LATTICES OF PSEUDOVARIETIES

P. AGLIANO and J. B. NATION

(Received 11 March 1987)

Communicated by T. E. Hall

Abstract

We consider the lattice of pseudovarieties contained in a given pseudovariety P. It is shown that if the lattice L of subpseudovarieties of P has finite height, then L is isomorphic to the lattice of subvarieties of a locally finite variety. Thus not every finite lattice is isomorphic to a lattice of subpseudovarieties. Moreover, the lattice of subpseudovarieties of P satisfies every positive universal sentence holding in all the lattices of subvarieties of varieties V(A) generated by algebras $A \in P$.

1980 Mathematics subject classification (Amer. Math. Soc.): 08 B 15, 08 C 99.

A pseudovariety P is a class of finite algebras closed under the formation of homomorphic images, subalgebras and finite direct products: in symbols $HSP_{fin}(P) = P$. This concept has been useful in many investigations, particularly in the study of various classes of finite semigroups and monoids; see [2], [3], [7], [8] and, for a more general approach, [5].

We will consider the lattice of subpseudovarieties of a given pseudovariety P. We will show that several recent results about the lattice of subvarieties of a variety have analogs for pseudovarieties.

This investigation originated in a series of discussions between the second author, Kathy Johnston and T. E. Hall at Monash University in August 1986, which produced a direct proof of Corollary 2.6. Hall and Johnston were at tht time working on pseudovarieties of inverse semigroups [8], and Section 5 of that paper contains some interesting results related to the ones herein. C. J. Ash

The second author was supported in part by NSF Grant MCS 83-01087.

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

1. Preliminaries and forbidden lattices

If K is a class of algebras (of the same type), $\mathbf{V}(K)$ will denote the variety generated by K; if Q is a class of finite algebras $\mathbf{P}(Q) = \mathbf{HSP_{fin}}(Q)$ will denote the pseudovariety generated by Q.

It is clear that, if V is a variety, the class consisting of the finite algebras in V is a pseudovariety. We will denote this class by V_{fin} or $V \cap \text{Fin}$. On the other hand it is easy to produce examples of pseudovarieties that are not of this kind, for example

(a) the pseudovariety of finite Abelian groups of square-free exponent,

(b) the pseudovariety of finite semigroups satisfying $x^n = x^{n+1}$ for some n,

(c) the pseudovariety \mathcal{F} where

 $\mathscr{F} = \{F_1 \times \cdots \times F_n \colon F_i \text{ is a finite field, char } F_i = p \text{ for all } i\}.$

(d) the pseudovariety of all finite lattices satisfying SD_{\wedge} .

The following lemma (whose proof is straightforward) will be used repeatedly. We recall that a variety V is locally finite if all finitely generated algebras in V are finite.

LEMMA 1.1. Let V be a locally finite variety and A a finite algebra in V. Suppose there exist a $B \in V$, a family $\{C_{\alpha}\}_{\alpha < \beta}$ of algebras in V and a surjective homomorphism h such that

$$A \underset{h}{\leftarrow} B \leq \prod (C_{\alpha} : \alpha < \beta).$$

Then there exist finitely many $\alpha_1, \ldots, \alpha_n$ such that

$$A \underset{h}{\leftarrow} B' \leq C_{\alpha_1} \times \cdots \times C_{\alpha_n}.$$

The following lemma can be found in [1], [6] and [11] and was implicitly stated in [7] for monoids.

LEMMA 1.2. A class of finite algebras P is a pseudovariety if and only if there exists a directed union of locally finite varieties such that

$$P = \bigcup (V_i \colon i \in I) \cap \operatorname{Fin}$$
.

The proof is straightforward, by taking

$$I = \{ S \subseteq P \colon S \text{ is finite} \}$$

and noting that by Lemma 1.1, $\mathbf{V}(S)$ is locally finite for all $S \in I$. If V is a variety let $\mathbf{L}_{\mathbf{v}}(V)$ be the lattice of subvarieties of V, and if P is a pseudovariety let $\mathbf{L}_{\mathbf{pv}}(P)$ be the set of pseudovarieties contained in P. It is a routine exercise to prove that $\mathbf{L}_{\mathbf{pv}}(P)$ is indeed an algebraic lattice under inclusion, with $\mathbf{HSP_{fin}}$ being the associated closure operator.

