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Abstract

We establish a new sufficient condition under which a monoid is nonfinitely based and apply this
condition to Lee monoids L1

` , obtained by adjoining an identity element to the semigroup generated
by two idempotents a and b with the relation 0 = abab · · · (length `). We show that every monoid M
which generates a variety containing L1

5 and is contained in the variety generated by L1
` for some ` ≥ 5

is nonfinitely based. We establish this result by analysing τ-terms for M, where τ is a certain nontrivial
congruence on the free semigroup. We also show that if τ is the trivial congruence on the free semigroup
and ` ≤ 5, then the τ-terms (isoterms) for L1

` carry no information about the nonfinite basis property of L1
` .
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1. Introduction

An algebra is said to be finitely based (FB) if there is a finite subset of its identities
from which all of its identities may be deduced. Otherwise, an algebra is said to
be nonfinitely based (NFB). Throughout this article, elements of a countably infinite
alphabet A are called variables and elements of the free monoid A∗ and free semigroup
A+ are called words.

In 1968, Perkins [9] found the first sufficient condition under which a monoid
(semigroup with an identity element) is NFB. By using this condition, he constructed
the first two examples of finite NFB semigroups. The first was the six-element Brandt
monoid and the second was the 25-element monoid obtained from the set of words
W = {abtba, atbab, abab, aat}, using the following construction attributed to Dilworth.

Let W be a set of words in the free monoid A∗. Let S 1(W) denote the Rees quotient
over the ideal of A∗ consisting of all words that are not subwords of words in W. For
each set of words W, the semigroup S 1(W) is a monoid with zero whose nonzero
elements are the subwords of words in W. We say that W is (non)finitely based if the
monoid S 1(W) is (non)finitely based.

We regard monoids here as semigroups, that is, algebras with one operation. The
finite basis property of a monoid does not depend on whether it is considered as an
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algebra with one operation or two operations [13]. Indeed, if an identity can be derived
from a finite set of identities Σ by using the substitutions Θ : A→ A∗, then it can also
be derived from a finite set of identities Σ′ by using only the substitutions Θ : A→ A+.
(Just take Σ′ to be the set of all identities obtained by deleting variables in the identities
in Σ.)

If τ is an equivalence relation on the free semigroup A+, then we say that a word u
is a τ-term for a semigroup S if uτv whenever S satisfies u ≈ v. Recall from [9] that
u is an isoterm for S if u = v whenever S satisfies u ≈ v. If u is an isoterm for S then,
evidently, u is a τ-term for S for every equivalence relation τ on A+. We use var S
to refer to the variety of semigroups generated by S . The following result of Jackson
gives the fundamental connection between monoids of the form S 1(W) and isoterms
for monoids.

Fact 1.1 [3, Lemma 3.3]. Let W be a set of words and M be a monoid. Then var M
contains S 1(W) if and only if every word in W is an isoterm for M.

Given a monoid M, we use Isot(M) to denote the set of all words in A∗ that are
isoterms for M. Using Fact 1.1, it is easy to show that W = Isot(M) is the largest
subset of A∗ such that S 1(W) is contained in var M (see [12, Fact 8.1]).

A locally finite algebra is said to be inherently not finitely based (INFB) if any
locally finite variety containing it is NFB. A finite semigroup S is INFB if and
only if every Zimin word (Z1 = x1, . . . ,Zk+1 = Zk xk+1Zk, . . .) is an isoterm for S [10,
Proposition 7]. Together with [10, Proposition 3], this implies that if M is a finite
INFB monoid, then the set Isot(M) is NFB. It also implies that the Brandt monoid is
INFB and, consequently, the set of its isoterms is nonfinitely based.

For the majority of the aperiodic monoids which are known to be NFB but not
INFB, their nonfinite basis property can be established by exhibiting a certain finite
set of words W and a certain set of identities Σ (without any bound on the number of
variables involved) and proving the following statement.

• If a monoid M satisfies all identities in Σ and all the words in W are isoterms for
M, then M is NFB.

If the nonfinite basis property of a monoid M is established by a sufficient condition
of this form, then, evidently, the set Isot(M) is also NFB.

