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Abstract

Accurate neuropsychological assessment of older individuals from heterogeneous backgrounds is a major challenge.
Education, ethnicity, language, and age are associated with scale level differences in test scores, but item level bias
might contribute to these differences. We evaluated several strategies for dealing with item and scale level demo-
graphic influences on a measure of executive abilities defined by working memory and fluency tasks. We determined
the impact of differential item functioning (DIF). We compared composite scoring strategies on the basis of their rela-
tionships with volumetric magnetic resonance imaging (MRI) measures of brain structure. Participants were 791 His-
panic, white, and African American older adults. DIF had a salient impact on test scores for 9% of the sample. MRI
data were available on a subset of 153 participants. Validity in comparison with structural MRI was higher after scale
level adjustment for education, ethnicity0language, and gender, but item level adjustment did not have a major impact
on validity. Age adjustment at the scale level had a negative impact on relationships with MRI, most likely because
age adjustment removes variance related to age-associated diseases. (JINS, 2008, 14, 746–759.)

Keywords: Composite scores, Item response theory, Dementia, Demographic-adjusted T scores, Ordinal logistic
regression, Test bias

INTRODUCTION

Accurate assessment of cognitive ability in individuals from
heterogeneous backgrounds is one of the most difficult tasks
in neuropsychology. Ethnic diversity is associated with dif-
ferences in education, language, health, and other factors
that may influence test performance. Demographic effects
can occur at two distinct levels. Demographic variables can
directly effect the cognitive ability measured by the test,
and they can be a source of measurement bias. In psycho-

metric theory, observed test scores represent the examinee’s
ability and measurement error. Bias occurs when ability is
systematically under- or over-estimated in one group in com-
parison with another. When this occurs, measurement error
will be systematically different across groups and accuracy
of assessment will be compromised.

Tools to account for demographic heterogeneity have been
developed using item response theory (IRT). IRT was intro-
duced broadly to psychometrics in 1968 (Lord & Novick,
1968). IRT has revolutionized educational psychology (Ham-
bleton et al., 1991), and has made inroads in other areas
(Embretson & Reise, 2000). In IRT, measurement bias is
addressed in studies of differential item functioning (DIF).
DIF occurs in a test item when individuals from two groups
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with the same ability have different probabilities of success
on that item (Camilli & Shepard, 1994). DIF has received
limited attention in neuropsychological assessment, and has
been studied primarily in screening tests of global cogni-
tion (Crane et al., 2004, 2006a, b; Jones & Gallo, 2001,
2002; Küçükdeveci et al., 2005; Marshall et al., 1997; Ter-
esi et al., 1995, 2000).

Figure 1 illustrates several issues involving demographic
effects on test scores and measurement bias. The unob-
served cognitive ability is shown in the oval at the top. The

observed Composite Score is in the rectangle in the lower
half, and observed test item responses 1 through (n1m) are
depicted in boxes in the middle. The Composite Score esti-
mates Ability and is created by summing the item responses
in some way. Demographic variables can have direct effects
on Ability, depicted by the solid arrow, which in turn influ-
ences item responses and consequently the Composite Score.
When Demographic effects on item responses are entirely
due to effects on Ability, an unadjusted Composite Score
based on these items provides an unbiased estimate of Abil-
ity. However, when Demographic variables have influences
on some item response independent of Ability (dotted arrows
to items in11 through in1m), these items have DIF and intro-
duce bias to the estimate of Ability. In Figure 1, an unadjusted
Composite Score derived from items i1 through in would
provide an unbiased estimate of Ability, because any effects
of Demographics are entirely mediated by their impact on
Ability. Adding items in11 through in1m without adjustment
introduces bias, because the effects of Demographics are
mediated in part independent of Ability. The impact of that
bias is complexly determined. A primary goal of this study
was to identify measurement bias in items assessing exec-
utive function, and to empirically evaluate its impact on
practical assessment questions.

IRT approaches that account for DIF remove the demo-
graphic influence on items that is independent of ability, or
equivalently, that is irrelevant to measuring ability. Only
items with DIF (items in11 through in1m in Figure 1) are
affected by this adjustment, and demographic effects medi-
ated by ability are not removed. In Figure 1, in this strategy,
items i1 through in would have no adjustment, while items
in11 through in1m would be adjusted for DIF related to Demo-
graphics, depicted by the rightmost two dashed lines lead-
ing from Demographics to the arrows from items in11 through
in1m to the Composite Score. This strategy will not elimi-
nate measurement error, but will result in measurement error
being unrelated to demographics.

Strategies to account for demographic diversity at the
item level also have emerged from classical psychometric
theory. These strategies include item-level adjustments of
scores or, equivalently, adjusting item norms for demo-
graphic characteristics. Returning to Figure 1, such strat-
egies adjust all items contributing to a composite score,
whether or not those items have DIF. This is depicted by the
dashed arrows emanating from the Demographics box and
ending on all of the lines from Items to the Composite
Score, whether or not those items had DIF. Adjusting in this
manner removes demographic variance in individual items
that is due to DIF, but in contrast to IRT based DIF adjust-
ment, also removes direct demographic effects mediated by
ability. Thus, there may still be a systematic relationship
between measurement error and demographics. This is an
important theoretical and practical distinction between clas-
sical and modern psychometric approaches to accounting
for demographic heterogeneity.

Ability in the psychometric sense is the net result of all
factors that influence capacity to respond successfully to

