− 3δ5 −1 0 −1 0

)
,

A8 =
∑

δ4,δ5∈{0,1}

(
1 −1 0 1 −1 −1 −1 0 1 −1
1 −1 0 −1 3− 3δ4 3− 3δ5 −1 0 −1 0

)
.

Then x4 =
∑8

i=1 Ai.
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3. Proofs

We need more notation.

Definition 3.1. For integers u, n with 3 6 u6 n− 1, let

T >u(Dn) :=


{β1, . . . , βt}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

• t> 1 and βj ∈P(Dn) for all 1 6 j 6 t;
• if j 6= j′, then βj and βj′ have no common edge;
• if βj = α(i, k) and βj′ = α(i′, k′),

then i 6= k′ and i′ 6= k;
• there exist integers j, w, m with m> u such that
βj is (m, w)-green and none of the cm−1 − wcm−2

preceding edges of vi is contained in any βj′


.

Definition 3.2. Let

F̃ (Dn) :=

{β1, . . . , βt}

∣∣∣∣∣∣∣∣∣
• t> 0 and βj ∈P(Dn) for all 1 6 j 6 t;
• if j 6= j′, then βj and βj′ have no common edge;
• if βj = α(i, k) and βj′ = α(i′, k′),

then i 6= k′ and i′ 6= k

 .

Note that

F (Dn) = F̃ (Dn)\T >3(Dn). (6)

Lemma 3.3. If m> n− 1, then there do not exist i, w (with 1 6 w < r − 1) such that min{t | i <
t6 cn−2, si,t > s} is of the form i+ cm − wcm−1. In particular, for any n> 4, the set T >n−1(Dn)
is empty.

Proof. If m> n− 1 and min{t | i < t6 cn−2, si,t > s}= i+ cm − wcm−1, then min{t | i < t6
cn−2, si,t > s}> cn−1 − wcn−2, which would be greater than cn−2 because w 6 r − 2. But this is
a contradiction, because vcn−2 is the highest vertex in Dn. 2

Let z2 = x2 and

zn−1 =
∑

β∈F̃ (Dn)

xyx−1y−1x

(cn−1∏
i=1

β[i]

)
x−1 (7)

for n> 4.

Lemma 3.4. Let n> 3. Then

zn = F (zn−1) +
∑

β∈T >3(Dn+1)\T >4(Dn+1)

xyx−1y−1x

( cn∏
i=1

β[i]

)
x−1.

Lemma 3.5. Let u> 3 and n> u+ 2. Then

F

( ∑
β∈T >u(Dn)\T >u+1(Dn)

xyx−1y−1x

(cn−1∏
i=1

β[i]

)
x−1

)

=
∑

β∈T >u+1(Dn+1)\T >u+2(Dn+1)

xyx−1y−1x

( cn∏
i=1

β[i]

)
x−1.
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Lemma 3.6. Let n> 4. Then

xn−1 = zn−1 −
n∑

m=5

Fn−m
( ∑
β∈T >3(Dm)\T >4(Dm)

xyx−1y−1x

(cm−1∏
i=1

β[i]

)
x−1

)

=
∑

β∈F (Dn)

xyx−1y−1x

(cn−1∏
i=1

β[i]

)
x−1. (8)

The proof of Lemma 3.4 will be independent of the proofs of Lemmas 3.5 and 3.6. We prove
Lemmas 3.5 and 3.6 by the following induction:

[Lemma 3.5 holds true for n6 d] =⇒ [Lemma 3.6 holds true for n6 d+ 1]
=⇒ [Lemma 3.5 holds true for n6 d+ 1]
=⇒ [Lemma 3.6 holds true for n6 d+ 2] · · · . (9)

Proof of Lemma 3.6. This proof is a straightforward adaptation of [LS12, proof of Lemma 19].
We use induction on n. It is easy to show that x3 = z3. Assume that (8) holds for n, and let
C = xyx−1y−1.

Then

xn = F (xn−1)

F is homomorphism
= F (zn−1)−

n∑
m=5

Fn−m+1

( ∑
β∈T >3(Dm)\T >4(Dm)

Cx

(cm−1∏
i=1

β[i]

)
x−1

)
Lemma 3.4= zn −

n+1∑
m=5

Fn−m+1

( ∑
β∈T >3(Dm)\T >4(Dm)

Cx

(cm−1∏
i=1

β[i]

)
x−1

)
Lemma 3.5= zn −

n+1∑
m=5

∑
β∈T >n−m+4(Dn+1)\T >n−m+5(Dn+1)

Cx

( cn∏
i=1

β[i]

)
x−1

= zn −
∑

β∈T >3(Dn+1)\T >n(Dn+1)

Cx

( cn∏
i=1

β[i]

)
x−1

Lemma 3.3= zn −
∑

β∈T >3(Dn+1)

Cx

( cn∏
i=1

β[i]

)
x−1

(7)
=

∑
β∈F̃ (Dn+1)\T >3(Dn+1)

Cx

( cn∏
i=1

β[i]

)
x−1

(6)
=

∑
β∈F (Dn+1)

Cx

( cn∏
i=1

β[i]

)
x−1.