We say that a word u has the same type as v if u can be obtained from v by changing
the individual exponents of variables. For example, the words x2yxzx5y2xzx3 and
xy2x3zxyx2zx are of the same type. We will present a new sufficient condition (see
Theorem 2.1 below) under which a monoid is nonfinitely based. Theorem 2.1 exhibits
a certain finite set of words W, a certain set of identities Σ (without any bound on the
number of variables involved) and states the following:

• if a monoid M satisfies all identities in Σ and every word in W can form an identity
of M only with a word of the same type, then M is NFB.
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Recently, Lee suggested investigating the finite basis property of semigroups

L` = 〈a, b | aa = a, bb = b, ababab · · ·︸      ︷︷      ︸
length `

= 0〉, ` ≥ 2

and the monoids L1
` obtained by adjoining an identity element to L`. The four-element

semigroup L2 = A0 is long known to be finitely based [2]. Zhang and Luo [15] proved
that the six-element semigroup L3 is NFB and Lee generalised this to a sufficient
condition [7] which implies that for all ` ≥ 3, the semigroup L` is NFB [6]. The
five-element monoid L1

2 was also proved to be FB by Edmunds [1], while the seven-
element monoid L1

3 was recently shown to be NFB by Zhang [14]. Lee conjectured
that the monoids L1

` are NFB for all ` ≥ 3. Theorem 2.1 implies that for each ` ≥ 5,
the monoid L1

` is NFB. This leaves the nine-element monoid L1
4 as the only unsolved

case in the finite basis problem for the monoids L1
` .

We prove Theorem 2.1 by using the general method in [11]. This general method
can be used to establish the majority of existing sufficient conditions under which a
semigroup is NFB. In particular, it can also be used to reprove the sufficient condition
of Lee [7], which implies that for all ` ≥ 3, the semigroup L` is NFB. (The proof is the
same as that of [11, Theorem 5.2] but uses [7, Lemma 14] instead of [5, Lemma 13].)
Thus, this method can be used to establish the nonfinite basis properties of both Lee
semigroups and Lee monoids.

In Section 7 we introduce monoids of the form S 1
τ(W) and show that both Lee

monoids and the monoids of the form S 1(W) can be viewed as special cases of this
general construction. We also generalise Fact 1.1 into Lemma 7.1, which gives us the
connection between monoids of the form S 1

τ(W) and τ-terms when τ is not necessarily
the equality relation on A+.

2. A sufficient condition under which a monoid is nonfinitely based

If u is a word and x ∈ Cont(u), the set of all variables contained in the word u,
then an island formed by x in u is a maximal subword of u which is a power of x. For
example, the word xyyx5yx3 has three islands formed by x and two islands formed by y.
We use x+ to denote xn when n is a positive integer and its exact value is unimportant.
If u is a word over a two-letter alphabet, then the height of u is the number of islands
in u. For example, the word x+ has height 1, x+y+ has height 2, x+y+x+ has height 3
and so on. For each ` ≥ 2, consider the following property of a semigroup S .

(C`) If the height of u ∈ {x, y}+ is at most `, then u can form an identity of S only with
a word of the same type.

The following words were used by Jackson to prove [3, Lemma 5.4]:

Jn = (x1x1+n · · · x1+n2−n)(x2x2+n · · · x2+n2−n) · · · (xnx2n · · · xn2 ), n > 3.

For example, J4 = (x1x5x9x13)(x2x6x10x14)(x3x7x11x15)(x4x8x12x16). We generalise
Jackson’s words slightly as follows:

Jn,k = (xk
1xk

1+n · · · x
k
1+n2−n)(xk

2xk
2+n · · · x

k
2+n2−n) · · · (xk

nxk
2n · · · x

k
n2 ), n > 3, k > 0.
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Notice that the words Jn and Jn,k are of the same type for all n > 3 and k > 0. We use u
to denote the reverse of a word u. The following theorem gives a sufficient condition
under which a monoid is NFB and will be proved in Section 5.

Theorem 2.1. Let M be a monoid that satisfies Property (C5). If, for each n > 3, M
satisfies the identity

Un = (x1x2 · · · xn2−1xn2 )Jn,k(xn2 xn2−1 · · · x2x1)

≈ (x1x2 · · · xn2−1xn2 )Jn,k(xn2 xn2−1 · · · x2x1) = Vn (2.1)

for some k ≥ 1, then M is NFB.

An identity u ≈ v is called regular if Cont(u) = Cont(v). If a semigroup S satisfies
an identity u ≈ v, we write S |= u ≈ v. The following lemma will be generalised and
reversed in Corollary 7.2.

Lemma 2.2. For each ` ≥ 2, the monoid L1
` satisfies Property (C`). In other words, if

L1
` |= u ≈ v, where Cont(u) = {x, y} and the height of u is at most `, then v is of the

same type as u.

Proof. Since the word x is an isoterm for L1
` , the monoid L1

` satisfies only regular
identities. In particular, Cont(v) = {x, y}. If v is not of the same type as u, then consider
the substitution Θ : A→ L1

` such that Θ(x) = b and Θ(y) = a. Then Θ(u) is a subword
of bababa · · ·︸      ︷︷      ︸

length `

, 0 and Θ(u) , Θ(v). Therefore, v must be of the same type as u. �

Theorem 2.1 and Lemma 2.2 immediately imply the following result.

