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REPRESENTATIONS AND DIVISIBILITY OF OPERATOR
POLYNOMIALS

I. GOHBERG, P. LANCASTER, AND L. RODMAN

Introduction. Let 2 be a complex Banach space and L(_#%) the algebra of
bounded linear operators on 2. In this paper we study functions from the
complex numbers to L(Z") of the form

(1) L()\) =I7\Z+A1_1)\I—1++441)\+AU

where 4q, A, ..., A,_; and the identity I are members of L(Z"). Such a
function is referred to as a monic operutor polynomial and will be abbreviated
toa m.o.p. For the case in which % is of finite dimension, the subject matter of
this paper has been investigated by the authors in two earlier papers, [3] and
(4]. Here, we pay special attention to the case in which 2 is of infinite dimen-
sion and emphasize those new features introduced by this more general hypo-
thesis. Although this paper can be read independently, we shall rely heavily
on the two earlier papers for those proofs in which the dimension of Z~ plays
no part. References to theorems and equations in those papers will be distin-
guished with subscripts [ and 11, as appropriate.

In Section 1 of this paper several concepts are introduced leading up to the
three standard forms for a m.o.p. described in Theorem 1 and concludes with
some applications to differential and difference equations. Inverse theorems
and spectral properties associated with eigenvalues are also developed. Section
2 consists entirely of new material which arises very naturally on consideration
of spaces 2 of infinite dimension, although the questions concerning one-sided
invertibility are new and significant in the finite-dimensional context. In
Section 3 divisors of a m.o.p. are characterized using the concept of supporting
subspace and spectral properties of products and quotients are investigated.

Theorem 27;; concerning “reducible’’ systems in the theory of control can
be generalized to admit spaces of infinite dimension in an obvious way. This
will not be presented explicitly.

1. Representations and applications.

1.1 Standard pairs and standard triples. Let L(Z , %) denote the linear space
of bounded linear operators having Banach space 2  as domain and range in
Banach space %'. By 47,  a positive integer, we mean the direct sum of »
copies of 2.
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Consider an m.o.p. L as described in Equation (1). In the finite demensional
case it has been shown that information about all eigenvalues and generalized
eigenvectors of L can be concentrated in two matrices one of which is in
Jordan normal form. On assuming 2~ to be infinite dimensional this device is
no longer available but it will be shown that the spectral information about L
can be summarized in the properties of just two operators. Such a pair is as
follows: Operators X ¢ L(Z'4, %) and T € B(Z') form a standard pair for
the m.o.p. L of (1) if the operator Q(X, T') € L(Z ") defined by
C oy

XT
2 X, 1=, -

X1+t

is invertible and
B) AX+AXT 4+ ...+ 4, XT1+XT'=0.

For the existence of a standard pair we have simply to take 7" = Cj, the
Jirst companion operator for L given by

0 I 0 0
0 0 1 ce 0
(4) Cl = ° : )
0 0 s 0 1
-‘—A() —‘Al tre _A —2 '_A l-l_

and X = [I0...0]. In this case Q(X, C1) = [ and XT'!' = [—4, —4, ...
— A 4] from which (3) follows.

For any X ¢ L(Z ', %) and T € L(Z") it is easily verified that, with
Q(X, T') defined by (2),

(B) X, T = CQX, T).

Thus, X, T a standard pair implies that 7" is similar to C;.

For brevity, we now drop the explicit dependence of Q on X and T from
the notation. There is an asymmetry about a standard pair X, 7" which is
removed by going to the notion of a standard triple. Let R be the invertible
map in L(Z"?) defined by the biorthogonality relation

(6) RBQ =1
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where B € L(%Z") is the invertible operator given by

A4y Ay -+ Ay T
Ay Ay -+ I 0
(7) B =
A, I

Then define the second companion operator Cy for L by

0 0 - 0 —A, |
I o .. -0 -4
0o I . .
(8) C2= :
I 0 —4,.,
(00 oo 0 T —A.

and it can be verified that C, = BC1B~. Then, using (4) and (5),
Cy = BC,B™!' = B(QT Q~1)B~! = R'TR

so that RCy, = T'R. The structure of Cy demands the following representation
for R (dual to that for Q):

©9) R=[YTY... T-1Y]
where ¥ € B(%Z ', 2", together with the relation
(10) YAy +1YA + ...+ T'Y4A,_,+ T'Y =0.

Now the representation of B~! as a matrix of operators will also have
triangular form (ref. Equation (7)). Exploiting this tact, as was done in [3],
it follows that X, 7", V satisfy

—1y, 30 r=12,...,1—1
(11) XT Y—{I =1
andwecall X € B@ L, %), T € B@ ") and Y € B(Z,Z ") a standard triple
for L.

