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Abstract. I will discuss several tests to gauge the accuracy of pre-main-
sequence (PMS) models. Methods to determine the mass of young stars
are overviewed, with emphasis on the information provided by double-
lined, spectroscopic binary systems. A comparison of the dynamically
determined masses with those estimated using the PMS models of Palla
& Stahler (1999) is presented. Good agreement between empirical and
theoretical masses is found. The analysis of the inferred ages from the
isochrones shows a remarkable coevality within each binary system. A
complete assessment of the accuracy of PMS tracks needs the identifica-
tion of eclipsing systems of low-mass.

1. Tests of PMS Evolutionary Tracks

Two basic parameters used in observational checks of theoretical calculations
of stellar evolution are stellar masses and ages. Direct determinations of PMS
masses do exist now thanks to the discovery of a (still small) sample of spectro-
scopic eclipsing systems among these stars. Stellar ages can only be estimated
indirectly through the use of evolutionary tracks and isochrones in the HR di-
agram. However, the actual pattern of stellar births within any given region
offers an important clue for testing star formation theories.

PMS models are routinely produced by many groups, both in Europe and
elsewhere. How are we to gauge the accuracy of PMS tracks? Several tests can
be performed to this end, including the following ones:

• Position of the birthline: the observed upper envelope of the distribution of
PMS in both T associations and groups containing Herbig Ae/Be stars does
seem to match the predicted birthline (e.g. van den Ancker et al. 1998; Luhman
1999; Palla & Stahler 2000a). Also, the predicted endpoint of the birthline at
rv8 M0 appears supported by the observational data. Examples include the
Trapezium cluster (Hillenbrand 1997), NGC 6611 (Hillenbrand et al. 1993), and
a number of galactic and extragalactic OB associations (Massey et al. 1995;
Massey & Hunter 1998). These results give credit to the essential validity of
protostar theory, leading to the birthline mass-radius relation.

• Pre-Main-Sequence masses and ages: the study of PMS binaries offers the
best way to test the evolutionary tracks: the measurement of the dynamical
mass of the components of any binary system yields in fact an absolute mass
calibration of the tracks. Under the assumption of coeval formation, the derived
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ages of the components test relative age calibrations of the tracks. We will
provide specific examples of the known systems and discuss the implications on
current models.

• Lithium abundance: the observed surface abundances in low- and very-low
mass stars provide a critical test for the physical processes (convection, opac-
ity, rotation, mass loss) which ought to be included in the theoretical models
in order to reproduce the observed level of depletion. Due to its small binding
energy, 7Li (the most abundant of the two stable isotopes of lithium) is eas-
ily destroyed in stellar interiors via the reaction 7Li(p,a)4He at temperatures
around 2.5x 106 K (Bodenheimer 1965). According to standard models, deple-
tion occurs only when the outer convection extends down to that temperature.
Thus, it appears quite unavoidable that some 7Li depletion due to nuclear burn-
ing takes place already during PMS contraction. Other processes, associated
with the mixing due to transport of angular momentum through the star, are
effective on much longer time scales and dominate the depletion history dur-
ing the main sequence phase (e.g. Martin & Claret 1996; Ventura et al. 1998).
From the numerical point of view, the situation is still unsettled because of the
strong sensitivity of the amount of lithium destruction on the temperature at
the bottom of the convection zone, whose exact location is sensitive to opacity,
convection and rotation (see Bildsten et al. 1997 for a different approach). On
the positive side, there is the remarkable application of the theory of Li-burning
to the search and discovery of brown dwarfs (Rebolo et al. /1996; Basri et al.
1996).

• Main-Sequence Binaries: these systems have provided the most accurate es-
timates of stellar masses and radii (e.g. Andersen 1991). For detached, double-
lined, eclipsing systems, the radial velocity and light curves yield mass estimates
of individual compo.nents, plus their luminosities and effective tempartures.
Thus, their location in the HR diagram is a powerful test for the tracks. This is
particularly important for low-mass systems (M*;S0.6 M0 , or Teff;S4000 K), for
which the theoretical models are most uncertain due to the limited knowledge
of low-temparture opacities, convection and model atmospheres. Unfortunately,
selection effects render the discovery of eclipses in intrinsically faint and small
stars rather difficult. The two known eclipsing binary systems are YY Gem
(M1,2 == 0.62,0.57 M 0 ) and eM Dra (M1,2 == 0.23,0.21 M 0 ) . Chabrier &
Baraffe (1995) have presented evolutionary models that reproduce the observed
masses, radii and luminosities of both binary systems. A third system, GJ 2609
(a nearby M3.5 V quadruple system), has been recently discovered with indi-
vidual masses of "-'0.4 M0 (Delfosse et al. 1999). Unfortunately, no estimates of
the stellar parameters are yet available.