Corollary 2.3. Let M be a monoid such that var(M) contains L1
5. If, for each n > 3,

M satisfies the identity (2.1) for some k ≥ 1, then M is NFB.

The next lemma shows that the identities (2.1) belong to a wider class of identities
satisfied by L1

` for each ` ≥ 1.

Lemma 2.4. Let k ≥ 2 and let X be a word such that Cont(X) = {x1, . . . , xn} and
occX(xi) ≥ k − 1 for 1 ≤ i ≤ n. Then, for each n > 0, the monoids

L1
2k = 〈a, b, 1 | aa = a, bb = b, (ab)k = 0〉, L1

2k+1 = 〈a, b, 1 | aa = a, bb = b, (ab)ka = 0〉

satisfy the identity

Un = x1x2 · · · xn−1xnXxnxn−1 · · · x2x1 ≈ x1x2 · · · xn−1xnXxnxn−1 · · · x2x1 = Vn.

Proof. First, notice that each variable appears at least k + 1 times in Un and Vn. Fix
some substitution Θ : A→ L1

2k (L1
2k+1). If the set Cont(Θ(xi)) contains both a and b

for some i with 1 ≤ i ≤ n, then both Θ(Un) and Θ(Vn) contain (ab)k+1 or (ba)k+1 as a
subword and, consequently, both are equal to zero. Therefore, we may assume that
Θ(xi) ∈ {a, b, 1} for 1 ≤ i ≤ n. To avoid some trivial cases, we may also assume that
Θ(x1x2 · · · xn−1xn) contains both letters a and b. Consider three cases.

https://doi.org/10.1017/S0004972718000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000023


426 O. Sapir [5]

Case 1. Θ(X) starts and ends with the same letter a or b. In this case, Θ(X) = Θ(X)
and, consequently, Θ(Un) = Θ(Vn).

Case 2. Θ(X) = (ab)m for some m > 0. In this case, Θ(X) = (ba)m and, consequently,

Θ(Un) = (ab)(ab)m(ba) = (ab)(ba)m(ba) = Θ(Vn).

Case 3. Θ(X) = (ba)m for some m > 0. This case is dual to Case 2. �

Corollary 2.3 and Lemma 2.4 immediately imply the following result.

Corollary 2.5. Let M be a monoid such that M is contained in var(L1
` ) for some ` ≥ 5

and var(M) contains L1
5 = 〈a, b, 1 | aa = a, bb = b, ababa = 0〉. Then M is NFB.

3. Identities of monoids that satisfy Property (C`)

Fact 3.1. If, for some k ≥ 1, a monoid M satisfies Property (C2k), then the word xk is
an isoterm for M.

Proof. If M |= xk ≈ xr for some r , k, then M |= (xy)k ≈ (xy)r. To avoid a contradiction
to Property (C2k), we conclude that xk is an isoterm for M. �

Fact 3.2. Let M be a monoid that satisfies Property (C2). Then:

(i) xy is an isoterm for M;
(ii) if M |= x+t ≈ v, then v = x+t;
(iii) if M |= tx+ ≈ v, then v = tx+;
(iv) if M |= x+tx+ ≈ v, then v = x+tx+.

Proof. Part (i). Since the word x is an isoterm for M by Fact 3.1 and xy can form an
identity of M only with a word of the same type, the word xy is also an isoterm for M.

Parts (ii) and (iii) follow immediately from the fact that t is an isoterm for M and
Property (C2). Part (iv) follows immediately from the fact that t is an isoterm for M
and Parts (ii)–(iii). �

Fact 3.3. Let M be a monoid that satisfies Property (C3). If M |= x+t1x+t2x+ ≈ v, then
v = x+t1x+t2x+.

Proof. If v , x+t1x+t2x+, then v = x+t1t2x+ by Fact 3.2(i) and (iv). Substituting y
for t1 and t2 gives M |= x+yx+yx+ ≈ x+yyx+, contradicting the fact that M satisfies
Property (C3). �

If a variable t occurs exactly once in a word u, then we say that t is linear in u. If a
variable x occurs more than once in u, then we say that x is nonlinear in u. Evidently,
Cont(u) = Lin(u) ∪ Non(u), where Lin(u) is the set of all linear variables in u and
Non(u) is the set of all nonlinear variables in u. A block of u is a maximal subword of
u that does not contain any linear variables of u.
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Lemma 3.4. Let M be a monoid that satisfies Property (C3). If M |= u ≈ v, then:

(i) Lin(u) = Lin(v), Non(u) = Non(v) and the order of occurrences of linear
variables in v is the same as in u;

(ii) the corresponding blocks of u and v have the same content.