Give that X, T are a standard pair, the third member Y of a standard triple
is uniquely determined by the above construction. Conversely, if 7', ¥ belong
to a standard triple then R = R(7, V) defined by (9) is invertible and X can

be determined. We note that the relations (11) can also be written in the
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equivalent forms:

07
(12) QX, 7)Y =|-1|, XR(T,Y)=1[0...01].
0
1

Beginning with the standard pair [ 0...0], C; we find from (6) that
R(T, Y) = B~ which implies that

(13) X] = [[0 e 0], C}, and Yl =
0
/

form a standard triple. Similarly, there is a standard triple

I
0
X2= [OOI], CQ, and Y2= .

L O]
If (X,7,7), (X,, T, V1) are both standard triples for the m.o.p. L, then
it is easily verified that there exists an invertible M ¢ B(Z2 ') such that
Xi1=XM, T\=M'TM, Y,= M1Y.
Indeed, the map M is given by M = Q(X, 1')7'Q(X 4, 1)).

1.2 Standard forms. Parts (i) and (ii) of the next theorem have their origin in
a search for an appropriate generalization of the Jordan normal form from
n X m matrices to » X # matrix polynomials. Part (iii) began as a matrix
polynomial version of the spectral resolution of a resolvent operator. These
ideas have been developed in [3] and [4]. First define the resolvent set for L by

Res (L(\)) = {N € G : L71(\) exists in L(%2)}.
THEOREM 1. Let L be ¢ m.o.p. of degree | with standard triple X, T, Y. Then
) L) = IN' = XT'(Vi4 Vah 4 ... 4 VAR
where V, € L(Z, 2 ), fori=1,...,land
[ViVa. o V] = QX, 1)
() LON) = IN'— (Ziv+ ZoN+ ..+ ZAHTY
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where Z; ¢ LIZ % ) fori =1,2,..., land
A

Z,

C = R, V)

L2
(i) If N € Res L, then
L7Y(\) = X(IN — T)~'Y.

Part (i) of the theorem presents a right standard form for L and the proof is
that of Theorem 1;. Part (ii) gives a left standard form and is proved as in
Theorem 3;. Part (iii) is called a resolvent form and the proof is that of Theorem
1311. A result of this kind for operator polynomials but proved under more
restrictive hypotheses was presented earlier by Pattabhiraman and Lancaster
[11]. Extending the result of Corollary 2 to Theorem 13;; we have:

COROLLARY. For N\ € Res L,

sy IXT'(IN—=T)'Y r=0,1,...,1— 1
ML ()\)—{XT’(I)\—T)‘IY+I, =1

1.3 Inverse theorems. Given operators X € L(Z Y Z), T € L(Z ") which
are candidates for a standard pair we show when, and how, a corresponding
m.o.p. may be constructed.

THEOREM 2. Let X C L(Z L, X)), T € L(ZY) and assume that Q(X, T)
defined by (2) is invertible. Define Gy, ..., G, € L(Z, 2" by

[Gi1Ge...G] = QX, T
Then X, T, Y = G, form a standard triple for
L(N\) = IN'— XTYG: 4+ Goh + ... + G\
and L s the unique m.o.p. having X, T as « standard pair.
Proof. Let Gy, ..., G, be as in the statement of the theorem and define
A;= —XT'Gyn ¢ LE),i=0,1,...,1—1.
Then let LX) = >4 o AN with 4, = I. We have

AoX + A]XT + N + 141_1)(]”-‘1
= —XTUGX 4+ GoXT 4 ... + GXT-1). = —XT'GQ = —XT',

which is condition (3). This, together with the invertibility of Q, ensures that
X, T form a standard pair for L.
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But then the definition of G, implies
[o]

al ! ’

X, 1G, = { :

0
I__

and by comparison with the first of equations (12) we deduce that if V = G,
then X, T', YV is a standard triple for L. The uniqueness follows immediately.

In a similar way we obtain:

THEOREM 3. Let V ¢ L(Z, %2 and T ¢ L(Z") and assume that R(T, V)
defined by (9) is invertible. Define Zy, ..., Z, € L(Z L Z) by

Zy
= R(T, V)!
Z,
Then X = Zy, 1, Y form a standard triple for
LN =IN— (Zi+ZN+ ...+ Z\E)T'Y
and L 1s the uniqie m.o.p. having T, YV as members of a standard pair.

In the finite dimensional case there is an inverse theorem involving the
resolvent form of the following kind: If there exist operators X, T, ¥ for which
(14) is true then they form a standard triple. This result is not generally true
in the infinite dimensional case. The most we can expect is the following.

THEOREM 4. Lel L be @ m.o.p. and assume there is an X € L(F LX), T €
L(Z DYand Y ¢ L(Z, 2" such that

(14) L7'(\) = X(IXN — 1T)™'Y
when N € Res (L(N\)). Then Q(X, T) has a right inverse and R(T, V) has «

left inverse.

Proof. Following the argument of Theorem 14, it is found that conditions
(11) are satisfied and these imply that

X o - - - 0 I
XT : I o
QX,MHR(T, V) =| ~ |lyry...TVv"=]=| .},
: 0 1
‘sz‘l«1 I (5] o
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a triangular matrix of operators in which 6 denotes operators of no immediate
concern. Since the operator on the right is invertible the conclusion follows.