Fig. 1. Schematic representation of relationships analyzed in this
study.Ability is represented in an oval at the top.Ability is reflected
by item responses on a cognitive test (depicted in boxes as i1 through
in1m). Demographic characteristics may directly impact Ability
(depicted by the solid arrow between Demographics and Ability)
and may be associated with item bias (depicted by the dotted arrows
to the items with differential item functioning, abbreviated in the
Figure as DIF, specifically items in11 through in1m). Formulas are
used to obtain composite scores from the observed item responses,
depicted in the figure by the solid arrows between the item responses
and the composite score. Traditional test theoretic composite score
formulas include summing up observed responses or summing up
average scores. Traditional test theoretic composite score formulas
that account for demographic heterogeneity apply the same adjust-
ment to all the items (depicted in the figure as the four dashed arrows
extending from Demographics to the solid arrows extending from
all of the items to the composite score). Modern psychometric theory
formulas (known as item response theory or IRT) empirically cal-
ibrate item difficulty across the range of cognitive ability levels,
resulting in nonlinear relationships between traditional composite
scores and IRT scores. IRT formulas that account for DIF apply
adjustments for demographics only to those items found with DIF
(depicted in the figure with the rightmost two dashed arrows extend-
ing from Demographics to the solid arrows extending from items
in11 through in1m to the composite score). Finally, we compared
these composites based on their strength of relationship with MRI
measures of white matter hyperintensity and total brain volume.
These evaluations included scale-level accounting for demographic
heterogeneity, indicated in the figure by the solid arrow extending
from Demographics to the composite score and the double headed
arrows between the composite score and MRI, and between MRI
and demographics. Note that measurement error is not depicted in
the Figure.
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test items. Differences in ability result from multiple influ-
ences. In neuropsychology, we are primarily interested in
the effects of brain injuries and diseases on ability. Demo-
graphic influences independent of brain variables might lead
to erroneous conclusions about the presence and severity of
brain injury. For example, a low test score in a highly edu-
cated person might be a strong indicator of a dementing
illness like Alzheimer’s disease, but the same score might
be expected in a person with a normal brain who has very
limited education. This issue has fueled debate about whether
test scores should be adjusted for demographic variables at
the scale level. Fundamentally, this is an issue of establish-
ing an estimate of expected performance in the absence of
brain injury. The obtained test score can then be compared
with this estimate to make an inference about whether dis-
ease or brain injury has resulted in cognitive impairment.

Several studies have shown that using unadjusted norms
results in false-positive errors among functionally and cog-
nitively normal ethnic minorities and people with few years
of education (Fillenbaum et al., 1990; Gasquoine, 1999;
Manly et al., 1998; Ramirez et al., 2001; Stern et al., 1992).
Demographic adjustment of test scores or group specific
norms help to reduce false-positive results in minority and
low education groups, and generally make diagnostic sen-
sitivity and specificity more homogenous across diverse
groups (Mungas et al., 1996). The advisability of scale level
demographic adjustment is not universally accepted (Belle
et al., 1996; Brandt, 2007; Kraemer et al., 1998; Reitan &
Wolfson, 2004, 2005; Sliwinski et al., 1997). The most com-
pelling argument against it is decreased validity for detect-
ing effects of brain disease and injury (Kraemer et al., 1998).
This would be the case if a demographic variable is related
to brain variables and exerts effects on ability primarily as
a result of this relationship.

Returning to Figure 1, magnetic resonance imaging (MRI)
measures of brain structure are used as indicators of brain
integrity. In this model, MRI has direct effects on Ability.
Demographics can have an indirect impact on Ability as a
result of effects mediated by MRI (arrows from Demograph-
ics to MRI to Ability), but can also effect Ability through
pathways unrelated to MRI (direct arrows from Demograph-
ics to Ability). Adjustment to eliminate demographic effects
independent of MRI might improve validity for detecting
brain injury, but removing Demographics effects that are
mediated by MRI could decrease validity in this context.

We examined item and scale level effects of demo-
graphic heterogeneity on a composite measure of executive
function in this study. Executive function refers to cogni-
tive operations that involve control and coordination of other
cognitive activities (Stuss & Levine, 2002) and is generally
thought to reflect frontal lobe and frontal system function.
The composite measure in this study was based on fluency
and working memory tasks. These are not conceptualized
as pure frontal measures and likely are influenced by cor-
tical changes in nonfrontal regions, but there is broad agree-
ment that fluency and working memory are important
executive function subdomains. We followed a similar

approach in previous work (Mungas et al., 2003, 2005a)
using different executive tasks in a different sample and
found differential effects of brain regions and systems on
an executive composite and a psychometrically matched
measure of episodic memory (Mungas et al., 2005a).

This study is part of ongoing development of the Span-
ish and English Neuropsychological Assessment Scales
(SENAS). Previous work has developed and validated mea-
sures of nonexecutive domains (Mungas et al., 2000,
2005b,c). Measures of fluency and working memory have
been added, and validation with respect to independently
obtained clinical diagnosis has previously been reported
(Mungas et al., 2005c).

Our primary goal was to compare item- and scale-level
strategies for handling demographic heterogeneity in a mea-
sure of executive function. Demographic variables of inter-
est included age, ethnicity0language, education, and gender.
We examined the extent to which DIF distorted test-based
estimates of ability. We then examined the extent to which
item level and scale level adjustment for demographic vari-
ables influenced the relationships of various composite scores
with an external criterion, in this case structural MRI mea-
sures of total brain matter and white matter hyperintensity
(WMH). We chose these MRI measures because they are
relevant to executive function (Gunning-Dixon & Raz, 2000;
Kramer et al., 2002; Meguro et al., 2003) and directly mea-
sure brain structure in a manner that is blind to demo-
graphic characteristics of the person being assessed.

METHOD

Participants

Participants were 815 persons recruited by the UC Davis
Alzheimer’s Disease Center under protocols designed to
increase representation of ethnic minorities and maximize
heterogeneity of cognitive functioning. There were 271
whites, 544 ethnic minorities (312 Hispanics, 208 black or
African Americans, 15 Asians, 1 Native American, and 9
other or missing); 240 Hispanics were tested in Spanish,
and all other participants were tested in English. A commu-
nity screening program designed to identify and recruit indi-
viduals with cognitive functioning ranging from normal to
demented identified 704 individuals (185 whites, 519 minor-
ities). The remaining 111 (86 whites, 25 minorities) were
initially seen at a university memory0dementia clinic and
referred for research. We excluded the 25 participants who
were not Hispanic, white, or black or African Americans
from the present analyses.

All community recruits were 60 years of age or older.
Clinical patients under 60 were included if they were being
evaluated for cognitive impairment associated with dis-
eases of aging. Inclusion criteria included ability to speak
English or Spanish. Participants signed informed consent
under protocols approved by institutional review boards at
UC Davis, the Veterans Administration Northern California
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Health Care System, and San Joaquin General Hospital in
Stockton, California.