That is, if u = a0t1a1t2 · · · tm−1am−1tmam, where Non(u) = Cont(a0a1 · · · am−1am) and
Lin(u) = {t1, . . . , tm}, then v = b0t1b1t2 · · · tm−1bm−1tmbm and Cont(aq) = Cont(bq) for
0 ≤ q ≤ m.

Proof. Part (i) is an immediate consequence of Fact 3.2(i).
In order to verify Part (ii), we can assume that u contains exactly one nonlinear

variable x. In this case, in view of Fact 3.2(ii)–(iv), u and v begin and end with the
same variables. If some corresponding blocks of u and v did not have the same content,
then u would contain tqtq+1 as a subword for some q with 1 ≤ q ≤ m while v contained
tqx+tq+1 as a subword or vice versa. Since this contradicts Fact 3.3, the corresponding
blocks of u and v must have the same content. �

If Cont(u) ⊇ {x1, . . . , xn}, we write u(x1, . . . , xn) to refer to the word obtained from
u by deleting all occurrences of all variables that are not in {x1, . . . , xn}.

Lemma 3.5. Let ` > 2 and let M be a monoid that satisfies Property (C`). Let u be a
word with Non(u) = {x, y} such that the height of u(x, y) is at most `. If M |= u ≈ v,
then the corresponding blocks of u and v begin and end with the same variables.

Proof. By Lemma 3.4,

u = a0t1a1t2 · · · tm−1am−1tmam, v = b0t1b1t2 · · · tm−1bm−1tmbm,

where Cont(aq) = Cont(bq) ⊆ {x, y} for each q with 0 ≤ q ≤ m. Since the height of
u(x, y) is at most `, Property (C`) implies that u and v begin and end with the same
variables. The rest of the lemma follows from the following claim. �

Claim 3.6. u contains a subword c1tc2 for some c1, c2 ∈ {x, y} and t ∈ {t1, . . . , tm} if and
only if v contains the identical three-letter subword.

Proof. To obtain a contradiction, suppose that u(x, y, t) and v(x, y, t) have different
three-letter subwords with t in the middle. Modulo renaming variables and duality,
there are three cases.

Case 1. u contains ytx as a subword but v contains xtx as a subword. In this case, let
Θ : A→ A+ be a substitution such that Θ(t) = yx and is identical on all other variables.
Then Θ(u(x, y, t)) has the same type as u(x, y) but Θ(v(x, y, t)) has bigger height than
u(x, y). This contradicts Property (C`).

Case 2. u contains ytx as a subword but v contains xty as a subword. In this case, let
Θ : A→ A+ be a substitution such that Θ(t) = yx and is identical on all other variables.
Then Θ(u(x, y, t)) has the same type as u(x, y) but Θ(v(x, y, t)) has bigger height than
u(x, y). This contradicts Property (C`).
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Case 3. u contains yty as a subword but v contains xtx as a subword. In this case, let
Θ : A→ A+ be a substitution such that Θ(t) = y and is identical on all other variables.
Then Θ(u(x, y, t)) has the same type as u(x, y) but Θ(v(x, y, t)) has bigger height than
u(x, y). This contradicts Property (C`). �

Lemma 3.7. Let ` > 2 and let M be a monoid that satisfies Property (C`). Let u be a
word with Non(u) = {x, y} such that:

(i) the height of u(x, y) is at most `;
(ii) every block of u has height at most 3.

Then u can form an identity of M only with a word of the same type.

Proof. Write u = a0t1a1t2 · · · tm−1am−1tmam, where {x, y} = Cont(a0a1 · · · am−1am) and
Lin(u) = {t1, . . . , tm}. If M |= u ≈ v, then, by Lemmas 3.4 and 3.5,

v = b0t1b1t2 · · · tm−1bm−1tmbm,

where Cont(aq) = Cont(bq) ⊆ {x, y} for each q with 0 ≤ q ≤ m and the corresponding
blocks aq and bq begin and end with the same variable. Condition (ii) implies that
either the block aq is empty or aq ∈ {x+, y+, x+y+, y+x+, x+y+x+, y+x+y+} for each q
with 0 ≤ q ≤ m. Thus, if the corresponding blocks aq and bq are not of the same type
for some q with 0 ≤ q ≤ m, then only the following two cases are possible modulo
renaming variables.

Case 1. aq = x+y+ but bq = (x+y+)r for some r > 1.

Case 2. aq = x+y+x+ but bq = (x+y+x+)r for some r > 1.