To see that (14) cannot generally imply the invertibility of Q(X, T°) consider
L(\) = Ix — 1T and let X, V be any operators on 4 for which XV = I,
VX 5 I.Then L7'(\) = X(IN — I)~'Y.

The implications of the one-sided invertibility of Q will be explored in some
detail in Section 2.

1.4 Eigenpairs. In this section we develop an earlier remark on the signifi-
cance of a standard pair X, T for spectral theory. In the case of a matrix
polynomial acting on C", T can take a Jordan normal form and the columns of
matrix X display the Jordan chains of L. An appropriate generalization for
the operator case will now be introduced. First a formal definition.

Let X, T be a standard pair for m.o.p. L and let ¥ C %# ! be an invariant
subspace of 7. Then the pair of restrictions (X|g, T'|g) is an eigenpair for L.
Note that, in the sequel, when (X|g, 7'|s) is asserted to be an eigenpair for L
it is assumed implicitly that X, 7 is a standard pair and that.% is an invariant
subspace of 7.

Two eigenpairs (X|g, T'|y) and (Xi|g,, T1|g,) for the m.o.p. L are equivalent
if there is an invertible D ¢ L(%1,.%) which is onto . and for which

F=D'Y¥, X,=XD, T.=D"'TD.
We illustrate this idea with some examples.

Example 1. Consider the standard pair 77 = Cyand X = [I 0 ... 0] of
Equation (13). If % is an invariant subspace of C; then X|g, Ci|ls form a
standard pair and, in this case X|, is the projection on.¥ mapping x € .¥ C
! onto its first component. In particular, if . has dimension one, then
x € & if and only if x = (x1, \xy, .. ., A7) and L(\)x; = 0 for some A € C
and x; # 0in% . Thus, X|, projects x € & onto an eigenvector x; of L.

Example 2. Suppose now that X, 7' is an arbitrary standard pair and that.¥
is a one-dimensional invariant subspace of 7. If \q is the complex number for
which Tx = N\ex,x € % and x 5 0, then Xx is an eigenvector of L correspond-

ing to the eigenvalue X,.
To see this we use part (i) of Theorem 1 and write

l
(15) L(\) = IN'=XT' Y, va+s?
i=1

where [V, Vao... V)] = Q(X, T)~% Then, if x € ¥, x #0

! 1
(16) x = (Z ViXTi‘l) x= 2, N Xx
i=1 i=1
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and we deduce Xx # 0. Then use (15) to write
4

L(\)Xx = [m’ — X7y )\oi'llr’,]Xx
i=1

1
=XMNox) —XT' > V. XT %
i=1

=X(\o%) — X(I''%)
using (16). Since 7"'x = \y'x it follows that X is the required eigenvector of L-

Example 3. More generally, let X, 7" be a standard pair, and £ a T-invariant
subspace with basis ey, ¢s, . . . . Assume further that there are complex numbers
N, Ae, ... for which Te; = Neyy 1 =1, 2,.... Then vectors Xe;, Xes, . .. are
eigenvectors of L with corresponding eigenvalues A\, A, . . . .

We omit the proof but note that the hypotheses of this theorem correspond
to the study of subspaces & for which the eigenvalues \; (not necessarily
distinct) of 7]g (and hence of L) have only linear associated elementary
divisors.

Example 4. The prototype result for nonlinear divisors is presented in the
next result. First we need the definition (now widely used in the literature) of
a Jordan chain (chain of generalized eigenvectors) for L. The vectors x1, xs, . . .,
x, € Z form a Jordan chain of length k corresponding to eigenvalue Ao of L if
x1 #0and, forp=20,1,...,k — 1,

=1 (1)
Z() ;‘,L ()\())xp‘i+1 =90

THEOREM 5. Let (X|g, T'ly) be an eigenpair for m.o.p. L and let L be a finite
dimensional subspace of Z 1. Let ey, ey, . . ., e be a basis for & and assume that
the representution of 1|y in this basis is « Jordan normal form. If e;, eiya, - . .,
eirr 15 « busis for « Jordan cell of T|g corresponding to eigemvalue Ny then
{Xey Xeor, ..., Xew, ) is a Jordan chain for L corresponding to etgenvalue \o.

Proof. Without loss of generality, assume that 774 is unicellular, i.e. ey, .. .,
e, is a basis of the unique Jordan-cell of T4 corresponding to eigenvalue .
Defining e; = 0 if 2 < 1 we first prove

m & m m—1 ;m = Oy 1y L]
A7) T7, = ;, (i)“ G-t \p=1,2,..., k.

Proceeding by induction on m note the result is trivially true when m = 0.