A subsample of participants was referred for clinical eval-
uation and a research MRI on the basis of SENAS scales
measuring episodic memory, semantic memory, attention
span, visual spatial abilities, and verbal abstraction. A 25%
random sample of those with normal cognition were invited
to participate in clinical evaluation and MRI, and all with
memory or nonmemory cognitive impairment were invited
to participate. Exclusion criteria for selection in this stage
included unstable major medical illness, major primary psy-
chiatric disorder (history of schizophrenia, bipolar disor-
der, or recurrent major depression), and substance abuse or
dependence in the past 5 years. These individuals all received
a clinical diagnosis based on a comprehensive clinical eval-
uation, but SENAS results were excluded from consider-
ation in establishing clinical diagnosis. Sampling percentages
were used as weights to relate the MRI subsample back to
the overall sample and to estimate the prevalence of spe-
cific diagnostic categories in the whole sample. Estimated
prevalence by diagnosis was: cognitively normal, 57.1%;
MCI, 31.0%; and demented, 11.9%. The subsample who
received MRI included 171 individuals (83 whites and 88
minorities). Some of these individuals had missing data for
executive function items and were excluded from compar-
ative analyses (see footnote to Table 2).

Neuropsychological Measures

The SENAS measures of fluency and working memory are
commonly used tasks or are adaptations appropriate for Span-
ish speaking and0or illiterate individuals. Fluency mea-
sures included animals, words beginning with 0f0 and 0l0
sounds, and total items and categories from the Supermar-
ket Test (Mattis, 1988). Scores were recorded separately
for the first and second 30 seconds. Working memory mea-
sures included Digit Span Backwards, Visual Span Back-
wards, and a new List Sorting task. List Sorting has two
parts. In part 1, participants are presented with a list of
fruits or animals and are asked to repeat all of the elements
on the list, but in order from smallest to largest. In part 2,

the lists include both fruits and animals and the task is to
repeat fruits first, sorted from smallest to largest, and then
animals in order from smallest to largest. For both parts 1
and 2, 15 lists of increasing length are presented yielding
total scores that range from 0 to 15.

Terms used in neuropsychological assessment may pro-
duce some confusion, as often a “scale” comprises a single
item (e.g., Trails B), and at other times a “scale” comprises
a total score from several items (e.g., the Mattis Dementia
Rating Scale). We will refer to the most granular data as an
“item” whether or not it is also considered a “scale.” Spe-
cifically, we incorporated 13 items to create candidate scores
measuring executive function. The term “scale” in sub-
sequent discussion refers to candidate scores that summa-
rize performance on the 13 items.

MRI Measures

Brain imaging was obtained at the UC Davis MRI research
center on a 1.5T GE Signa Horizon LX Echospeed system
or the Veterans Administration at Martinez on a 1.5 T Mar-
coni system. Comparable imaging parameters were used at
each site. Detailed methods for obtaining brain and WMH
volumes are presented in Appendix 1.

Data Analysis

Generation of candidate scores

We used four techniques to generate scores from fluency
and working memory tasks. These techniques are summa-
rized in Table 1, where they are categorized by their under-
lying psychometric theory (classical vs. item response theory)
and whether they account for demographic heterogeneity at
the item level.

A commonly used technique is to determine means and
standard deviations for each item in a battery, which are
then used to determine Z scores for each individual on each
item, which are then averaged across all items. Unadjusted
T scores are re-scaled Z scores; instead of N(0,1), T scores
are N(50,10).

Table 1. Summary of composite scoring techniques for executive function
assessment tools

Psychometric theory

Classical test theory Item response theory
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Item-Level
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Demographic adjusted
T score

Item response theory
score accounting
for differential item
functioning
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We used linear regression to determine mean scores appro-
priate for each education, gender, and ethnicity0language
category for each item. Linear regression models for each
item included any interactions significant at an alpha level
of 0.05. We obtained a pooled standard deviation from the
residuals (the difference between the observed and the
regression-estimated mean score for each education, gen-
der, and ethnicity0language category). These means and SDs
were then used to obtain demographic-adjusted Z scores for
each of the 13 items. We averaged these scores and re-scaled
them to generate demographic-adjusted composite T scores.
For a secondary analysis, we repeated these steps including
age as a fourth demographic category.

We used the item response theory (IRT) package Parscale
(Muraki & Bock, 2003) to obtain unadjusted IRT scores. We
verified that items were sufficiently unidimensional for IRT
purposes using a confirmatory factor analysis approach
(McDonald, 1999). Details of the dimensionality and IRT
assessments are shown in Appendix 2.

We used a software package we developed called difwith-
par (Crane et al., 2006a) to obtain IRT scores accounting
for DIF. Detailed methods are shown in Appendix 3. These
methods determine IRT parameters for each item found to
have DIF separately in appropriate demographic sub-
groups, thus permitting relationships between items and the
latent ability to be somewhat different across different demo-
graphic groups. We determined the impacts of DIF for each
demographic variable (gender, age, education, and ethnicity0
language group) for individual participants by subtracting
their unadjusted IRT score from their IRT score accounting
for DIF related to that covariate. If DIF made no impact this
difference would be 0; if DIF had a large impact it would be
large. We also determined IRT scores accounting for DIF
related to all demographic variables. We used the median
standard error of measurement from the entire sample as a
benchmark to determine whether DIF had a meaningful or
salient impact on individual test scores. IRT estimates abil-
ity and the standard error of measurement. We considered
differences larger than the median standard error of mea-
surement to indicate meaningful or salient scale-level dif-
ferential functioning (Crane et al., 2007).

Comparison of candidate scores

For the subsample of 153 participants with complete exec-
utive function data and MRI data, we estimated MRI and
demographic effects on each candidate score by entering
the scores as dependent variables in linear regression mod-
els. We evaluated simple effects of MRI variables on the
scores with and without demographic covariates in the model
(i.e., with and without scale-level adjustment).

We initially examined demographic effects for ethnicity0
language, education, and gender, but not age. We ran three
models for each composite score. Model A included demo-
graphic terms as independent variables. Model B included
the MRI variables representing normalized total brain mat-
ter and WMH volumes. Model C included all demographic
and MRI variables.

We used R 2 values from these models to estimate effect
sizes. Simple MRI effects were the R 2 values from the model
with only the MRI variables (Model B). We determined
incremental MRI effects by subtracting the R 2 from Model
A (demographics alone) from the R 2 from Model C (demo-
graphics and MRI). We compared these differences using
Hotelling’s method (Hotelling, 1944). Finally, we repeated
the regression analyses including age along with the other
demographic variables in Models A and C.