If u and v are not of the same type, then some blocks of v have bigger height than the
corresponding blocks in u. Therefore, v(x, y) has bigger height than u(x, y). To avoid
a contradiction to Property (C`), we conclude that u and v are of the same type. �

Lemma 3.8. Let ` > 2 and let M be a monoid that satisfies Property (C`). Let u be a
word such that:

(i) for each {x, y} ⊆ Cont(u), the height of u(x, y) is at most `;
(ii) for each x ∈ Non(u), there is a linear variable t ∈ Lin(u) between any two islands

formed by x.

Then u can form an identity of M only with a word of the same type.

Proof. Write the word as u = a0t1a1t2 · · · tm−1am−1tmam, where Lin(u) = {t1, . . . , tm} and
Cont(a0a1 · · · am−1am) = {x1, . . . , xn} = Non(u).

Condition (ii) implies that for 1 ≤ i ≤ n and 0 ≤ q ≤ m, each variable xi forms at
most one island in aq. Lemma 3.7 implies that u(xi, x j, t1, . . . , tm) forms an identity of
M only with a word of the same type for 1 ≤ i < j ≤ n. Therefore, u can also form an
identity of M only with a word of the same type. �
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4. Words and substitutions

Lemma 4.1. Let u and v be two words of the same type such that Lin(u) = Lin(v) and
Non(u) = Non(v). Let Θ : A→ A+ be a substitution that has the following property.

(*) If Θ(x) contains more than one variable, then x is linear in u.

Then Θ(u) and Θ(v) are also of the same type.

Proof. Since u and v are of the same type, u = cu1
1 cu2

2 · · · c
ur
r and v = cv1

1 cv2
2 · · · c

vr
r for

some r ≥ 1 and u1, . . . , ur, v1, . . . , vr > 0, where c1, . . . , cr are not necessarily distinct
variables.

We first prove that the words Θ(cui
i ) and Θ(cvi

i ) are of the same type for 1 ≤ i ≤ r.
Indeed, if ci is linear in u (and in v), then ui = vi = 1 and Θ(cui

i ) = Θ(cvi
i ). If ci

is nonlinear in u (and in v), then Θ(cu1
i ) = x+ for some variable x and Θ(cvi

i ) is a
power of the same variable. Since Θ(u) = Θ(cu1

1 cu2
2 · · · c

ur
r ) = Θ(cu1

1 )Θ(cu2
2 ) · · ·Θ(cur

r )
and Θ(v) = Θ(cv1

1 cv2
2 · · · c

vr
r ) = Θ(cv1

1 )Θ(cv2
2 ) · · ·Θ(cvr

r ), we conclude that Θ(u) and Θ(v)
are of the same type. �

If x and y are two distinct variables, then Ex=y denotes a substitution that renames y
by x and is identical on all other variables.

Fact 4.2. Given a word u and a substitution Θ : A → A+, we can rename some
variables in u so that the resulting word E(u) has the following properties:

(i) Θ(E(u)) is of the same type as Θ(u);
(ii) for every x, y ∈ Cont(E(u)), if the words Θ(x) and Θ(y) are powers of the same

variable, then x = y.

Proof. If u satisfies Property (ii), then take E to be the identity substitution Ex=x and
we are done. If u does not satisfy Property (ii), then for some x , y ∈ Cont(u) the
words Θ(x) and Θ(y) are powers of the same variable. If Ex=y(u) satisfies Property (ii),
then take E = Ex=y. Notice that Θ(Ex=y(u)) is of the same type as Θ(u). If not, then for
some p , z ∈ Cont(Ex=y(u)) the words Θ(p) and Θ(z) are powers of the same variable.
If Ep=zEx=y(u) satisfies Property (ii), then take E = Ep=zEx=y and we are done. And
so on. Since the number of variables in E(u) decreases, eventually the word E(u) will
satisfy Property (ii). �

Lemma 4.3. Let ` > 1 and let U be a word such that for each {x, y} ⊆ Cont(U), the height
of U(x, y) is at most `. Let Θ : A→ A+ be a substitution which satisfies Property (ii)
in Fact 4.2. If Θ(u) = U, then u satisfies Condition (i) in Lemma 3.8, that is, for each
{x, y} ⊆ Cont(u), the height of u(x, y) is at most `.

Proof. Suppose that for some {x, y} ⊆ Cont(u), the word u(x, y) has height bigger than
`. Since Θ satisfies Property (ii) in Fact 4.2, Θ(x) contains x′ and Θ(y) contains
y′ for some x′ , y′. Therefore, U(x′, y′) also has height bigger than `, which is a
contradiction. �
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5. Proof of Theorem 2.1

The following lemma implies [11, Corollary 2.2] and is a special case of [11,
Fact 2.1].