Then
Tm+16’,, = Z ({?)Aom¥i’1‘€p_i = Z (7;1) )\()m_l(x()ep_t “l" ep—i—l)

=0 1=0

m m - m m41—1i ( m m+1—
= ( 0 )“ R [(z‘)“ T (i . 1)>‘0 " t]e"“
m+1
1 1
+ (Z)ep—m—l = Z (mj- ))\0 + iep—ty

i=0
as required.
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The definition of the 17; implies

-1 _

Z I/H-l XTZ = I

=0
so that, using (17) we may write

-1 -1 i .
i - 1 i—j
(18) 1= 2 VinlX (Tepi1) = D VX Y (]) Ao epi1 ;.
i=0 =0

i=0

We can now proceed to verify the theorem:
Zp L, w
1
— ;" L ()\O)Xep_ i+1
=0 !

Y —t =g iy
= Loalgm N AT L o X

=1
! U=l

=2 (f) N Xe, i — XT Z Z (i) NV X e

i=0 =t =

Now use (18) followed by (17) to obtain

p

1 O FATR .
Z ;?L(i)(XO)Xep—iH = Z (i))‘ol Xep 11 — XTepi

=0 =0

L1 i Lo(1 _
= Z;} (1 )\ol Xe,,_i“ —X ;} 1/ )\Ol 1ep_i+1 = 0

1.5 Applications. In this section we consider briefly some fundamental
applications to constant coefficient differential and difference equations on
Banach spaces. The proofs are generally omitted and are natural generaliza-
tions of those in [3]. First consider a homogeneous constant coefficient differen-
tial equation of order I on%Z". Thus, if Ao, 41, ..., A -1 are the coefficients of
an m.o.p. as in (1), we consider the equation
19) u@) + A=)+ .o+ A () + Au(t) =0
where ¢ is the real independent variable.

ProposiTION. Let X, T be a standard pair for the m.o.p. of Equation (1). Then
every solution of (19) has the form
(20) u(t) = XeT(=tog
for some real tyand somec € 2.

Proof. With C; the first companion operator (4) we can write (19) in the
form 9@ (¢t) = Cyv(t) where
0!

X (¢)

V() =

x (=D (1)
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It is well-known that every solution of this equation has the form v(f) =
e€10=t0¢, for some real ty and ¢; € Z . Examining the image of v(¢) under the
map X; = [/ 0...0], we obtain x(¢) = X,e“10=0¢;. But we have seen that
X,, Cyis a standard pair for L (Equation (13)) and the conclusion follows from
the remark at the end of Section 1.1.

Now let % be the linear space of piecewise continuous functions (for example)
on [te, ). For the inhomogeneous problem we have:

ProrositioN. Let X, T, Y be a standard triple for m.o.p. L of Equation (1)
andletf € U . Then every solution of

1) u) + A4 =0+ ...+ Au(t) = f(1)
has the form

t
22) u() = X" e+ X f eV Yf (r)dr
14

for some real tyand somec € 2.

The proof of this theorem is by verification and uses part (iii) of Theorem 1
along with the biorthogonality conditions (11). Using this representation of
the general solution it is possible to obtain an explicit formula for the solution

of the initial value problem with ™ (¢y) = u,, r =0, 1, ..., 1 — 1. Thus,
differentiate (22) [ — 1 times and put ¢ = f, to obtain
X Ug
XT U
. C = .
XT Ui

We recognize the operator on the left as Q(X, 7°) whose inverse can be written
down using (7) and (9). Thus

Uo
Uy

¢ = R(T, V)B

An attack can be made on two-point boundary value problems by assuming
that there is a decomposition 2! = % ® Z where both % and Z are in-
variant subspaces of 7" and, as before, (X, 7, V) is a standard triple for L.

If P is the projection on % along 2, define

X,=XP, Xo=X(I—P), Yi=PV, Vo= (I —P)Y,
T, = PTP, T, = (I — P)T'(I — P).
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Then define the operator valued function G{¢, 7) on [¢, b] X [a, b] by

Gl r) = {—XleT‘(H)Yl ifa<i<r
T A\ Xee™ Y, e 120,
and it can be verified using Theorem 1, part (iii) and equations (11) that G has
the properties required of a Green’s function:

(a) As a function of ¢, G satisfies (19) on [¢, b] X [a, b) provided ¢ 5 1.
(b) Differentiating with respect to ¢,

, , 0 ifr=0,1,...,1—2
G()’l='+_G()|‘=’—:{1 lif;=l—1.

(c) The function

b
u(t) = f G, r)f(r)dr
is a solution of (21).
Finally, we comment on the difference equation
(23) A0u7+Alur+]+'-~+Al—1u771+ur=frv r = 1v2y~"r

where {f,};721 C % is given and solution sequences {u,}i>; CZ are sought.
Again, the operator coefhcients 4, 44, ..., A, define the m.o.p. L of (1).

ProrosITION. Let X, T, Y be a standard triple for L. Then every solution of (23)
has the form u, = X,

r—1

(24) w, =XT"%+ 3 XTI, r=2,3,...,

k=1
for somec € XY,
As in the case of differential equations, consider the solution determined by

initial conditions. In this case, u, = v,, say, for r = 1, 2, .. ., . Then the
vector ¢ of (24) must have the form:

U1
Vo

¢ =R(T, Y)B

V]

where R(1', V) and B are defined by (9) and (7).