RESULTS

Demographic characteristics of the 791 participants are
shown in Table 2. Older participants were more likely to
have an MRI. Participants who received an MRI on aver-
age were better educated and more likely to be white. While
individuals with MRI scans were not representative of the
overall population, it is not likely that selection bias drove
our results, as executive function scores were not used to
determine who was selected for MRI assessment.

DIF findings are summarized in Table 3. One item had
DIF related to gender, four had DIF related to age, six had
DIF related to education, and seven had DIF related to
ethnicity0language group. Only the first 30 seconds of flu-
ency with 0l0 was free of DIF for all four covariates.

DIF impact on individual scores is shown in Figure 2.
Accounting for DIF related to gender did not change any
participant’s score by more than the median standard error
of measurement, accounting for DIF related to age changed
one participant’s score, accounting for DIF related to
ethnicity0language changed 8 participants’ scores (1%), and
accounting for DIF related to education changed 70 partici-
pants’ scores (9%). Accounting for all four sources of DIF
simultaneously changed 68 participants’ scores (9%).

Results of MRI regression analyses are shown in Table 4.
The left three columns of results are the amount of vari-
ance explained (R 2 ) from models with demographics only
(column A), MRI only (column B), and the full model
with both demographics and MRI variables (column C).
The shaded column labeled “Both MRI variables (C-A)”
shows the difference in R 2 between the full model and the
demographics only model. The remaining two columns
provide the unique contributions of WMH alone and total
brain volume alone.

Focusing on column A, the demographics only models, it
is not surprising that scores that account for demographic
heterogeneity have less variability explained by demograph-
ics. This is true both for T scores, where unadjusted T scores
have 25% of their variance explained by demographic char-
acteristics, and adjusted T scores have only 6% of their
variance explained by demographic characteristics, and for
IRT scores, where unadjusted IRT scores have 28% of their
variance explained by demographic characteristics, and IRT
scores accounting for DIF have 20% of their variance
explained by demographics.

The model in Figure 1 is helpful in understanding these
results. Column A in Table 4 represents the strength of asso-
ciation between the Demographics box and the Composite
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Score box in Figure 1. When demographic variability is
removed from all of the items with adjusted T scores (dashed
lines between Demographics and all of the arrows from the
items to the Composite Score), the amount of variability in
the Composite Score remaining to be explained by demo-
graphics is negligible (6% in this case). However, when
only demographic heterogeneity not mediated by Ability is
removed from those items in which there is a direct rela-
tionship between Demographics and item responses (i.e., in
those items with DIF), demographics may still explain a
salient amount of the variability in scores, as shown here,
where the IRT score that accounts for DIF related to demo-
graphics still has 20% of its variability explained by demo-
graphics. In essence, because the demographic-adjusted T
score approach adjusts every item, whether or not the item
has DIF, it may over-correct for demographic effects, min-
imizing the relationship between demographics and the com-
posite score mediated by the effects of demographics on
ability.

Column B in Table 4 represents the amount of variance
in candidate scores explained by MRI variables alone, with-
out demographic factors in the model. Here the difference
between the two IRT scores is negligible (4% for unadjusted
IRT scores and 6% for IRT scores accounting for DIF).
However, the difference between the two T scores is remark-
able (6% for unadjusted T scores vs. 22% for adjusted T

scores). Returning to Figure 1, for the adjusted T scores,
because essentially all variability related to Demographics
has been removed from the Composite Score, the strength
of relationship with MRI is artificially accentuated.

The artifice of this accentuation is discernible when con-
sidering the values of the shaded column in Table 4. Here
we see that accounting for demographics in regression mod-
els for unadjusted T scores, unadjusted IRT scores, and
IRT scores accounting for DIF improves the strength of
relationship with MRI (by 12–13% in each case), while
for the adjusted T score, the value in column B differs
from the value in the shaded column by only 1%. Thus,
MRI effects are much stronger after scale level adjustment
for demographic effects—unless an adjusted T score
approach is used. Differences in incremental MRI effects
(C-A) across scoring methods were not statistically
significant.

Age was not used in the regression models presented
in Table 4, and was not used in the demographic-adjusted
T score (i.e., the demographic-adjusted T score included
adjustments for ethnicity0language, gender, and educa-
tion, but not age). We performed additional analyses with
demographic-adjusted T scores that accounted for age dif-
ferences as well as ethnicity0language group, gender, and
education. Again, demographic effects (column A in Table 4)
were negligible, with 7% of the variance. Including age in

Table 2. Demographic characteristics of participants with and without MRIa

MRI,c

complete data
(n5 153)

MRI,c

missing data
(n5 18)

No MRI
(n5 619)

Total
(n5 790)

n % n % N % n %

Age ( p , .001)
45– 64 19 12% 5 28% 164 27% 188 24%
65– 69 23 15% 2 11% 128 20% 153 19%
70–74 36 24% 7 39% 144 23% 187 24%
75–79 37 24% 4 22% 114 18% 155 20%
801 38 25% 0 0% 69 11% 107 14%

Gender ( p5 .74)
Male 66 43% 7 39% 246 40% 319 40%
Female 87 57% 11 61% 373 60% 471 60%

Years of educationb ( p5 .058)
0–8 40 26% 5 33% 204 34 249 33%
9–13 47 31% 1 7% 178 30 226 30%
141 66 43% 9 60% 215 36 290 38%

Ethnicity0language ( p , .001)
White 79 52% 4 22% 187 29% 270 34%
Black or African-American 31 20% 3 17% 174 27% 208 26%
Hispanic (English) 12 8% 5 28% 55 9% 72 9%
Hispanic (Spanish) 31 20% 6 33% 203 32% 240 30%

ap values are based on Fisher’s exact test.
bEducation status missing for 3 participants with an MRI and 22 participants without an MRI.
cMRIs were obtained on 171 participants. Only 153 of these had complete demographic and complete executive function data,
meaning no missing data for any of the 8 elements enumerated in Table 4. These 153 participants were analyzed in regression
analyses.
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the T scores diminished the strength of association with
MRI, with R 2 of 16% as opposed to 22% when the
demographic-adjusted T score did not account for age. Dif-
ferences in incremental effects of MRI were also dimin-
ished for the demographic-adjusted T score that included
age, with the difference in R 2 of 15% as opposed to 23%
when the demographic-adjusted T score did not include
age.