Lemma 5.1. Let τ be an equivalence relation on the free semigroup A+ and S be a
semigroup. Suppose that, for infinitely many n, S satisfies an identity Un ≈ Vn in at
least n variables such that Un and Vn are not τ-related. Suppose also that for every
identity u ≈ v of S in fewer than n variables, every word U such that UτUn and every
substitution Θ : A→ A+ such that Θ(u) = U, we have UτΘ(v). Then S is NFB.

Proof. Take an arbitrary m > 0 and let Σ be a set of identities of S in at most m
variables. By our assumption, S satisfies an identity Un ≈ Vn in at least n variables
such that n > m and the words Un and Vn are not τ-related.

If Un ≈ Vn was a consequence from Σ, then we could find a sequence of words
Un = W1 ≈W2 ≈ · · · ≈Wl = Vn and substitutions Θ1, . . . ,Θl−1(A→ A+) such that
for each i = 1, . . . , l − 1, we have Wi = Θi(ui) and Wi+1 = Θi(vi) for some identity
ui ≈ vi ∈ Σ. Since every identity in Σ involves fewer than n variables, we have
Un = W1τW2τ · · · τWl−1τWl = Vn. Thus, UnτVn. But Un and Vn are not τ-related,
so Un ≈ Vn is not a consequence from Σ. Since m and Σ were arbitrary, S is NFB. �

Let U be a word of the same type as Un = x1x2 · · · xn2 Jnxn2 · · · x2x1. Then the
occurrences of xn2 form two islands in U. We refer to these two islands as 1x+

n2 and
2x+

n2 counting rightwards from the left. For each i with 1 ≤ i < n2, the occurrences of
xi form three islands in U. We refer to these three islands as 1x+

i , 2x+
i and 3x+

i counting
rightwards from the left.

Lemma 5.2. Let U be a word of the same type as

Un = x1x2 · · · xn2 Jnxn2 · · · x2x1.

Then U has the following properties:

(P1) for 1 ≤ i , j ≤ n2, the word xix j appears at most once in U as a subword;
(P2) for 1 ≤ i ≤ n2, there are occurrences of at least n pairwise distinct variables

between any two islands formed by xi in U.

Proof. Property (P1) is evident. To verify Property (P2), notice that there are
occurrences of n2 − 1 pairwise distinct variables between 1x+

n2 and 2x+
n2 . If 1 ≤ i < n2,

consider two cases.
Case 1. n2 − i < n. The n − 1 islands {2x+

1 , 2x+
1+n, 2x+

1+2n, . . . , 2x+
1+(n−2)n} are located

between 1x+
n2 and 2x+

i , so there are at least n pairwise distinct variables between 1x+
i

and 2x+
i . The n − 1 islands {2x+

n , 2x+
2n, 2x+

3n, . . . , 2x+
n2−n} are located between 2x+

i and
2x+

n2 , so there are at least n pairwise distinct variables between 2x+
i and 3x+

i .

Case 2. n2 − i ≥ n. The n − 1 islands {1x+
i+1, 1x+

i+2, 1x+
i+3, . . . , 1x+

n2−1} are located between
1x+

i and 1x+
n2 , so there are at least n pairwise distinct variables between 1x+

i and 2x+
i .

The n − 1 islands {2x+
n2−1, 2x+

n2−2, 2x+
n2−3, . . . , 2x+

i+1} are located between 2x+
n2 and 3x+

i , so
there are at least n pairwise distinct variables between 2x+

i and 3x+
i . �
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Proof of Theorem 2.1. Let τ be the equivalence relation on A+ defined by uτv if u and
v are of the same type. First, notice that the words Un and Vn are not of the same type.
Indeed, Un contains xn2 x1 as a subword but Vn does not have this subword.

Now let U be of the same type as Un. Let u ≈ v be an identity of M in fewer than
n variables and let Θ : A→ A+ be a substitution such that Θ(u) = U. The word E(u)
also involves fewer than n variables and E(u) ≈ E(v) is also an identity of M.

Since U(xi, x j) = x+
i x+

j x+
i x+

j x+
i for 1 ≤ i < j ≤ n2, the height of U(xi, x j) is 5. By

Lemma 4.3, E(u) satisfies Condition (i) in Lemma 3.8 for ` = 5, that is, for each
{x, y} ⊆ Cont(E(u)), the height of E(u)(x, y) is at most 5.

If y ∈ Non(E(u)), then, in view of Property (P1) in Lemma 5.2, Θ(y) = x∗i for some
i with 1 ≤ i ≤ n2. Since the occurrences of xi form at most three islands in U and Θ

satisfies Property (ii) in Fact 4.2, the occurrences of y also form at most three islands
in u.