2. Generalizations of the invertibility of Q.

2.1 Omne-sided invertibility of the operator Q. We abbreviate Q(X, T') and
R(T, Y) to Q and R where this causes no confusion. In section 1.3 it has been
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shown that the invertibility of Q, or of R, is sufficient for the solution of the
inverse problem. If either of these operators has only a one-sided inverse we
are still able to draw some interesting conclusions. Suppose now that both 2~
and % are Banach spaces.

THEOREM 6. Let X € L%, %) and T € L(%') be such that the operator
QX, 1) € L&, 2" has a left inverse Q~'. Define operators A, € L(Z") by
A= —XT'Gy, 1 =0,1,...,01 — Lwhere [Gy...G)] = Q, ¢ LI %).
Then

(25) A0X+A1XT+...+A171XTZ—1+XTI=0.

Let L be the m.o.p. on 2 defined by L(\) = Yoo AN, A, = I, and let C, be
the first companion operator of L. Then

(26) T = Q7w Cil 4@
where M = Im (.

Proof. Using the definition of the 4 ; we have

A()X + P +Al_1X]’1—l = I:AOA 1. '-AI—I]Q =
—XTUGy...G)Q = —XT7,

which gives (25). With L and C, as defined it is easily verified that, as a conse-
quence of (25), Q1" = C,(Q. It is apparent from this relation that.# is invariant
under C;. Using the decompositionZ ' = (Ker Q') @ -#, the representation
(26) follows from this fact.

Note also that the left inverse is unique if and only if the 4 ; are uniquely
defined, and in this case Q must be invertible.

This theorem admits the extension of operator pairs X, 7" (1" ¢ L(#)) to
standard pairs; the prototype standard pair being [10...0], C, (C, € L(Z™)).
The need for such extensions has arisen in the work of Gohberg, Kaashoek and
Rodman [2], for example. A special case of the theorem gives important new
information in the finite dimensional case when X, 7" are, say, n X p and
p X p complex matrices with 7" in Jordan normal form. Suppose that we are
to construct a monic matrix polynomial L of order [ for which the columns of
X form corresponding Jordan chains. Suppose, however, that X does not have
enough columns in the sense p < /n. The theorem then says that as long as Q
has full rank, in which case a left inverse exists, then the above construction
can be used to determine an L which will have a standard pair which extend X
and 7" appropriately.

Next we have a dual theorem:

TuEOREM 7. Let X € L%, Z) and T € L(%) be such that the operator
QX, T) € L, 2" has a right inverse Qr~\. Define operators Z, ¢ L(Z) by
Ai = "‘XTII/’H,] ,1: = 0, ]., N ,l — 1 where I:T/rl e Vl] = QR—I € L(Q/l'@/)y
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and hence the monic operator polynomial L(N) = 3o AN, A, = 1. Then if
M = Im Q=" and P is the projection in L(%) on M along Ker Q, we have

(27) C = Q(PT)LIlQR—l-

Proof. Using the definition of the 4, and the fact that QQz~! = I it can be
verified that

XT
QTQr" = : [(Vi... V] = Cu
XT!
In view of the decomposition % = (Ker Q) ®.# the relation (27) follows
immediately.

The interpretation of this result is that existence of a right inverse for Q
admits the construction of a standard pair by restriction of the given pair X, 7.
Heuristically, if X, 7" contain redundancies or inadmissible duplications then,
provided Qz~! exists, these are removed in the construction of a standard pair
via equation (27).

The existence of Qz! and a set of operators Ay, ..., A, satisfying (25)
does not imply that Q is invertible although, in this case, the operators 4y, . . .,
A ,_; are necessarily unique. For example, take / = 1 when Q = X € L(%)
and assume XV = I, VX # I. ThenZ = (Ker X) ® (Im V). Select any
operators Ty € L(Ker%") and T, € L(Im V) and define 7 € L(%") by

o0 ]
T”[o T,
In this decomposition of &', X and V have representations

(28) X = [0X), V=[O}
Vs
where Xo € L(ImV, %), Vo € L(Z,Im V) and VoXs = I|pmy. Thus VX # 1.
Furthermore, since X7 = XT VX the equation 49X + X7 = 0 has a solu-
tion 4y = X1T'T.
For the uniqueness, suppose that A, ..., 4,_; also satisfy (25). Then

(4o — /IO)X + .. 4+ A= Al—l)XTl_l =0

and the existence of a right inverse for Q implies 4, = 4;fori=0,1, ...,
I —1.

To see that the existence of Qz~! does not imply the existence of operators 4 ;
for which (25) is true, consider again the case / = 1 with X ¢ L(Z), XV = I,
VX # 1.
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Let 7 € L(Z") have the representation

| T{I
T“[n T,
with respect to the decomposition (Ker X) @ (Im V) of Z and assume 1°; 5 0.

