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Abstract

We consider the lattice of pseudovarieties contained in a given pseudovariety P. It is shown
that if the lattice L of subpseudovarieties of P has finite height, then L is isomorphic to the
lattice of subvarieties of a locally finite variety. Thus not every finite lattice is isomorphic to
a lattice of subpseudovarieties. Moreover, the lattice of subpseudovarieties of P satisfies every
positive universal sentence holding in all the lattices of subvarieties of varieties V(A) generated
by algebras A€. P.

1980 Mathematics subject classification (Amer. Math. Soc.): 08 B 15, 08 C 99.

A pseudovariety P is a class of finite algebras closed under the formation of homo-
morphic images, subalgebras and finite direct products: in symbols HSPfln (P)
= P. This concept has been useful in many investigations, particularly in the
study of various classes of finite semigroups and monoids; see [2], [3], [7], [8] and,
for a more general approach, [5].

We will consider the lattice of subpseudovarieties of a given pseudovariety P.
We will show that several recent results about the lattice of subvarieties of a
variety have analogs for pseudovarieties.

This investigation originated in a series of discussions between the second
author, Kathy Johnston and T. E. Hall at Monash University in August 1986,
which produced a direct proof of Corollary 2.6. Hall and Johnston were at tht
time working on pseudovarieties of inverse semigroups [8], and Section 5 of that
paper contains some interesting results related to the ones herein. C. J. Ash
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178 P. Agliano and J. B. Nation [2]

has also generalized Corollary 2.6 in a rather different direction (see [8, Remark
5.5]).

1. Preliminaries and forbidden lattices

If K is a class of algebras (of the same type), V(K) will denote the variety
generated by K; if Q is a class of finite algebras P(Q) = HSPfln(<2) will denote
the pseudovariety generated by Q.

It is clear that, if V is a variety, the class consisting of the finite algebras in
V is a pseudovariety. We will denote this class by Vfln or V D Fin. On the other
hand it is easy to produce examples of pseudovarieties that are not of this kind,
for example

(a) the pseudovariety of finite Abelian groups of square—free exponent,
(b) the pseudovariety of finite semigroups satisfying x" = xn+1 for some n,
(c) the pseudovariety 9~ where

& = {Fx x •• • x Fn: Ft is a finite field, charF, = p for all i}.

(d) the pseudovariety of all finite lattices satisfying 5£>A •
The following lemma (whose proof is straightforward) will be used repeatedly.

We recall that a variety V is locally finite if all finitely generated algebras in V
are finite.

LEMMA 1.1. Let V be a locally finite variety and A a finite algebra in V.
Suppose there exist a B GV, a family {Ca}a<0 of algebras in V and a surjective
homomorphism h such that

h

Then there exist finitely many a\,...,an such that

A^B' <Caix • -xC Q n .
h

The following lemma can be found in [1], [6] and [11] and was implicitly stated
in [7] for monoids.

LEMMA 1.2. A class of finite algebras P is a pseudovariety if and only if
there exists a directed union of locally finite varieties such that

P = \J(Vi-. i e / ) n F i n .

The proof is straightforward, by taking

I = {S CP: S is finite}
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and noting tha t by Lemma 1.1, V(S') is locally finite for all S G / . If V is a
variety let LV(V) be the lattice of subvarieties of V, and if P is a pseudovariety
let Lpv(P) be the set of pseudovarieties contained in P. I t is a routine exercise
to prove tha t L p v {P) is indeed an algebraic lattice under inclusion, with H S P f l n

being the associated closure operator .
It is not ha rd to see t h a t t he latt ices L v and L p v can be quite different even

for the same variety of algebras. Let Ab be the variety of abelian groups. Then
Lv(Ab) is isomorphic to the lattice N of the positive integers under division with
the largest element adjoined, while Lpv(^46fin) is isomorphic to the ideal lattice
of N.

We recall t ha t if L is a latt ice, the height h(a) of a € L is the length of the
shortest maximal chain in a / 0 ; we say t h a t P is a pseudovariety of finite height
if P has finite height in Lpv(P).

LEMMA 1.3. If P is a pseudovariety of finite height, then P is generated by
finitely many finite algebras.

PROOF. We induct on the height of P. If h{P) = 0, then P is the trivial
pseudovariety generated by a one-element algebra. Assume the statement true
for any height < n and let h(P) = n. Then P covers Q, where h(Q) < n
and Q is generated by finitely many finite algebras. Let A € Q — P; then
P < P(Q U {A}) < P, and since P covers Q we have P = P(Q U {A}). Then P
itself is finitely generated, and the lemma is proved.