• Pleiades Main-Sequence and Age: this cluster should provide the best test for
the exact location of the ZAMS. However, the distance modulus (DM==5.32 mag
or 116±3 pc; van Leeuwen & Ruiz 1997) derived using the mean of the Hipparcos
parallaxes is almost 0.3 mag smaller than that derived using the main-sequence
fitting technique (Pinsonneault et al. 1998). This conflict has potential impact
on a number of issues, the calibration in the extragalactic distance scale being
the critical one. However, according to D'Antona & Mazzitelli (1997), much of
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(1)

(2)

the discrepancy can be removed by adopting better effective temperature scales,
needed for the conversion from colors to Teff-values, in the low mass regime.
A discussion of recent prescriptions of the Teff-scales can be found in Luhman
(1999; see also Baraffe in this volume).

2. Estimating Stellar Masses: Single Stars

Because of the central importance of obtaining reliable estimates of the mass of
young stars, several methods have been employed.

• Surface gravities: One of the first methods utilizes the fundamental relation

L 9 T 4
M 1M == * * ef1,0

* 0 L T4 '
090 etI»

where M*, L*, 9* and Teff are the mass, luminosity, surface gravity and effec-
tive temperature of the program star. Spectrophotometric observations allowed
McNamara (1976) to derive the masses of 36 stars of the Orion cluster. This
technique is still used, particularly for high-mass stars. However, the precision
of the method is rather poor.

• Infall velocities: Recently, Bonnell et al. (1998) have suggested an ingenious
method that exploits the observed evidence of ongoing accretion in classical T
Tauri stars. The infall speed of circumstellar matter traces directly the potential
energy at the star surface. The assumption here is that the detected motion
occurs along magnetic flux tubes that connect the star to the inner edge of the
disk, Ri. The mass can then be evaluated from the relation

M = Vi
2
R* (1- R*)-l

* 2G Ri'

where Vi is the measured infall speed, G the gravitational constant, and R* is
the stellar radius, The latter can be calculated from the luminosity and effective
temperature of the star. The ratio ~IR* can be evaluated indirectly from the
magnitude of the infrared excess (typically, ~IR* rv 4). The method yields
lower limits to the stellar mass because of projection effects and uncertainty in
the assumption that the gas motion is indeed free-fall .

• Pulsational instabilities: Another potentially accurate technique is based
on the pulsational properties of intermediate-mass stars. Stars with masses
above rv1 M0 cross the instability strip in the HR diagram (Marconi & Palla
1998). Several Herbig stars are now known to show periodic variability of the ~

Scuti type, with periods less than rv O~3 and light amplitudes of rvO.003-0.3 mag
(Marconi et al. 2000). Because of the sensitivity of pulsational instability models
to the internal structure of the stars, the analysis of the observed characteristics
can yield a strong constraint on their mass. This method will profit considerably
from future space missions (such as MONS, CaRaT etc.) designed to study
stellar oscillations in a large sample of stars, including young objects. This
represents a powerful method for stars that are not part of the restricted group
of spectroscopic binary systems.
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As an illustration, Figure 1 shows the location of HD 35929 in the HR
diagram. The dotted box accounts for the uncertainty on the spectral type (A5
to FO) and distance (d ==360 to 430 pc; van den Ancker et al. 1998). The two
circles indicate the best combination of the stellar parameters (M, L, Teff) that
yield a period equal to the observed one, P == 0.196 ± 0.005 d. The upper
circle corresponds to a model of a 3.8 M0 star with L==114 L0 and Teff ==
7100 K pulsating in the second overtone mode with P==0.198 d. The lower circle
represents the position of a 3.4 M0 star with L==83 L0 and T eff == 7190 K
pulsating in the first overtone mode with the same period. The two solutions
indicate a mass of 3.4 or 3.8 M0 : in both cases, HD 35929 can be considered a
PMS pulsator, as expected.

3.7

HD35929

4.1 4 3.9 3.8

Effective Temperature Log T, (K)

4.0

1.5 \....-__...L.....-__....I....-.__--'----'

4.2

2.5

Figure 1. The position of HD 35929 in the HR diagram with the
uncertainty on spectral type and distance indicated by the box. The
instability strip is shown by the shaded region. The PMS and post-MS
evolutionary tracks for 3.0 and 2.5 M0 are shown as solid lines. (From
Marconi et al. 2000)

3. Estimating Stellar Masses: PMS Binary Stars

The most reliable technique for determining stellar masses uses the observed
rotational speeds. In this case, either spectroscopic binaries or circumstel-
lar/ circumbinary disks can be employed. Although the number of known PMS
eclipsing binary systems (which yield individual masses) and double-lined spec-
troscopic systems (which give mass ratios) is still limited, it is possible to use
the available information to gauge the accuracy of the tracks.