Recall the representations (28) for X and V. Now the relation 4,X + X7 = 0
has the form

[0 AoXo] + [XoT5 XoT5] =0
and T3 # 0, Z, invertible mean that there is no solution 4.

We conclude this section with a result characterizing the case in which Q is
right invertible and operators 4o, ..., A,_; € B(Z') exist for which (25) is
true. First, we need the following concept introduced by Gohberg, Kaashoek
and Rodman [2]. Given X € L(Z 4, % )and T € L(ZY) let Q,(X, T), (more
briefly Q,) denote the operator in L(Z !, 2 ") defined by

X
XT
(29) Q.(Xh7T) =
X]“T——l
and note that, in the notation of the earlier remarks, Q (X, 7)) = Q, = Q.

Define the tndex of stabilization of the pair (X, T') to be the least positive integer
p for which Ker Q, = Ker Q, forallr = p. Write p = ind (X, 7).

THEOREMS. Let X € LZ L, %), T € L(Z"") be such that Q (X, T) is right in-
vertible. Then there exist Ao, Ay, ..., A1y € L(Z) for which (25) is satisfied
if and only if ind (X, 1) = I

Proof. (a) We show first that ind (X, 7)) = [/ is equivalent to
30) 7 (Ker Q,) C Ker Q..

Given this inclusion, if x € Ker Q,, then 77x € Ker Q,forr = 0,1, 2, ....
It follows that x € Ker (0;77) and x € Ker Q, forr = 1, 2, .... Thus, (30)
implies Ker Q; C Ker Q, for » = [ and hence ind (X, 1) = [

Conversely, suppose ind (X, 1') < [. Then by definition of the index, r =/
implies Ker Q; = Ker Q,. But it is easily seen that Ker Q,.; C Ker (Q,7).
Thus, x € Ker Q, = Ker Q1 implies x € Ker (Q,;7") and this is equivalent
to Tx € Ker Q,.

(b) As a second preliminary we need the decomposition

31) Z'=KerQ@® (Ker X N Im Q™) @ Im V.
To see this note first that XV, = [ impliesZ ! = Ker X @ Im T, so we are
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done when we show that
Ker Q @ (Ker X N\ Im Qg7 ') = Ker X.

Now QQz ! = I yields Z' ' = Ker Q ® Im Qz! so the sum on the left is
certainly direct. Then Ker Q C Ker X means the subspace on the left is con-
tained in that on the right. For the reverse inclusion let x € Ker X and write
x = x1 + x2 where x; € Ker Q, x2 € Im Qz7!. Then x: = x — x; € Ker X
so that x € Ker Q ®@ (Ker X N\ Im Qz™') as required.

(c) Now to go directly to the proof of the theorem, observe that Ao, 44, . . .,
A1 € L(Z) satisfy (25) if and only if they have the form 4, = —XT'V 4,
i=20,1,...,] — 1 (as in Theorem 7). This means that (25) may be written
in the form

—(XTHVQ, + XT' = XT'(I — VQ,) = 0.

Let P = I — VQ,, the projector on Ker Q;along Im IV = Im Qz7}, so that the
existence of Ao, A1, ...,4,_1 € L(Z) isequivalent to the statement XT"'P = 0.

Consider the representations of operators X, 7%, P with respect to the
decomposition (31):

'Sli SQ:[ S3i I O 0
X = [OOX2]1 Tl = S” S5i 567' y P = O O 0
S7: Ssi Seu 0 0 O
and note that X, € L(Im Vy, ") is invertible and XT? = [S7;Ss;Ss:]. The

condition X7 gere = 0,7 =0,1, ..., — 1 then implies that S;; = 0 for
1=1,2,...,1 —1 and the condition XT'P = 0 may be written S;;, = 0.
Thus,
X
XT
D Ker Ql-

Ker Q41 = Ker
XT!
But we have seen in part (a) that this is equivalent to T'(Ker Q;) C Ker Q,
and this, in turn, is equivalent to ind (X, 7)) = [

A sequence of parallel remarks can be made, and conclusions drawn, con-
cerning operator pairs ° € L(Z'Y), YV € L(Z,% ") via the study of operators

R(T,Y)=[VTY...T1Y]
fromZ " to Z ' For example, the dual of Theorem 6 is:

TuEOREM 10. Let T € L(#') and Y € L(Z", %) be such that the operator
R(T, Y) € LZL %) has a right inverse Ry='. Define operators 4, € L(Z)

https://doi.org/10.4153/CJM-1978-088-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-088-2

1060 I. GOHBERG, P. LANCASTER AND L. RODMAN

by A, = —W T'Y,1=0,1,...,1 — 1 where
W
= ]eR—ly
W,
and hence them.o.p. L(\) = Yoo AN, Ay = 1. Then
VAy+1TYA4,+ ...+ 1T'YA, .+ T1T'Y =0
and, if Cy1s the second companion operator of L, then
T = R(PCy| 4)R!
where M = Im Rz=' and P € L(Z") is the projection on M along Ker R.