We repeated the regression analyses used in the genera-
tion of Table 4, this time including age as an independent
variable in each analysis. In each case the incremental
amount of variance explained by the MRI variables was
diminished compared with regression models that excluded
age. This result is shown graphically in Figure 3. In each
case, including age (either adjusting norms for age, as in T
scores, or regression models for age, as in Figure 3) reduced
the strength of association with MRI scores.

DISCUSSION

Test bias is present when individuals from different groups
who have the same ability have different expected test or
item scores (Camilli & Shepard, 1994). Ability in psycho-

metric theory is a latent construct. It is measured by items,
and item responses are combined in some way to arrive at a
score that estimates ability. If bias exists at the item level,
this could lead to a biased estimate of ability. Conversely,
group differences in means and distributions of test scores
do not necessarily indicate that bias is present. DIF adjust-
ment as used in this study essentially removes the effects of
measurement bias. This item level adjustment allows for
evaluating valid effects of demographic variables on ability
apart from measurement bias.

Different pathways may produce the same latent ability.
We modeled the independent effects of demographic and
MRI variables on candidate scores, comparing item- and
scale-level approaches. IRT scores accounting for DIF are
unbiased estimates of individual ability and can be used in
regression analyses to determine which variables to include
in scale level adjustments. The adjusted T score approach,
in contrast, produces a biased estimate of individual ability,
and different candidate scores are required to determine
whether adjustments should be made. Here, the best adjusted
T score necessitated results from the MRI analyses to show
that age should not be used. The IRT0DIF approach sepa-
rates internal and external considerations into two steps,
facilitating better understanding of relationships between

Table 3. Differential item functioning for executive function items related to age, education, gender, and
ethnicity0language group

Age Education Gender
Ethnicity0
Language

Item U NU U NU U NU U NU

Animals 1 2% 0.19 6% 0.67 0% 0.31 7% 0.55
Animals 2 2% 0.19 15% 0.2 0% 0.66 15% 0.03
F 1 2% 0.96 2% 0.21 0% 0.43 1% 0.05
F 2 1% 0.44 3% 0.32 0% 0.01 2% 0.65
L 1 0% 0.25 1% 0.64 0% 0.84 0% 0.4
L 2 0% 0.86 3% 0.33 0% 0.34 1% 0.03
Supermarket Items 1 1% 0.14 11% 0.24 0% 0.41 6% 0.03
Supermarket Items 2 2% <0.01 2% 0.22 0% 0.13 0% 0.79
Supermarket Categories 2% <0.01 2% 0.39 1% 0.86 5% 0.19
Digit Span Backward 3% 0.09 16% <0.01 0% 0.08 10% 0.91
Visual Span Backward 1% <0.01 18% 0.64 1% 0.35 12% 0.04
List Sorting 1 0% <0.01 10% 0.11 0% 0.12 5% 0.84
List Sorting 2 1% 0.43 9% 0.13 0% 0.24 4% 0.49

Note. Numbers in the “U” columns represent uniform DIF findings. Uniform DIF occurs in an item if members of one group are at a
consistent advantage or disadvantage for that item relative to another group for every executive function level. For example, people
with lower levels of educational attainment had lower expected scores on the animals item compared to people with higher educa-
tional attainment at all levels of executive function. The numbers shown here represent the proportional change in the b1 coefficient
from including or excluding the group term or terms from models 2 and 3. Changes with an absolute value of at least 7% are shown
in bold font. Larger values indicate larger differences in expected score across groups for a given executive function level. Numbers
in the “NU” columns represent non-uniform DIF findings. Non-uniform DIF occurs in an item if there is an interaction between
executive function level, group membership, and expected scores. For example, this occurred for the supermarket categories item
related to age. There are two possible relationships when there is non-uniform DIF. First, the probabilities may cross, so that older
people have (for example) a higher expected score at high executive function levels, but lower expected scores at lower executive
function levels. Second, the probabilities may not cross, but be more extreme at one end of the executive function spectrum than the
other, so that older people have (for example) a lower expected score at high executive function levels, but much lower expected
scores at low executive function levels. The numbers shown here are p values associated with the likelihood difference between
models 1 and 2 (including or excluding the interaction term or terms). All p values less than .05 are shown in bold font. Here, smaller
values indicate more statistically significant interaction between the group term and overall executive function. See Appendix 3 for
details.
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variables of interest and immediate access to unbiased
scores.

In this study, 9% of subjects had salient or meaningful
impact from DIF. Controlling for ethnicity0language, edu-
cation, and gender substantially strengthened relationships
with MRI variables; adjusting for age weakened these rela-
tionships. These findings suggest that it is important to under-
stand scale level demographic effects, and to control for
some but not all of these effects to optimally measure brain-
related cognitive effects, especially in demographically het-
erogeneous samples.

The results shown here are to our knowledge the first
report of DIF in executive function items. Figure 2 is very
helpful in documenting the impact of DIF on individual
scores. Much of the impact of DIF is related to education
and to race0ethnicity. Some participants had scores that
were affected by DIF by as much as 103 of a standard
deviation. DIF impact of this magnitude is most likely to be
problematic when using cutoff scores to determine whether
an individual is impaired. DIF could impact the validity of
clinical diagnosis in this context.

This study is unique in that it examined the impact of
DIF on test validity, using a culture-blind validation crite-
rion, structural MRI. Previous studies of cognition and MRI
have shown modest associations of volume of WMH and
executive function (Gunning-Dixon & Raz, 2000; Kramer
et al., 2002; Meguro et al., 2003). Those studies included
much more homogeneous samples of participants, and the
amount of variability explained by MRI variables was greater
than that explained by MRI alone in our study (column B in
Table 4). After accounting for scale-level gender, ethnicity,
and education effects—but not for age—we found a similar

Fig. 2. Impact on estimated executive function scores of differ-
ential item functioning related to gender, age, education, and
race separately, and related to all four covariates simulta-
neously. The x-axis maps the distribution of the difference scores
obtained between individuals’ executive function scores account-
ing for DIF and executive function scores that ignore DIF (i.e., If
DIF made no impact on scores, then the difference in scores
would be 0). All scores were transformed such that 1 standard
deviation is 15 points. For each adjustment strategy, the distribu-
tion is illustrated with a box-and-whiskers plot (the box defines
the 25th, 50th, and 75th percentiles, while the whiskers define 1
1
2
_ times the interquartile range; individual observations more
extreme than this are indicated with dots). The vertical lines
indicate the median value of the standard error of measurement
for the population and twice the median value of the standard
error of measurement for the population; the range of the stan-
dard error of measurement was 3.9 to 7.3 points. Differences
when accounting for DIF greater than the median standard error
of measurement are referred to as “salient scale-level differential
functioning.”