It is not hard to see that the lattices $\mathbf{L}_{\mathbf{v}}$ and $\mathbf{L}_{\mathbf{pv}}$ can be quite different even for the same variety of algebras. Let Ab be the variety of abelian groups. Then $\mathbf{L}_{\mathbf{v}}(Ab)$ is isomorphic to the lattice \mathbb{N} of the positive integers under division with the largest element adjoined, while $\mathbf{L}_{\mathbf{pv}}(Ab_{\mathrm{fin}})$ is isomorphic to the ideal lattice of \mathbb{N} .

We recall that if L is a lattice, the height h(a) of $a \in L$ is the length of the shortest maximal chain in a/0; we say that P is a pseudovariety of finite height if P has finite height in $\mathbf{L}_{pv}(P)$.

LEMMA 1.3. If P is a pseudovariety of finite height, then P is generated by finitely many finite algebras.

PROOF. We induct on the height of P. If h(P) = 0, then P is the trivial pseudovariety generated by a one-element algebra. Assume the statement true for any height < n and let h(P) = n. Then P covers Q, where h(Q) < n and Q is generated by finitely many finite algebras. Let $A \in Q - P$; then $P < P(Q \cup \{A\}) \leq P$, and since P covers Q we have $P = P(Q \cup \{A\})$. Then P itself is finitely generated, and the lemma is proved.

The next lemma connects pseudovarieties and locally finite varieties.

LEMMA 1.4. Let V be locally finite. Consider the maps

 $\varphi \colon \mathbf{L}_{\mathbf{v}}(V) \to \mathbf{L}_{\mathbf{pv}}(V_{\mathrm{fin}})$

via $\varphi(U) = U \cap \operatorname{Fin}$, and $\psi: \mathbf{L}_{\mathbf{pv}}(V_{\operatorname{fin}}) \to \mathbf{L}_{\mathbf{v}}(V)$ via $\psi(Q) = \mathbf{V}(Q)$. Then

(i) for all pseudovarieties $Q \leq V_{\text{fin}}, Q = \varphi \psi(Q) = \mathbf{V}(Q) \cap \text{Fin},$

(ii) for all varieties $U \leq V$, $U = \psi \varphi(U) = \mathbf{V}(U \cap \operatorname{Fin})$,

(iii) φ and ψ are lattice isomorphisms.

PROOF. (i) Clearly $Q \subseteq V(Q) \cap$ Fin. If A is a finite algebra in V(Q), then there exist an algebra $B \in V(Q)$, a family $\{C_{\alpha}\}_{\alpha < \beta}$ of algebras in Q and a surjective homomorphism h such that

$$A \stackrel{h}{\leftarrow} B \leq \prod (C_{\alpha} \colon \alpha < \beta).$$

Since V it is locally finite and A is finite, it can be assumed by Lemma 1.1 that β is finite and all the C_{α} are finite. Then $A \in \mathbf{HSP_{fin}}(Q) = Q$ and we are done.

(ii) is obvious since any $U \leq V$ is itself locally finite, and is therefore generated by its finite members.

180

(iii) follows from (i) and (ii), since a one-to-one map f of a lattice L onto a lattice M is an isomorphism if and only if f and its inverse are order-preserving.

The main theorem of this section is now easy to prove.

THEOREM 1.5. If P is a pseudovariety of finite height, then the lattice of pseudovarieties $L_{pv}(P)$ is isomorphic to the lattice of subvarieties $L_v(V(P))$.

PROOF. By Lemma 1.3, P is generated by finitely many finite algebras; hence $\mathbf{V}(P)$ is locally finite. So Lemma 1.4 applies, and we can conclude that $\mathbf{L}_{pv}(P) \cong \mathbf{L}_{v}(\mathbf{V}(P))$.

The following corollary is a direct consequence of the theorem.

COROLLARY 1.6. If L is a lattice of finite height, forbidden as lattice of subvarieties for a locally finite variety, then it is also forbidden as $L_{pv}(P)$ for any pseudovariety P.

A large class of lattices forbidden for locally finite varieties (the so-called "tight" lattices) can be found in Mckenzie's paper [10].

2. A representation theorem

The results of the previous section lead to the question: what properties of $\mathbf{L}_{\mathbf{v}}(V)$ are inherited by $\mathbf{L}_{\mathbf{pv}}(V_{\text{fin}})$ (not assuming local finiteness)? This section provides some answers to this question.