Once more, a result is obtained admitting the extension of the operator pair
to a standard pair.

2.2 The case of Q(X, T)~! unbounded. As in the preceding section we consider
pairs of bounded operators X € L(Z, %) and T ¢ L(Z ') and the derived
operator Q(X, T) € L(Z"). Suppose Ker Q = 0 and.# = Im Q is a proper,
dense, subspace of Z"'. Then Q has an unbounded inverse Q—! defined on .#.

Assume that it is possible to write Q~! in the form [V, ... V'] where each
Vi Z —% " may be unbounded. For example, this possibility exists if we
can write

1
M=, @MNZL
i=1
and % ; is the ith component space of 2.
Then we can define an associated m.o.p. L by
L) = IN' = XTY (V4 Vo4 ... 4+ VAR

where, in general, the coefficients may be unbounded. However, it is possible
for them to be bounded as the following example shows.

Let I = 2 and B € L(%) with Im B a proper, dense subspace of Z and
Ker B = 0. Consider the pair X, 7 defined by

0 0
X =11, T_[O B:I
Then

T AN [ Ty

LO) = I\ — [0 BQ]H: (ﬂ + [_le]] — I\ — B,

as required.

and
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When L has bounded coefficients then, of course, the associated first com-
panion operator C; is bounded and we have Q7 = C;Q. Thus C; and 7" may
be said to be similar even though the transforming operator Q has an un-
bounded inverse.

In general, even though 7" and C; may both be bounded, one cannot assert
that they are related by a ‘“‘bounded’ similarity transformation. To see this,
consider the above example again and let B be compact. We have

0 0 0 I
7“:[0 B]’ C‘Z[o B]

and assume there is an .S € B(Z ?) with bounded inverse for which ST = C,S.

Write
s &]
S“[& S,

and it is found that ST = C;S implies S; = 0, S.B = S, and S, has a bounded
inverse. Thus, S2B8S,~! = I which is not consistent with the assumed compact-
ness of B.

In this example it is easily seen that T is not a linearization of the m.o.p.
L(\) = IN* — B\ we have associated with (X, T').

3. Multiplication and division theorems.

3.1 The basic theorems. Results are presented in this section which develop
relationships between the spectra (via standard triples) of products of m.o.p.s
and of divisors of m.o.p.s when such exist.

THEOREM 11. Let Ly, Ly be m.o.p. on %" with standard triples X, Ty, Y1 and
X, Ts, Yy, respectively and let L(N) = Ly(N)Ly(N). Then

(@) L7'(\) = X(IN — T)'Y

where

— 1 — Tl Y1X2:| _ l: 0 :l
X—Wim,T—[O Pl I

(b) X, T, Y 1s a standard triple for L.

Proof. The proof of part (a) is just that of Theorem 17;; provided Corollary
1 of Theorem 13;; is replaced by its operator version, Theorem 1, part (iii)
of this paper.

For part (b) the proof used in II relies in an essential way on the finite di-
mension of Z°. More generally, let L;, L, have degrees k,, k; and write [ =
k1 + k.. It will be proved that the operator Q(X, T) on Z ! is invertible and
this, combined with (a) implies that X, T, ¥ form a standard triple.
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Using the definitions of X, T" we have

X,
X:T,

X, T) =

X, T,-!

0
XIYIXQ

-2 :

Z (XlTliYI)X2T2,_2_i

i=0

1. GOHBERG, P. LANCASTER AND L. RODMAN

J

and then the biorthogonality relations for X, 1%, Y, yield

X

X1 lel_l
X,\Ty"
‘)(1 T1k1+1

X, T) =

X1,

—

0
0
1 X,
Z (X1T1i+k1—l yl)X2T21_i
i=0 .
ky—1 .

> (X TyH=1yy)

k=0

(X2 TZkz— 1- i)
-

In a top left block of this matrix representation we have Q(X;, 71) which is
invertible and then the complementary bottom right block can be factored in

the form

X1T1l—2Y1 X1T1l_3Y1

0 X
. XoT,
I 0 .
XiT\/"Yy I || X1kt

which is clearly invertible. It follows that Q(X, 7") is invertible, as required.

It turns out that, by representing m.o.p. in right (or left) standard forms,
an explicit representation of quotients and remainders in a division process
can be obtained. This is described in:

THEOREM 12. Let L, L, be m.o.p. on Z of degrees |, k and having standard
triples X, T, Y and X,, T, V. respectively. Assume 1 < k < | and write L,

Ly in right standard form:

(32) L(\) = IN' = XT'(Fy+ Fah 4 ...+ FAY).
33) Li(\) = IN — X\ TVF(Gy 4 Gah + ... 4 GNY).
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Define
(34) Gaﬂz XITlaGﬂv 1 éﬁ éky a=011v2v"'
l

(35) Faug=XToFs, 1 =825l a=012....
Then

L) = Z2:(NLi(N) + D:(N)
where

1—k—1 1
Di(\) = INTF 4 Z;) (G,_,,-l,k - > F,iG,;,,_z,k) \?
=

i=p+2
and

k

1
Ds(\) = El (Gw - ; FlJ‘Gi—l.:i))‘]—l-

j=

The proof of this theorem uses only algebraic properties of the noncom-
mutative algebra L(Z ) and makes no reference to the dimensionality of Z .
Thus, the argument of Theorem 6; applies almost verbatim. There is a dual
theorem, the generalization of Theorem 7; cast in terms of left standard forms.