Table 4. Variance of composite executive function scores explained by MRI variables and ethnicity0language group, education, and
gender (but not age)

R 2 values
Incremental R 2 values

for MRI variables

Score

Demographics
only
(A)

MRI only
(B)

Full model
(both demographics

and MRI)
(C)

Both MRI
variables

(C-A)

WMH
(C-A-total

brain volume)

Total brain
volume

(C-A-WMH)

Unadjusted T score 0.25 0.06 0.44 0.19 0.06 0.11
Demographic-adjusted T score 0.06 0.22 0.29 0.23 0.08 0.12
Unadjusted IRT score 0.28 0.04 0.45 0.17 0.06 0.10
IRT score accounting for DIF 0.20 0.06 0.38 0.18 0.06 0.10

Note. Values in the columns labeled “R 2 values” are the R 2 from Model A(“Demographics”) including three demographic variables (ethnicity0language
group, education, gender), Model B (“MRI only”) including both MRI variables (total brain volume and WMH [white matter hyperintensity volume]), and
Model C (“Full model”) including the three demographic and two MRI variables. Values in the columns labeled “Incremental R 2 values for MRI
variables” represent the difference in R 2 between the full model (column C) and models that include all the variables with the exception of the elements
named in the heading of the column. Thus, for the column labeled “Both MRI variables,” the values shown are the difference in R 2 between the full model
(C) and the demographics alone model (A). Values in the next two columns (WMH and Total brain volume) are the difference in R 2 between the full model
and a model with demographics plus the other MRI value. We performed Hotelling’s tests on the values in the shaded column. None of these values was
statistically different from any other value (all p values . .10).
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amount of variability explained by MRI variables as had
been found in these prior studies. When accounting for age
as well, the relationship with MRI variables was actually
smaller.

Scale level adjustment for demographic variables like eth-
nicity and education was beneficial because it removed a vari-
ance component from the total ability estimate unrelated to
brain structure, thereby making the brain structure effect more
salient. Age adjustment had a negative impact on test valid-
ity. The effect was consistent across all composite score strat-
egies. The adverse effect of age adjustment likely is because
age is strongly related to disease processes that result in cog-
nitive impairment. Removing age-related variance effec-
tively decreases disease-related variance and decreases
relationships of test scores with structural changes in the brain
associated with disease.Age was strongly related to MRI vari-
ables in this sample (R 250.40). While simple bivariate cor-
relations of age with executive function measures were
significant (r’s in the 0.20s), age was unrelated to executive
function independent of MRI variables (incremental R 2s
ranged from, 0.01 to 0.02). In contrast, the relationship of
the other demographic variables to test scores were equally
strong after controlling for MRI variables (not shown).

An intermediate finding was that cognitive tasks involv-
ing category fluency, phonemic fluency, and working mem-
ory were sufficiently unidimensional to be combined into a
composite executive function measure (see Appendix 2).
This finding is consistent with findings that executive func-
tion tasks are highly correlated (Salthouse, 2005). The flu-
ency and working memory tasks used in this study may be
influenced by multiple brain regions. From a substantive

perspective, including different tasks expands the brain
regions being monitored, and adding items increases relia-
bility. These characteristics are likely to increase sensitivity
to broad disease-based effects on frontal systems, but at the
expense of specificity to more specific frontal lobe struc-
tures of systems. Ultimately, the utility of any test is an
empirical question, and depends on the intended purpose
for the test. Consequently, if the goal of neuropsychological
assessment is to identify relatively small focal lesions, a
broader measure may be problematic. If the goal is to mon-
itor broader disease effects on frontal subcortical systems
then a broader measure has much to offer.

This study has several limitations. It examined a limited
set of specific cognitive measures in a specific and unusu-
ally diverse sample, and different results might be found
with different cognitive domains and different populations.
Additionally, different results might be found with different
techniques for identifying items with DIF (Millsap, 2006).
Furthermore, while the MRI measures are presumably
culture-free, the relative validity findings are limited to the
extent that MRI measures of WMH and total brain volume
capture important features related to executive function.

Accounting for DIF had demonstrable benefits in this
study in terms of improving accuracy of estimation of indi-
vidual ability. DIF adjustment can be accomplished with no
additional testing time or burden. Addressing DIF in neuro-
psychological test development, however, requires a sub-
stantial investment, particularly in obtaining a sufficiently
large development sample to permit DIF analyses. There is
also an investment needed in analytic and computational
infrastructure to use IRT algorithms that account for DIF,

Fig. 3. Incremental variance explained by structural MRI variables in Executive Function composite scores not adjust-
ing for age (gray bars) and adjusting for age (black bars). Values represent the R 2 for a full model with both MRI
variables and demographics minus the R 2 for a model with only demographics [see the shaded column in Table 4
labeled “Both MRI variables (C-A)”]. Age was included as a demographic variable in the age adjusted model and was
not included in the model without age adjustment. Adjusted T scores were adjusted for gender, ethnicity0language, and
education, but not age.
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although this barrier is continually diminishing. As neuro-
psychological tests are used with increasingly diverse patient
populations, this level of investment may become a mini-
mum requirement for demonstrating psychometric proper-
ties appropriate to the population of interest. This study
shows the neuropsychological relevance of demographic
influences on test performance, and highlights the need for
further studies with heterogeneous populations and broader
measures of cognition.
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APPENDIX 1. DETAILED METHODS OF NEUROIMAGE DATA ANALYSIS

Analysis of brain and WMH volumes was based on a Fluid
Attenuated Inversion Recovery (FLAIR) sequence designed
to enhance WMH segmentation (Jack et al., 2001). WMH
segmentation was performed in a two-step process (DeCarli

et al., 1992, 1999). In brief, nonbrain elements were man-
ually removed from the image by operator guided tracing
of the dura matter within the cranial vault including the
middle cranial fossa, but excluding the posterior fossa and
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cerebellum. The resulting measure of the cranial vault was
defined as the total cranial volume (TCV) to correct for
differences in head size.