The initial results of the analysis of the available sample of PMS binaries
are listed in Table 1 (from Palla & Stahler 2000b). The observationally deter-
mined mass (Mdyn ) are compared with the theoretical value (Mps) determined
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Table 1. Parameters of Young Binary Systems
System Mdyn Mps (MA/MB)dyn {MAIMB)ps tps

(Mev) (Mev) (Mev) (M0 ) (106 yr)
RS Cha
A 1.858±O.O16 1.88 1.02±O.O2 1.04±O.06 5.0±0.3
B 1.821±O.018 1.80 4 3+0.8

· -0.6

EK Cep
A 2.03±0.01 1.97 1.82±0.02 1 73+0.15 20· -0.05
B 1.12±0.01 1.14 20±4

TyerA
A 3.16±0.02 2.91 1.93±O.O2 1 82+0.11

· --0.04
B 1.-64±0.01 1.60 3 9+3.6

· -2.4

BM Ori
A 6.3±0.3 6.21 2.52±0.15 2 32+0.15 <0.1· -0.15
B 2.5±0.1 2.68 <0.1

V773 Tau
A 1.53 1.32±O.O6 1 29+0.35 4.1±O.9· -0.23
B 1.19 2 8+1.6· -1.0

NTTS
162814

A 1.26 1.09±0.O7 1.11±0.07 51+0.2
· -2.1

B 1.08 5 3+2.5
· -0.1

P 1540
A 1.71 1.32±0.03 1.19±0.18 <0.1
B 1.25 0.2±0.1

GG Tau
Aa 1.28±0.07 0.78 2.3±0.3
Ab (total) 0.54 1 5+0.2

· -0.5
Ba <0.1
Bb «0.1
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Figure 2. Tests of evolutionary tracks using PMS eclipsing binaries.
In each panel the evolutionary tracks are shown by the solid lines,
each labeled by the appropriate mass (in solar units). Dashed lines
are isochrones, given in million years. The dotted line is the birthline
computed with an accretion rate M == 10-5 Mev yr-1 . In the case
of RS Cha, the shaded area represents the instability strip for young
stars. (From Palla & Stahler 2000b)

from our set of tracks (Palla & Stahler 1999). The next two columns list the
mass ratios, both the observational ones ((MA/Mn)dyn) and the derived values
((MA/Mn)ps). The last column gives our derived ages, with their uncertainties,
for each component which appears to be PMS. The location of the four eclipsing
systems RS Cha, EK Cep, TY Cra, and BM Ori is shown in Figure 2. Con-
sidering the mass estimates first, we note that the eclipsing binaries have small
observational uncertainties (less than 1%), BM Ori being the worst case (4%).
Thus, mass ratios in these cases are known with great precision. Not surpris-
ingly, the error in the theoretical mass ratio is higher, varying between 2% and
9%, but it is still rather small. Finally, the deviation from perfect agreement
between the two estimates of the mass ratios amounts to 2% for RS Cha, 5% for
EK Cep, 6% for TY CrA, and 10% for BM Ori which has the poorest dynamical
mass estimate.

For double-lined, non-eclipsing spectroscopic binaries only the mass ratio is
available. Figure 3 shows the position in the HR diagram of V773 Tau, NTTS
16284-2427, P1540, and GG Tau. The uncertainty on the mass ratio is small,
2% to 6%, whereas the theoretical values are less accurate. The two worst cases
are V773 Tau and P1540 with uncertainties of about 20%. As shown in Fig. 3, in
both systems the secondary components are located on parts of the convective
tracks that are closely spaced in mass. Thus, the error bars in (L, Teff) allow for
rather different mass solutions. In the case of P1540, the error can be reduced by
using as a further constraint the total luminosity of the system. Thus, only two
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solutions of the four possible pairs of (L, Teff) are allowed, and the uncertainty
is limited to 18%.

Even though the absolute errors on the theoretical mass ratios are worse
than for the eclipsing binaries, the difference with the empirical ratios is quite
small if we consider the nominal values given in Table 1. The largest deviation
of 10% is found for P1540, whereas the other cases are limited to 3%.

Considering the results on the relative ages of the two components, we find
again an overall agreement (cf. last column of Table 1). Of the eclipsing systems,
only in RS Cha do both primary and secondary lie above the ZAMS and offer
a reliable test for coevality. Here, we find a difference of 16% at the nominal
position, which could amount to 40% considering the most unfavorable errors.
The situation for the double-lined systems is not perfect, and differences of up
to a factor of 1.5 (for P1540) are obtained. Evidently, age estimates are more
sensitive to the uncertainties in the observed parameters.