Due to Property (P2) in Lemma 5.2, there are occurrences of at least n pairwise
distinct variables between any two islands formed by xi in U. Since E(u) involves
fewer than n variables, there is a variable t ∈ Cont(E(u)) between any two islands
formed by y in E(u) such that Θ(t) contains xix j as a subword for some i, j with
1 ≤ i , j ≤ n2. Due to Property (P1) in Lemma 5.2, t is linear in E(u). Thus, E(u)
satisfies Condition (ii) in Lemma 3.8. Therefore, E(v) is of the same type as E(u) by
Lemma 3.8.

Due to Property (P1) in Lemma 5.2, Θ satisfies Condition (*) in Lemma 4.1.
Consequently, the word Θ(E(v)) has the same type as Θ(E(u)) by Lemma 4.1. Thus,

U = Θ(u)
Fact 4.2
τ Θ(E(u))

Lemma 4.1
τ Θ(E(v))

Fact 4.2
τ Θ(v).

Since Θ(v) is of the same type as U, Lemma 5.1 implies that M is NFB. �

6. Sets of isoterms for L1
`

are FB when ` ≤ 5

If var S (W) = var S (W ′), we say that sets of words W and W ′ are equationally
equivalent and write W ∼ W ′. A word u is called k-limited if each variable occurs
in u at most k times.

Fact 6.1. We have:

(i) Isot(L1
2) = Isot(L1

3) ∼ {ab};
(ii) Isot(L1

4) = Isot(L1
5) ∼ {abab, a2b2, ab2a}.

Proof. First, notice that for each k ≥ 1, L1
2k = 〈a, b, 1 | aa = a, bb = b, (ab)k = 0〉 and

L1
2k+1 = 〈a, b, 1 | aa = a, bb = b, (ab)ka = 0〉 satisfy xt1xt2x · · · xtk x ≈ x2t1xt2x · · · xtk x.

Therefore, every isoterm for L1
2k and for L1

2k+1 is k-limited.
Part (i). Since L1

2 satisfies Property (C2) by Lemma 2.2, the word xy is an isoterm
for L1

2 by Fact 3.2. Since {ab} is equationally equivalent to the set of all 1-limited
words, we have Isot(L1

2) = Isot(L1
3) ∼ {ab}.

Part (ii). Since L1
4 satisfies Property (C4) by Lemma 2.2, the word x2 is an isoterm

for L1
4 by Fact 3.1.
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Let us show that if u ∈ {abab, a2b2, ab2a}, then u is an isoterm for L1
4. Indeed,

assume that L1
4 |= u ≈ v. Since x2 is an isoterm for L1

4, the identity u ≈ v is balanced,
that is, every variable occurs the same number of times in u and v. Then v can only be
one of the words {abab,a2b2,ab2a}modulo renaming a and b. To avoid a contradiction
to Property (C4), we conclude that v = u.

Since {abab, a2b2, ab2a} is equationally equivalent to the set of all 2-limited words,
we have Isot(L1

4) = Isot(L1
5) ∼ {abab, a2b2, ab2a}. �

Notice that the word xyyxyx is 3-limited but is not an isoterm for L1
6 because

L1
6 |= xyyxyx ≈ xyxyyx.

Since for each k > 0 the set of all k-limited words is FB [4], the result of Zhang [14]
that L1

3 is NFB, Corollary 2.5 and Fact 6.1 immediately imply the following result.

Corollary 6.2. The monoids L1
3 and L1

5 are NFB while the sets of their isoterms are
FB.

Presently, L1
3, L1

4 [8] and L1
5 are the only known examples of NFB finite aperiodic

monoids whose sets of isoterms are FB.

Question 6.3. Is there a finite aperiodic FB monoid whose set of isoterms is NFB? Is
there a finite aperiodic NFB monoid with central idempotents whose set of isoterms is
FB?

7. Monoids of the form S1
τ(W)

Let τ be a congruence on the free semigroup A+ and W be a nonempty set of words
in A+ such that:

• W is a union of τ-classes, that is, v ∈ W whenever u ∈ W and uτv;
• W is closed under taking subwords, that is, v ∈ W whenever u ∈ W and v is a

subword of u.