The next lemma connects pseudovarieties and locally finite varieties.

LEMMA 1.4. LetV be locally finite. Consider the maps

via <p(U) = 17nFin, andip: Lpv(Vfln) -» LV(V) via xj){Q) = V(Q). Then
(i) for all pseudovarieties Q<VRn,Q = <p4>{Q) = V(Q) D Fin,
(ii) for all varieties U <V,U = xl»p{U) = V{U n Fin),
(iii) <p and xj) are lattice isomorphisms.

PROOF, (i) Clearly Q C V(Q) n Fin. If A is a finite algebra in V{Q), then
there exist an algebra B € V(Q), a family {Ca}a</3 of algebras in Q and a
surjective homomorphism h such t h a t

Since V it is locally finite and A is finite, it can be assumed by Lemma 1.1 that
/? is finite and all the Ca are finite. Then A € HSPfln (Q) = Q and we are done,

(ii) is obvious since any U < V is itself locally finite, and is therefore generated
by its finite members.
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(iii) follows from (i) and (ii), since a one-to-one map / of a lattice L onto a
lattice M is an isomorphism if and only if / and its inverse are order-preserving.

The main theorem of this section is now easy to prove.

THEOREM 1.5. If P is a pseudovariety of finite height, then the lattice of
pseudovarieties Lpv(P) is isomorphic to the lattice of subvarieties LV(V(P)).

PROOF. By Lemma 1.3, P is generated by finitely many finite algebras;
hence V(P) is locally finite. So Lemma 1.4 applies, and we can conclude that
L p v (P)^L v (V(P) ) .

The following corollary is a direct consequence of the theorem.

COROLLARY 1.6. If L is a lattice of finite height, forbidden as lattice of
subvarieties for a locally finite variety, then it is also forbidden as L p v (P ) for
any pseudovariety P.

A large class of lattices forbidden for locally finite varieties (the so-called
"tight" lattices) can be found in Mckenzie's paper [10].

2. A representation theorem

The results of the previous section lead to the question: what properties of
LV(V) are inherited by Lpv(Vfin) (not assuming local finiteness)? This section
provides some answers to this question.

THEOREM 2.1 . Let P be a pseudovariety and for A e P let LA = LV(V(A)).
If3T(P) = {LA:Ae P}, then

Lpv(P) G HSPU {

We will first show that L p v ( P ) is in the variety generated by Sf(P). Let M
be the direct product I"I(kA: A 6 P) , where it is understood that we take an
algebra from each isomorphism class. Let

S = {x G M: A G V ( 5 ) implies xA < xB}-

Clearly 5 is a sublattice of M. Define 7 C S2 by setting (1, y) € 7 if
(*) VJ4, C € P , C G XA implies there exists B € P such that A G V(B) and

C G ys and
(*•) VA, C G P , C G yA implies there exists B' e P such that A G V(B') and

C GxB>-
We would like to prove that 7 G Con S. The proof uses the following straight-

forward lemma.
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LEMMA 2.2. If V is a locally finite variety, U, W < V and C is a finite
algebra in U V W, then there are finite algebras D G U and E G W such that
CeHS(DxE).

LEMMA 2.3. 7 s ConS.

PROOF. It is not hard to check that 7 is an equivalence relation on S. Assume
now z G S, x^y, and C G XA A ZA- By (*) there is a B G P such that C G J/B
and A G V(5), whence C E ZB > ZA- Thus C G J/B A ZB which proves (*); (**)
is similar so we can conclude that x A 273/ A z.

ifCexAVzA then, by Lemma 2.2, C E HS{D x E) for finite algebras in XA
and ZA respectively. Because D € XA, (*) yields a B € P with A € V(P) and
D € j/0. Since z e S and A G V(£), it follows that E E zB and C e J/B V zB-
The proof of (**) is similar, so x V z^/yV z.

Define a function <p: Lpv(P) -> 5 by setting £u(<2) = V(Q f~l V(.A)); it is
trivial to see that indeed ^(Q) G 5 for all Q < P.

LEMMA 2.4. For allQ,R<P
{i)<p{QnK) = tp{Q)ntp{R),
{n)<p(Q)ve{R)<e{QvR),
{in) tp{QVR)TP(Q)V(p(R),

PROOF, (i) and (ii) are immediate. For (iii), assume that C is finite and
C € <pA{Q V R) = V((Q V R) fl V(A)). By Lemma 1.1, C G (Q V i?) D V(J4), SO

by Lemma 2.2 there are D G Q, ^ G i? with C G HS(I>x£;). Let 5 =
then A G V(B) and C G (Q D V(B)) V {R n V(B)), so C e ^ B ( Q ) V
Thus (*) is satisfied and (**) follows at once from (ii); hence (iii) is proved.