THEOREM 2.1. Let P be a pseudovariety and for $A \in P$ let $\mathbf{L}_{\mathbf{A}} = \mathbf{L}_{\mathbf{v}}(\mathbf{V}(A))$. If $\mathscr{K}(P) = \{L_{\mathbf{A}} : A \in P\}$, then

$$\mathbf{L}_{\mathbf{pv}}(P) \in \mathbf{HSP}_{\mathbf{u}}\{\mathscr{K}(P)\}.$$

We will first show that $\mathbf{L}_{pv}(P)$ is in the variety generated by $\mathscr{H}(P)$. Let M be the direct product $\prod(\mathbf{L}_{\mathbf{A}}: A \in P)$, where it is understood that we take an algebra from each isomorphism class. Let

 $S = \{x \in M \colon A \in \mathbf{V}(B) \text{ implies } x_A \leq x_B\}.$

Clearly S is a sublattice of M. Define $\gamma \subseteq S^2$ by setting $(x, y) \in \gamma$ if

(*) $\forall A, C \in P, C \in x_A$ implies there exists $B \in P$ such that $A \in \mathbf{V}(B)$ and $C \in y_B$ and

 $(**) \forall A, C \in P, C \in y_A$ implies there exists $B' \in P$ such that $A \in \mathbf{V}(B')$ and $C \in x_{B'}$.

We would like to prove that $\gamma \in \text{Con } S$. The proof uses the following straightforward lemma.

LEMMA 2.2. If V is a locally finite variety, $U, W \leq V$ and C is a finite algebra in $U \vee W$, then there are finite algebras $D \in U$ and $E \in W$ such that $C \in \mathbf{HS}(D \times E)$.

LEMMA 2.3. $\gamma \in \text{Con } S$.

PROOF. It is not hard to check that γ is an equivalence relation on S. Assume now $z \in S$, $x\gamma y$, and $C \in x_A \wedge z_A$. By (*) there is a $B \in P$ such that $C \in y_B$ and $A \in \mathbf{V}(B)$, whence $C \in z_B \geq z_A$. Thus $C \in y_B \wedge z_B$ which proves (*); (**) is similar so we can conclude that $x \wedge z \gamma y \wedge z$.

If $C \in x_A \vee z_A$ then, by Lemma 2.2, $C \in \mathbf{HS}(D \times E)$ for finite algebras in x_A and z_A respectively. Because $D \in x_A$, (*) yields a $B \in P$ with $A \in \mathbf{V}(P)$ and $D \in y_B$. Since $z \in S$ and $A \in \mathbf{V}(B)$, it follows that $E \in z_B$ and $C \in y_B \vee z_B$. The proof of (**) is similar, so $x \vee z \gamma y \vee z$.

Define a function $\varphi \colon \mathbf{L}_{\mathbf{pv}}(P) \to S$ by setting $\varphi_A(Q) = \mathbf{V}(Q \cap \mathbf{V}(A))$; it is trivial to see that indeed $\varphi(Q) \in S$ for all $Q \leq P$.

LEMMA 2.4. For all $Q, R \leq P$ (i) $\varphi(Q \cap R) = \varphi(Q) \cap \varphi(R)$, (ii) $\varphi(Q) \lor \varphi(R) \leq \varphi(Q \lor R)$, (iii) $\varphi(Q \lor R) \gamma \varphi(Q) \lor \varphi(R)$, (iv) if $Q \nleq R$ then $(\varphi(Q), \varphi(R)) \notin \gamma$.

PROOF. (i) and (ii) are immediate. For (iii), assume that C is finite and $C \in \varphi_A(Q \lor R) = \mathbf{V}((Q \lor R) \cap \mathbf{V}(A))$. By Lemma 1.1, $C \in (Q \lor R) \cap \mathbf{V}(A)$, so by Lemma 2.2 there are $D \in Q$, $E \in R$ with $C \in \mathbf{HS}(D \times E)$. Let $B = D \times E \times A$; then $A \in \mathbf{V}(B)$ and $C \in (Q \cap \mathbf{V}(B)) \lor (R \cap \mathbf{V}(B))$, so $C \in \varphi_B(Q) \lor \varphi_B(R)$. Thus (*) is satisfied and (**) follows at once from (ii); hence (iii) is proved.