The deviation in age of the binary components gauged by the isochrones
is at most between 1 and 2 x 106 yr. Such a narrow range characterizes the
wide binary systems studied by Hartigan et al. (1994) and Brandner & Zin-
necker (1996). Considering that the main star formation activity in a cluster
lasts typically for about 3-4 million years (e.g. Palla & Stahler 2000), such co-
evality suggests that most binaries are born in the same dense cores. Other
dynamical processes, such as capture, are much less likely as possible formation
mechanisms.

The tally of double-lined spectroscopic binaries is richer. than that studied
here. For example, PMS binaries with mass ratios very close to unity have
not been included in Table 1, since they do not provide stringent tests to the
goodness of the evolutionary tracks. Such systems include DQ Tau (q =0.97),
W134 (q =1.04), and V826 Tau (q =1.02). The theoretical masses match the
empirical q-values to within 10%.

Similarly, two other young eclipsing binaries have been discovered. One
is GG Ori in the Orion OBI association with a period of 6.6 days. Torres et
al. (2000) have obtained precise masses (better than 1%) for both components,
which turn out to be quite similar (q == 1.002) and lie close to the ZAMB. Our
mass estimate of 2.36 M0 for both components is very close to the empirical
value of 2.34 M 0 . The location in the HR diagram indicates an age of 5 x 106 yr,
consistent with the inferred age of the OBI association (Brown et al. 1994), but
greater ages cannot be excluded.

The second system, RXJ 0529.4+0041, is potentially more interesting since
both components are genuine PMS low-mass stars (Covino et al. 2000, this
volume). Located in the Orion OB1a subgroup, the primary star is a weak-
line T Tauri star discovered by ROSAT. Both stars contain a high abundance of
lithium, indicative of their relative youth. Preliminary analysis indicates that the
orbit is essentially circular with a period of 3.0 days. The measured stellar masses
are 1.30 and 0.95 M 0 , respectively, yielding a mass ratio of q ==0.73. While the
luminosity and effective temperature of the primary are well established, the
secondary still suffers from a poor temperature determination. Using the values
of Covino et al., we find a primary mass of 1.26 M0 in good agreement with the
observed value, while the secondary has a lower value (0.77 M0 ) . The two stars
appear to be coeval with an age of 1 x 107 yr.
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Figure 3. Tests of evolutionary tracks using PMS non-eclipsing spec-
troscopic binaries. The curves have the same meaning as in Fig. 2. The
four systems are ordered from upper left to bottom right by decreasing
mass of the primary component. For the GG Tau quadruple system,
the faintest component lies below our minimum mass track (0.1 Mev),
in the brown dwarf regime. (From Palla & Stahler 2000b)
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An independent test of the accuracy of our set of pre-main-sequence tracks
has been carried out by Simon et al. (2000, this volume), who have used mm-
wave interferometric data of circumstellar disks of a sample of single and binary
T Tauri stars. On the assumption that the disk mass is small compared to
the stellar mass and that the gas is in Keplerian rotation, the technique allows
one to measure the mass dynamically. The accuracy of the inferred masses is
estimated to be less than 10%, over an interval in mass ranging from 2.0 to 0.5
Mev. We have repeated the analysis using the stellar parameters given by Simon
and collaborators and found that our theoretical values agree to within 8% in
all cases with a reliable dynamical mass estimate.

4. Conclusions

The favorable agreement between observed and theoretical masses of young bi-
nary systems that we have found is certainly encouranging, but there are still
important tests that 'should be carried out to verify complete self-consistency.
In particular, we note that with the exception of the two more massive com-
ponents of the GG Tau system, all stars considered so far have masses near
or above solar. However, the critical tests should be carried out on low-mass
stars which are most sensitive to the uncertainties in the input physics. Also,
very few systems are known with large values of the mass ratio. Because of the
difficulty of detecting faint secondaries in the optical, most of the known spec-
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troscopic binaries are single-lined systems and the distribution of mass ratios in
double-lined systems is artifically skewed toward unity. Mazeh et al, (2000, this
volume) have shown that by observing single-lined binaries in the infrared, the
cool, red secondaries can be effectively measured, thus transforming the system
into a double-lined one. In this way, small mass ratios can be obtained.

A similar plea should be made to concentrate the observational efforts in
the attempt to discover low-mass eclipsing binary systems. The recent case of
RXJ 0529.4+0041 is quite encouraging and searches along the same directions
should be pursued. Hopefully, soon we will be able to test the accuracy of PMS
models in a much wider mass interval, thus increasing our level of confidence in
the derivation of fundamental quantities such as the mass distribution and the
star formation history of clusters and associations.
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