The first step in image segmentation required the identi-
fication of brain matter. Image intensity nonuniformities
(DeCarli et al., 1996) were then removed from the image
and the resulting corrected image was modeled as a mixture
of two Gaussian probability functions with the segmenta-
tion threshold determined at the minimum probability
between these two distributions (DeCarli et al., 1992). Once
brain matter segmentation was achieved, a single Gaussian
distribution was fitted to the image data and a segmentation
threshold for WMH was a priori determined at 3.5 SDs in
pixel intensity above the mean of the fitted distribution of
brain parenchyma. Morphometric erosion of two exterior
image pixels was also applied to the brain matter image
before modeling to remove the effects of partial volume
CSF pixels on WMH determination. Reliability estimates
for these methods are high (DeCarli et al., 2005).

Two MRI measures were used independently in sub-
sequent analyses. These were normalized brain volume (brain
matter0TCV) and normalized white matter hyperintensity
(white matter hyperintensity0TCV).

APPENDIX 2. DIMENSIONALITY AND
IRT ANALYSES

We used confirmatory factor analyses implemented by MPlus
version 3.0 (Muthen & Muthen, 1998–2004). We used
McDonald’s bi-factor method (McDonald, 1999). Each item
is specified to have loadings on a single general factor as
well as on a more specific subdomain factor defined a-priori
based on theoretical considerations. This approach has
recently been discussed by Gibbons et al. (2007). We
assigned each fluency and working memory item to one of
three subdomains (category fluency, phonemic fluency, or
working memory). A graphical summary of this model is
shown in Appendix Figure 1. The general executive func-

tion factor is defined by all of the items, while the category
fluency, phonemic fluency, and working memory sub-
domain factors are defined by a few of the items, as shown
in Figure 1. McDonald suggests that if standardized load-
ings on the general factor all exceed 0.30, then the scale is
sufficiently unidimensional for applications requiring uni-
dimensionality. If loadings on subdomains also exceed 0.30,
then one could use subdomains for some applications and
summary scores of the general factor for other applications,
as appropriate (McDonald, 1999). Because all of the items
had many response categories, we treated them all as con-
tinuous indicators. We assessed model fit using the compar-
ative fit index (CFI), the Tucker-Lewis index (TLI), and
the root mean squared error of approximation (RMSEA).
These three summary fit indices have been recommended
for evaluating model fit due to their ability to robustly detect
model misfit in data sets with a variety of violations of
basic assumptions (Hu & Bentler, 1998, 1999; MacCallum
& Austin, 2000). CFI and TLI values . 0.95 indicate good
model fit; RMSEA , 0.08 indicates adequate fit, and
RMSEA, 0.06 indicates good fit (Hu & Bentler, 1999).

The bi-factor model fit the data well, with CFI 0.98, TLI
0.96, and RMSEA 0.052. Loadings for the bi-factor model
are summarized in Appendix Table 1. Loadings for each
item on the general executive function factor ranged from
0.42 to 0.77, well in excess of the 0.30 threshold for salience
(McDonald, 1999). We thus considered executive function
as assessed by these items to be a sufficiently unidimen-
sional construct to proceed with IRT.

We used Parscale 4.1 (Muraki & Bock, 2003) for IRT mod-
eling. We used Samejima’s graded response model (Same-
jima, 1969, 1997), which is an extension of a 2-parameter
logistic (2PL) model for dichotomous items to items with
many response categories (“polytomous” items). We used a
normal prior for expectation a posteriori scoring; results were
similar when we used maximal likelihood scoring.

Parscale uses an iterative approach to determining item
and person parameters. The 2-parameter logistic (2PL) model

Fig. A1. Schematic representation of the executive function bi-factor confirmatory factor analysis. Abbreviations:
Exec Fxn5 executive function; Anim 15 animal fluency, 1st 30 seconds; Anim 25 animal fluency, 2nd 30 seconds;
Spmkt 15 supermarket items, 1st 30 seconds; Spmkt 25 supermarket items, 2nd 30 seconds; Spmkt cat5 number of
categories of supermarket items over 60 seconds; F15 words beginning with f produced in the 1st 30 seconds; F25
words beginning with f produced in the 2nd 30 seconds; L15 words beginning with l produced in the 1st 30 seconds;
L2 5 words beginning with l produced in the 2nd 30 seconds; DSPB 5 digit span backwards; VSPB 5 visual span
backwards; LSTSRT 15 list sorting 1; LSTSRT 25 list sorting 2.
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has 2 parameters for each item—a difficulty and a discrim-
ination parameter. The equation for the 2PL is as follows:
P(Y5 16u, a, b)5 exp(Da~u 2 b))0[11 exp(Da~u 2 b))].

Here P(Y5 1) means the probability of success on item
Y, u is the subject’s ability level, b is item difficulty, a is
item discrimination, and D is a constant that makes the
logistic curve approximate the normal ogive. The probabil-
ity of success is 50% where u5 b. The logistic curve varies
around that point proportional to the discrimination param-
eter a. Samejima’s graded response model is an extension
of the 2PL model to multiple categories using the propor-
tional odds assumption. A single slope parameter is esti-
mated for each item, but multiple difficulty parameters are
estimated as the thresholds between adjacent response cat-
egories. Details of equations and estimation procedures can
be found in Baker and Kim (Baker & Kim, 2004). We
rescaled raw Parscale output so that the mean score was
100 and the standard deviation was 15 using a linear
transformation.

APPENDIX 3: METHODS FOR
IDENTIFYING ITEMS WITH
DIFFERENTIAL ITEM FUNCTIONING
(DIF)

The specific issue of item-level bias is addressed in studies
on differential item functioning (DIF). The definition of
DIF is a conditional one: when controlling for the underly-
ing ability measured by the test, DIF occurs when the prob-
abilities of success on an item differ related to group
membership. Thus, for a given level of ability, for a specific
item, members of Group A have a higher probability of
success than members of Group B. Two types of DIF are
identified in the literature: uniform and nonuniform DIF. In
an item with uniform DIF, the advantage Group A members
over Group B members is constant across the spectrum of
abilities measured by the test. In nonuniform DIF, however,

the advantage varies across the spectrum of abilities mea-
sured by the test, and even the direction may change. Thus,
in an item with nonuniform DIF, members of Group A with
high ability levels may have a higher probability of success
on the item than members of Group B with high ability
levels, while members of Group A with low ability may
have a lower probability of success on the item than mem-
bers of Group B with low ability.