For (iv) take $C \in Q - R$. If $C \in V(B)$, then by Lemma 1.1,

$$C \in \mathbf{V}(Q \cap \mathbf{V}(B)) - \mathbf{V}(R \cap \mathbf{V}(B)).$$

Since $C \notin \varphi_B(R)$ for all B, we have $(\varphi(Q), \varphi(R)) \notin \gamma$.

We can summarize all we have gotten so far by

THEOREM 2.5. If P is a pseudovariety then $L_{pv}(P) \in HSP\{\mathscr{K}(P)\}$; in fact $L_{pv}(P)$ is embedded into S/γ via the function φ described above.

COROLLARY 2.6. For any lattice equation ε , if $\mathbf{L}_{\mathbf{v}}(V)$ satisfies ε then $\mathbf{L}_{\mathbf{pv}}(V_{\text{fin}})$ satisfies ε .

COROLLARY 2.7. If $L_{\mathbf{v}}(\mathbf{V}(P))$ satisfies SD_{\wedge} then so does $L_{\mathbf{pv}}(P)$.

PROOF. If $Q \wedge R_1 = Q \wedge R_2$, then for all $A \in P$

$$\mathbf{V}(Q \wedge R_1 \cap \mathbf{V}(A)) = \mathbf{V}(Q \wedge R_2 \cap \mathbf{V}(A)),$$

implying

$$\mathbf{V}(Q \cap \mathbf{V}(A)) \wedge \mathbf{V}(R_1 \cap \mathbf{V}(A)) = \mathbf{V}(Q \cap \mathbf{V}(A)) \wedge \mathbf{V}(R_2 \cap \mathbf{V}(A)).$$

Since $\mathbf{L}_{\mathbf{v}}(\mathbf{V}(P))$ satisfies SD_{\wedge} ,

 $\mathbf{V}(Q \cap \mathbf{V}(A)) \wedge \mathbf{V}(R_1 \cap \mathbf{V}(A)) = \mathbf{V}(Q \cap \mathbf{V}(A)) \wedge [\mathbf{V}(R_1 \cap \mathbf{V}(A)) \vee \mathbf{V}(R_2 \cap \mathbf{V}(A))].$

Hence

$$\varphi_A(Q \land R_1) = \varphi_A(Q) \land [\varphi_A(R_1) \lor_A (R_2)]$$
$$= \varphi_A(Q) \land [\varphi_A(R_1) \lor \varphi(R_2)]_A$$

so, by Lemma 2.4(iii)

$$\varphi(Q \wedge R_1) = \varphi(Q) \wedge [\varphi(R_1) \lor \varphi(R_2)] \gamma \varphi(Q) \wedge \varphi(R_1 \wedge R_2).$$

By Theorem 2.5, $Q \wedge R_1 = Q \wedge (R_1 \vee R_2)$ and $\mathbf{L}_{\mathbf{pv}}(P)$ satisfies SD_{\wedge} .

There is no similar argument for SD_{\vee} , and we conjecture that SD_{\vee} and Lampe's condition [9], which is similar, are not preserved by $L_{pv}(V_{fin})$.

We can refine Theorem 2.4, to obtain $\mathbf{L}_{\mathbf{pv}}(P) \in \mathbf{HSP}_{u}\{\mathscr{K}(P)\}$, by the following general argument.

Let $\mathscr{A} = (A_i)_{i \in I}$ be a family of algebras, $N = \prod (A_i : i \in I), S \leq N$ and $\gamma \in \text{Con } S$. Let \mathscr{U} be an ultrafilter on I, and let μ be the induced congruence on N, that is $x\mu y$ if $\{i: x_i = y_i\} \in \mathscr{U}$. Let $T = \{t \in N: \text{ there exists } x \in S \text{ with } t\mu x\}$. Note that T is a subalgebra of N. Define $\rho \subseteq T^2$ by $(t, t') \in \rho$ if there are $x, x' \in S$ with $t\mu x\gamma x'\mu t'$.

LEMMA 2.8. If $\mu \cap S^2 \subseteq \gamma$ then $\rho \in \text{Con } T$ and $S/\gamma \cong T/\rho$. Consequently $S/\gamma \in \mathbf{HSP}_{\mathbf{u}}\{\mathscr{A}\}.$

PROOF. ρ is clearly reflexive and symmetric. If $t\rho t'\rho t''$, then there are $x, x', y', y'' \in S$ with $t\mu x\gamma x'\mu t'\mu y'\gamma y''\mu t''$. But then $x'\mu y'$, so by hypothesis $x'\gamma y'$. Hence $x\gamma x''$ and $t\rho t''$. Thus ρ is transitive. This relation clearly respects operations, so that $\rho \in \text{Con } T$.