In order to prove Lemma 3.4, we need the following notation.

Definition 3.7. The sequence {bi,j}i∈Z>2,16j6ci is defined by

bi,j =
{
r if αj is a horizontal edge of Di+1,
r − 1 if αj is a vertical edge of Di+1.
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For integers i6 j, we denote the set {i, i+ 1, i+ 2, . . . , j} by [i, j]. We will always identify
[i, j] with the subpath given by (αi, αi+1, . . . , αj).

Definition 3.8. We need a function f from {subsets of [1, cn−1]} to {subsets of [1, cn]}. For
each subset V ⊂ [1, cn−1], we define f(V ) as follows.

If V = ∅, then f(∅) = ∅. If V 6= ∅, then we write V as a disjoint union of maximal connected
subsets, V =

⊔j
i=1[ei, ei + `i − 1] with `i > 0 (1 6 i6 j) and ei + `i < ei+1 (1 6 i6 j − 1). For

each 1 6 i6 j, let

Wi =
[
1 +

ei−1∑
k=1

bn−1,k,

ei+`i−1∑
k=1

bn−1,k

]
and define fi(V ) by

fi(V ) :=


Wi if the subpath given by Wi is blue or green,{
ei−1∑
k=1

bn−1,k

}
∪Wi otherwise.

Then f(V ) is obtained by taking the union of the fi(V ),

f(V ) :=
j⋃
i=1

fi(V ).

Note that the subpath given by fi(V ) is always one of blue, green or red subpaths, and that
every blue, green or red subpath can be realized as the image of a maximal connected interval
under f .

Example 3. Let r = 3 and n= 4. Then f({1, 2, 3}) = {1, 2, 3, 4, 5, 6, 7, 8}. As illustrated below,
the image of the subpath (α1, α2, α3) under f is the subpath (α1, . . . , α8), which is blue.

Lemma 3.9. Let C = xyx−1y−1. Then F (C) = C.

Proof. We calculate that

F (xyx−1y−1) = xyx−1(1 + yr)x−1xy−1x−1x(1 + yr)−1 = xyx−1y−1. 2

Proof of Lemma 3.4. The idea is the same as in the commutative case [LS12, Lemma 17], that
is, we choose any subset, say V , of {α1, . . . , αcn−1} and consider all β whose support is V . Then
one can check that

F

( ∑
β∈F (Dn),

β: supp(β)=V

Cx

(cn−1∏
i=1

β[i]

)
x−1

)

=
∑

β∈F̃ (Dn+1),
β: colored subpaths of β are precisely

the ones given by f(V )

Cx

( cn∏
i=1

β[i]

)
x−1.
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Then, as in the commutative case, the β ∈ F̃ (Dn+1) which are not covered by this construction
belong to T >3(Dn+1)\T >4(Dn+1).

For example, if r = 3, n= 4 and V = ∅, then β must be empty, and we get
3∏
i=1

β[i] = x−1y3x−1y3x−1y2.

It is straightforward to show that

F
(
Cx(x−1y3x−1y3x−1y2)x−1

)
=

∑
β⊂{α1,...,α8}

Cx

( 8∏
i=1

β[i]

)
x−1 =A1,

where A1 is the same as that defined in Example 2.
If r = 3, n= 4 and V = {1, 2, 3}, then β is either α(0, 1) or {α1, α2, α3}, and we get∏3

i=1 β[i] = x−1y0x−1y0x−1y−1 or
∏3
i=1 β[i] = x0y0x0y0x0y−1. Then

F
(
Cx
(
x−1y0x−1y0x−1y−1 + x0y0x0y0x0y−1

)
x−1

)
= Cxyx−1

(
xy−3x−1x(1 + y3)−1 + x(1 + y3)−1

)
xy−1x−1

= Cxy
(
y−3(1 + y3)−1 + (1 + y3)−1

)
xy−1x−1

= Cxy
(
y−3(1 + y3)−1 + y−3y3(1 + y3)−1

)
xy−1x−1

= Cxy
(
y−3(1 + y3)(1 + y3)−1

)
xy−1x−1

= Cxy
(
y−3
)
xy−1x−1

=
∑

β={α(0,3)}

Cx

( cn∏
i=1

β[i]

)
x−1 =A4,

where A4 is the same as that defined in Example 2. 2

It remains to prove Lemma 3.5. Here we only sketch the proof, which is a straightforward
adaptation of [LS12, proof of Lemma 18].