For (iv) take C GQ-R. If C G V{B), then by Lemma 1.1,

c G v(Q n v(B)) - v(fl n

Since C ^ ^ s (^ ) for all B, we have (<p(Q), <p{R)) £ 7.
We can summarize all we have gotten so far by

THEOREM 2.5. If P is a pseudovariety then Lpv(P) G HSP{^(P)} ; m
Lpv (P) w embedded into 5/7 uta </ie function ip described akove.

COROLLARY 2.6. For anj/ lattice equation e, if LV(F) satisfies e then
pv(Vfin) satisfies e.

COROLLARY 2.7. 7/Lv(V(P)) satisfies SDA then so does Lp v(P).
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PROOF. If Q A RI = Q A R2, then for all A e P

V(Q A Ri n V(A)) = V(Q A R2 n V(A)),

implying

v(Q n v(i4)) A v(/?i n V(A)) = V(Q n v(A)) A V ( # 2 n v(A)).

Since LV(V(P)) satisfies S£>A,

v(Qnv(^))AV(fiinv(A)) = v(Qnv(^i))A[V(fi1nv(J4)) w{R2nv{A))\.

Hence
A Ri) = <pA{Q) A [pA(Ri) VA (Jfc)]

so, by Lemma 2.4(iii)

<p(Q A Ri) = <p{Q) A b ( « i ) V <p(R2)} l<p{Q) A y?(Bi A R2).

By Theorem 2.5, QARX=QA(RIV R2) and Lp v(P) satisfies SDA.
There is no similar argument for SDy, and we conjecture that SZ?V and

Lampe's condition [9], which is similar, are not preserved by Lpv(Vfin)-
We can refine Theorem 2.4, to obtain Lp v(P) € HSPu^C-P)}, by the fol-

lowing general argument.
Let S^ = (Ai)i€I be a family of algebras, N = I l ( ^ : i e I), S < N and

7 6 Con S. Let & be an ultrafilter on / , and let fj. be the induced congruence
on N, that is xfiy if {i: x» = yi} € *U'. Let T — {t € N: there exists x € S
with tfix}. Note that T is a subalgebra of N. Define p C T2 by (t,<') € p if
there are x, x' e 5 with

LEMMA 2.8. ///* D S2 C 7 </ien p e ConT and 5 /^ = T/p. Consequently
Sft € HSP J

PROOF, p is clearly reflexive and symmetric. If tpt'pt", then there are
x, x', y', y" € 5 with t/j,x~fx'fit'fiy'iy"(it". But then x'fj,y', so by hypothesis x'^y'.
Hence x^x" and tpt". Thus p is transitive. This relation clearly respects opera-
tions, so that p € ConT.

It is an easy exercise to prove that ip: S/7 —> T/p defined by i>(x/i) = i /p
is an isomorphism. Since n D T2 C p, we have T/p e H S P U ( { J / } ) .

We want to apply Lemma 2.8 to the specific 5 and 7 defined earlier in this sec-
tion. For BeP, define S"{B) = {AeP: B<= V{A)}. Note that {S"{B): B €
P} is a filterbase: f{B) ^ 0, and if B,C € P then S*{B)nS*{C) 2 &{D\
where D = B x C. Let 2^ be any ultrafilter containing this filterbase, and let /i
be the congruence on M associated to ^ . We need the following facts.
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LEMMA 2.9. (i) For allEe^, BeP implies EC)S^{B) ^ 0 .
(ii) j u n S 2 C 7 .

PROOF, (i) is trivial from the maximality of %. For (ii), let (x, y) € /i n S2;
then {C: xc = yc) 6 #• Fix X e P. By (i), {C: x c = J/c} n^"(A) / 0 so
there is a B such that A € V(JB) and XB = VB- If D € XA then x>i < I B = J/B
since x € S, so D € J/B- If /? € J/A, then VA <VB — XB, SO D G XB- Hence x^y
and (ii) is proved.

Lemma 2.9 (ii) allows us to apply Lemma 2.8 to our situation, yielding 5/7 €
HSPU(J3T(P)). Since Lpv(P) is isomorphic to a sublattice of 5/7, we obtain
Lpv(P) G HSP U {^(P)} , which is the claim of Theorem 2.1.

COROLLARY 2.10. Any positive universal sentence holding in LV(V) is also
satisfied by LPv(Vfln).
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