We have developed an approach to DIF assessment that
combines ordinal logistic regression and IRT. Details of
this approach are outlined in earlier publications (Crane
et al., 2004, 2006c).

We use IRT executive function scores to evaluate items
for DIF. We examine three ordinal logistic regression mod-
els for each item for each demographic category (labeled
here as “group”) selected for analysis:

f ~ item response) 5 cut1b1 * u 1 b2 * group1b3

* u * group (model 1)

f ~ item response) 5 cut1b1 * u 1 b2 * group (model 2)

f ~ item response) 5 cut1b1 * u (model 3)

In these models, cut is the cutpoint for each level in the
proportional odds ordinal logistic regression model (McCul-
lagh & Nelder, 1989), and u is the IRT estimate of execu-
tive function.

To detect nonuniform DIF, we compare the log likeli-
hoods of models 1 and 2 using a x2 test, a5 .05. To detect
uniform DIF, we determine the relative difference between
the parameters associated with u ~b1 from models 2 and 3)
using the formula |~b1(model 2) 2 b1(model 3) )0b1(model 3) |. If
the relative difference is large, group membership inter-
feres with the expected relationship between ability and
item responses. There is little guidance from the literature
regarding how large the relative difference should be. A

Table A1. Bi-factor model results of executive function items

Item

Standardized loading
on general executive

function factor
Standardized loading
on subdomain factor Name of subdomain factor

Animals 1 0.63 0.27

Category Fluency
Animals 2 0.50 0.19
Supermarket 1 0.58 0.46
Supermarket 2 0.58 0.35
Supermarket categories 0.42 0.44

F 1 0.72 0.42

Phonemic Fluency
F 2 0.57 0.49
L 1 0.77 0.39
L 2 0.60 0.32

Digit span backwards 0.67 0.45

Working Memory
Visual span backwards 0.60 0.39
List sorting 1 0.69 0.48
List sorting 2 0.55 0.42
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simulation by Maldonado and Greenland on confounder
selection strategies used a 10% change criterion in a very
different context (Maldonado & Greenland, 1993). We have
previously used 10% (Crane et al., 2004) and 5% (Crane
et al., 2006c) change criteria. In this data set, when we used
a 5% change criterion, almost every item had either uni-
form or nonuniform DIF related to ethnicity0language, result-
ing in unstable parameter estimates. We thus used a 7%
criterion. For the other three covariates, the difference in
impact on individual scores when accounting for DIF using
a 5% versus a 7% change criterion was negligible. It may
be appropriate to determine the change criterion used empir-
ically from the data, selecting a level that still leaves a few
items free of DIF to serve as anchor items (Crane et al.,
2007). Anchor items are items that have the same param-
eters in all demographic groups; they serve to anchor com-
parisons between groups. Anchor items for each comparison
are those in Table 5 not flagged with DIF.

We have developed an approach to generate scores that
account for DIF (Crane et al., 2006c). When DIF is found,
we create new data sets as summarized in Appendix Fig-
ure 2. Items without DIF have item parameters estimated
from the whole sample, while items with DIF have
demographic-specific item parameters estimated.

Spurious false-positive and false-negative results may
occur if the ability score ~u! used for DIF detection includes
many items with DIF (Holland & Wainer, 1993). We there-
fore use an iterative approach for each covariate. We gen-
erate IRT scores that account for DIF, and use these as the
ability score to detect DIF. If different items are identified
with DIF, we repeat the process outlined in Appendix Fig-
ure 2, modifying the assignments of items based on the
most recent round of DIF detection. If the same items are
identified with DIF on successive rounds, we are satisfied
that we identified items with DIF (as opposed to spurious
findings). In the present analyses only 1–3 iterations were
required for each demographic variable.

We have modified this approach for demographic catego-
ries with more than two groups (such as age, education, and
ethnicity0language). Indicator terms (dummy variables) for
each group are generated, and interaction terms are gener-
ated by multiplying u by the indicator terms. All indicator

terms and interaction terms are included in model 1; all
indicator terms are included in model 2; and only the ability
term u is included in model 3. For the determination of
nonuniform DIF, we compared the likelihoods of models 1
and 2 to a x2 distribution with degrees of freedom equal to
the number of groups minus 1. The determination of uni-
form DIF is unchanged, except all of the indicator terms are
included in model 2.

We performed DIF analyses in two ways. First, we ana-
lyzed DIF related to each covariate in turn. Second, we
analyzed DIF related to all four covariates simultaneously.
We began with unadjusted scores and analyzed items for
DIF related to gender. We proceeded to analyze items for
DIF related to age using the IRT score that accounted
for DIF related to gender. If an item had DIF related to
gender, it was analyzed separately in males and females
for DIF related to age. We then analyzed items for DIF
related to education and ethnicity0language using analo-
gous steps.

In addition to item-level DIF findings, we also show the
scale-level impact of accounting for DIF. We determined
the median standard error of measurement. Differences in
individual scores larger than the median standard error of
measurement are termed “salient scale-level differential func-
tioning.” In other work we have indexed these findings to
the minimally important difference established for a scale
to detect “relevant scale-level differential functioning”
(Crane et al., 2007); no minimally important difference has
been established for the executive function scale.

We performed no adjustment for multiple comparisons
in our DIF analyses. There is little cost to declaring an item
has DIF using our technique—the item is still used to help
determine scores, using demographic-specific item param-
eters as appropriate. A more thorough discussion of adjust-
ing DIF analyses for multiple comparisons can be found in
(Crane et al., 2006a). Several hundred individuals were avail-
able for DIF analyses. Sufficient overall and subgroup sam-
ple sizes for DIF detection are not known. For further
discussion of this issue also refer to (Crane et al., 2006a).

Stata .do files for all of the DIF analyses are available for
free download. To access the programs type “scc install
difwithpar” at the Stata prompt.

Fig. A2. Handling of items by their differential item functioning (DIF) status. In this schematic there are a total of
(n1 m! items included in the test; n of these items are found with DIF, while m items do not have DIF.
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