Proof of Lemma 3.5. We will deal only with the case of n= u+ 2. The case of n > u+ 2 makes
use of the same argument. As we use the induction (9), we can assume that

xj =
∑

β∈F (Di)

xyx−1y−1x

( cj−1∏
i=1

β[i]

)
x−1

for j 6 n.
Since it is straightforward to check the statement for n= 5, we assume that n> 6. For any

w ∈ [1, r − 2], it is easy to show that the lattice point (w(cn−2 − cn−3), wcn−3) is below the
diagonal from (0, 0) to (cn−1 − cn−2, cn−2) and that the points (w(cn−2 − cn−3), 1 + wcn−3)
and (w(cn−2 − cn−3)− 1, wcn−3) are above the diagonal. So (w(cn−2 − cn−3), wcn−3) is one
of the vertices vi on Dn. Actually, vwcn−3 = (w(cn−2 − cn−3), wcn−3). Since u= n− 2 and
α(wcn−3, cn−2) is the only (n− 2, w)-green subpath in {α(i, k) | 0 6 i < k 6 cn−2}, every β ∈
T >u(Dn)\T >u+1(Dn) must contain the green subpath from vwcn−3 to vcn−2 . Then none of the
cn−3 − wcn−4 preceding edges of vwcn−3 is contained in any element βj′ of β. The green subpath
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from vwcn−3 to vcn−2 corresponds to the interval [wcn−2 + 1, cn−1]⊂ [1, cn−1]. The cn−3 − wcn−4

preceding edges of vwcn−3 are α(rw−1)cn−3+1, . . . , αwcn−2 .
Thus we have ∑

β∈T >u(Dn)\T >u+1(Dn)

Cx

(cn−1∏
i=1

β[i]

)
x−1

=
r−2∑
w=1

∑
V⊂[1,(rw−1)cn−3]

∑
β:

⋃
βi=V ∪[wcn−2+1,cn−1],
β3α(wcn−3,cn−2)

Cx

(cn−1∏
i=1

β[i]

)
x−1. (∗)

We observe that the subpath corresponding to [1, (rw − 1)cn−3] consists of w − 1 copies of
Dn−1, r − 1 copies of Dn−2, and w − 1 copies of Dn−3. Let vj0 = (0, 0) and let vji be the endpoint
of each of these copies, that is,

vji = vicn−3 for 1 6 i6 w − 1,
vjw−1+i = v(w−1)cn−3+icn−4

for 1 6 i6 r − 1,
vjw+r−2+i = v(w−1)cn−3+(r−1)cn−4+icn−5

for 1 6 i6 w − 1.

If a (m, w′)-green (respectively, blue or red) subpath, say α(i, k), in [1, (rw − 1)cn−3]
passes through vje , vje+1 , . . . , vje+`

, then α(i, k) can be naturally decomposed into α(i, je),
α(je, je+1), . . . , α(je+`, k). It is not hard to show that α(i, je) is also (m, w′)-green (respectively,
blue or red) and that α(je, je+1), · · · , α(je+`, k) are all blue.

Hence

(∗) =
r−2∑
w=1

Cx

( ∑
β∈F (Dn−1)

(cn−2∏
i=1

β[i]

))w−1( ∑
β∈F (Dn−2)

(cn−3∏
i=1

β[i]

))r−1

×
( ∑
β∈F (Dn−3)

(cn−4∏
i=1

β[i]

))w−1

x−1yxy−1x−1

=
r−2∑
w=1

Cx(x−1yxy−1x−1xn−2x)w−1(x−1yxy−1x−1xn−3x)r−1

×(x−1yxy−1x−1xn−4x)w−1x−1yxy−1x−1

=
r−2∑
w=1

C(C−1xn−2)w−1(C−1xn−3)r−1(C−1xn−4)w−1C−1.

For the same reason, we get ∑
β∈T >u+1(Dn+1)\T >u+2(Dn+1)

Cx

( cn∏
i=1

β[i]

)
x−1

=
r−2∑
w=1

C(C−1xn−1)w−1(C−1xn−2)r−1(C−1xn−3)w−1C−1.

Since F (C) = C, we have

F

( ∑
β∈T >u(Dn)\T >u+1(Dn)

Cx

(cn−1∏
i=1

β[i]

)
x−1

)
=

∑
β∈T >u+1(Dn+1)\T >u+2(Dn+1)

Cx

( cn∏
i=1

β[i]

)
x−1. 2
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