It is an easy exercise to prove that $\psi: S/\gamma \to T/\rho$ defined by $\psi(x/\gamma) = x/\rho$ is an isomorphism. Since $\mu \cap T^2 \subseteq \rho$, we have $T/\rho \in \mathbf{HSP}_{\mathbf{u}}(\{\mathscr{A}\})$.

We want to apply Lemma 2.8 to the specific S and γ defined earlier in this section. For $B \in P$, define $\mathscr{S}(B) = \{A \in P : B \in \mathbf{V}(A)\}$. Note that $\{\mathscr{S}(B) : B \in P\}$ is a filterbase: $\mathscr{S}(B) \neq \emptyset$, and if $B, C \in P$ then $\mathscr{S}(B) \cap \mathscr{S}(C) \supseteq \mathscr{S}(D)$, where $D = B \times C$. Let \mathscr{U} be any ultrafilter containing this filterbase, and let μ be the congruence on M associated to \mathscr{U} . We need the following facts.

LEMMA 2.9. (i) For all $E \in \mathcal{U}$, $B \in P$ implies $E \cap \mathcal{S}(B) \neq \emptyset$. (ii) $\mu \cap S^2 \subseteq \gamma$.

PROOF. (i) is trivial from the maximality of \mathscr{U} . For (ii), let $(x, y) \in \mu \cap S^2$; then $\{C: x_C = y_C\} \in \mathscr{U}$. Fix $A \in P$. By (i), $\{C: x_C = y_C\} \cap \mathscr{S}(A) \neq \emptyset$ so there is a *B* such that $A \in \mathbf{V}(B)$ and $x_B = y_B$. If $D \in x_A$ then $x_A \leq x_B = y_B$ since $x \in S$, so $D \in y_B$. If $D \in y_A$, then $y_A \leq y_B = x_B$, so $D \in x_B$. Hence $x \gamma y$ and (ii) is proved.

Lemma 2.9 (ii) allows us to apply Lemma 2.8 to our situation, yielding $S/\gamma \in$ HSP_u($\mathscr{K}(P)$). Since L_{pv}(P) is isomorphic to a sublattice of S/γ , we obtain L_{pv}(P) \in HSP_u{ $\mathscr{K}(P)$ }, which is the claim of Theorem 2.1.

COROLLARY 2.10. Any positive universal sentence holding in $L_v(V)$ is also satisfied by $L_{pv}(V_{fin})$.

References

- C. J. Ash, 'Pseudovarieties, generalized varieties and similarly described classes', J. Algebra 92 (1985), 104-115.
- [2] J. Almeida, 'Power pseudovarieties of semigroups. I, II', Semigroup Forum 33 (1986), 357-373; 375-390.
- [3] J. Almeida, 'The algebra of implicit operations', preprint.
- [4] K. A. Baker and A. W. Hales, 'From a lattice to its ideal lattice', Algebra Universalis 4 (1974), 250-258.
- [5] J. T. Baldwin and J. Berman, 'Varieties and finite closure conditions', Colloq. Math. 35 (1976), 15-20.
- [6] B. Banaschewski, 'The Birkhoff Theorem for varieties of finite algebras', Algebra Universalis 17 (1983), 360-368.
- [7] S. Eilenberg and M. P. Schützenberger, 'On pseudovarieties', Adv. in Math. 19 (1976), 413-418.
- [8] T. E. Hall and K. G. Johnston, 'The lattice of pseudovarieties of inverse semigroups', Pacific J. Math., to appear.
- [9] W. A. Lampe, 'A property of the lattice of equational theories', Algebra Universalis 23 (1986), 61-69.
- [10] R. McKenzie, 'Finite forbidden lattices', Proceedings of the Universal Algebra and Lattice Theory Conference, Puebla 1982 (Lecture Notes in Math., vol. 1004, Springer-Verlag, pp. 176-205).
- [11] J. Reiterman, 'The Birkhoff theorem for finite algebras', Algebra Universalis 14 (1982), 1-10.

Department of Mathematics University of Hawaii at Manoa Honolulu Hawaii 96822