Since W is a union of τ-classes, the set I(W) = A+ \W is also a union of τ-classes if it is
not empty. Let T denote the factor semigroup of A+ over τ and T 1 denote the monoid
obtained by adjoining an identity element to T . Let Hτ denote the homomorphism
corresponding to τ extended to A∗ by Hτ(ε) = 1, where ε denotes the empty word and 1
denotes the identity element of T 1. Since W is closed under taking subwords, Hτ(I(W))
is an ideal of T = Hτ(A+) and of T 1 = Hτ(A∗). We define S τ(W) as the Rees quotient
of T over H(I(W)) and S 1

τ(W) as the Rees quotient of T 1 over H(I(W)). Notice that
S τ(W) = φHτ(A+) and S 1

τ(W) = φHτ(A∗), where φHτ(u) = Hτ(u) if u ∈ W ∪ {ε} and
φHτ(u) = 0 if u ∈ I(W).

If τ is the trivial congruence on A+, then S 1
τ(W) coincides with the widely studied

monoid S 1(W) defined in the introduction. Also, recall from the introduction that a
word u is called a τ-term for a semigroup S if uτv whenever S |= u ≈ v. The following
lemma generalises Fact 1.1.
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Lemma 7.1. Let τ be a congruence on the free semigroup A+ such that for each x ∈ A,
if xτu, then u = xm for some m > 0. Let W be a nonempty set of words in A+ which
is a union of τ-classes and is closed under taking subwords. Let S be a semigroup
(respectively monoid). Then var S contains S τ(W) (respectively S 1

τ(W)) if and only if
every word in W is a τ-term for S .

Proof. ⇒ Let S be a semigroup such that var S contains S τ(W). Take u ∈ W. Let
us show that u is a τ-term for S . Indeed, suppose that S |= u ≈ v. Since var S
contains S τ(W), we have φHτ(u) = φHτ(v). Since u ∈W, we have φHτ(u) = Hτ(u) , 0.
If v < W, then φHτ(v) = 0. Thus, v ∈ W and Hτ(u) = φHτ(u) = φHτ(v) = Hτ(v).
Therefore, uτv and u is a τ-term for S .
⇐ Let S be a semigroup (respectively monoid) such that every word in W is a τ-term

for S . Let u ≈ v be an identity of S and Θ : A→ S τ(W) a substitution (respectively
Θ : A→ S 1

τ(W)). If u = c1 · · · cr and v = d1 · · · dl for some not necessarily distinct
letters c1, . . . , cr and d1, . . . , dl, then

Θ(c1) = φHτ(u1), . . . ,Θ(cr) = φHτ(ur), Θ(d1) = φHτ(v1), . . . ,Θ(dl) = φHτ(vl)

for some not necessarily distinct words u1, . . . , ur, v1, . . . , vl from A+ (respectively
from A∗). Modulo duality, three cases are possible.
Case 1. Both u1 · · · ur and v1 · · · vl belong to I(W). In this case,

Θ(u) = φHτ(u1 · · · ur) = 0 = φHτ(v1 · · · vl) = Θ(v).

Case 2. u1 · · · ur ∈ W. Since S |= u ≈ v, we have S |= (u1 · · · ur) ≈ (v1 · · · vl). Since
u1 · · · ur is a τ-term for S , we have (u1 · · · ur)τ(v1 · · · vl). Since W is a union of τ-
classes, v1 · · · vl ∈ W. Therefore,

Θ(u) = φHτ(u1 · · · ur) = Hτ(u1 · · · ur) = Hτ(v1 · · · vl) = φHτ(v1 · · · vl) = Θ(v).

Case 3. u1 = · · · = ur = ε. This case is only possible if S is a monoid. In this
case, u ≈ v is a regular identity. (Indeed, if for some y ∈ A we have y ∈ Cont(u) but
y < Cont(v), then S |= x ≈ xyn for some x , y and n > 0. Since W is closed under
taking subwords, x is a τ-term for S and, consequently, xτxyc, which is forbidden
by our assumption about τ.) Since Cont(u) = Cont(v), we have v1 = · · · = vl = ε.
Consequently, Θ(u) = 1 = Θ(v).

Thus, we have proved that every identity of S holds in S τ(W) and if S is a monoid
then every identity of S holds in S 1

τ(W). Therefore, var S contains S τ(W) and if S is a
monoid then var S contains S 1

τ(W). �

Let τ be the relation on the free semigroup A+ defined by uτv if and only if u and
v are of the same type and let W` be the set of all subwords of b+a+b+a+b+ · · ·︸             ︷︷             ︸

height `

. Then,

for each ` ≥ 2, the Lee semigroup L` is isomorphic to S τ(W`) and the Lee monoid L1
`

is isomorphic to S 1
τ(W`). Thus, Lemma 7.1 immediately implies the following result.
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Corollary 7.2. Let ` ≥ 2 and let S be a semigroup (respectively monoid). Then var S
contains L` (respectively L1

` ) if and only if S satisfies Property (C`), that is, every word
in {x, y}+ of height at most ` can form an identity of S only with a word of the same
type.
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