3.2 Characterization of divisors. Let L be a m.o.p. with standard triple X, T,
Y. The next theorem characterizes divisors of L by means of certain invariant
subspaces of 7. Recall the notation introduced in Equation (29).

THEOREM 13. Let L be a m.o.p. on %" of degree | with standard triple X, T, V.
Let & be an invariant subspace of T on which Qn(X, T), viewed as an operator
from L to X%, is invertible. Then there exists a right divisor L, of L with the
representation

(36) Li(\) = IN' — XTH(Wy 4+ Wk + ... + W\=Y)
where W1, ..., Wi € L(Z,L) are defined by
(37) (Wi Wa.... W] = Qu(X, T)|z"

Conversely, for every monic right divisor L, of L of degree k there is a unique
invariant subspace L of T such that Qw(X, T)|g is 1nvertible and (36) holds.

The proof is that of Theorem 8;.

Remark 1. The invariant subspace.? of T associated uniquely with the right
divisor L, of L is called a supporting subspace for L with respect to 7.

Remark 2. As pointed out in paper I, it follows from the details of proof of
Theorem 13 that Qi (X, T)|e, determines the similarity transforming T'|g to
the first companion operator for L;. Thus:
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COROLLARY. If we write Li(\) = S o B\, B, = I, then

) I 0 0 ]
0 0 I

Qx(X, 1|70 (Qu(X, T)|g)! =
0 I
| =By —B oo —Bi

The following theorem is due to Langer [8]. It can be proved directly from

the more primitive Theorem 12 but we present it here as a consequence of
Theorem 13.

THEOREM 14. Let L be an m o.p. onZ" of degree L and let Cy € L(Z?) be the first
companion operator for L. There exists an m.o.p. Ly of degree k < [ which divides
L on the right if and only if there exists an invariant subspace £ of C, of the form

L = ImI:IGk]

for some G € L(Z*, 2 =), (and I, € L(Z*)).

Furthermore, if the right divisor Ly exists, G = [Gy—144,4, 2 = 1, ..., — &,
andj = 1,...,k,then
(38) Li(\) = IN — (Gr1 4 Grah + ... + GueNY).

Proof. Let C, have an invariant subspace % as described and let W = [é] .

Now themap X = [I0...0] fromZ%Z 'toZ together with C, form a standard
pair for L. Thus,

(X, C1) = [, 0] € L&\, 2%)

and foranyx € 2% Q,(X, C1)|4 maps I:Gxx:] onto x. This operator is obviously

invertible. Furthermore, it is apparent that

o I}

%X, C)le™ = [ a

Thus, in (37) we have [W,... W] = W and, since
XCk=100...010...0]

with I in the k + 1 position, XCi*IWW = [Gy1 . . . Gii]. It follows from Theorem
13 that L; of (38) is a right divisor of L. In fact, if [Gy...Gy] = Qu(Xy, Th)™!
for any standard pair X, 7'y of L; we can go further and identify

(39) Giy = XaTWiG, i=01,2..., j=12 ...k
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For the converse, the existence of the right divisor L; ensures (by Theorem
13) the existence of an invariant subspace . of C, on which Qx(X, C)) is
invertible. Since Q. (X, C1) = [1;0] it follows easily (Part (a) of the lemma for
Theorem 9;) that.¥ = Im [G[ :I for some G € L(Z°%, Z =*). This completes
the proof.

The case of divisors of degree one is of particular interest (see Langer [7],

for example) partly because of the connection with the solution of operator
equations provided by the remainder theorem:

There exists a right diwvisor Li(\) = IN — D for m.o.p. L if and only if
40) L(D)=Ay+AD+ ...+ A, D1+ D' =0.

Putting £ = 1 in Theorem 14 we obtain G;; = X,171'X,~! from (39) and
writing L;(\) = IN — D we deduce:

COROLLARY. The m.o.p. L has a right divisor IN — D, D € L(Z) if and only if
there exists an invariant subspace L of C of the form

I

D'
This result can be found in the work of Langer, and for the case of a
spectral divisor, in a paper by Mereutsa [10].

3.3 Characterization of the quotient. We proceed now to a description of the
quotient polynomial resulting when Theorems 13 and 14 apply.

THEOREM 15 Let L be an m.o.p.and X, T, Y be a standard triple for L. Define
Qu(X, T) by (29) and R, (T, Y) € L(Z5,27") by

Ro(T, V) = [YTY...T*1Y],

Let & be an invariant subspace for T on which Qy(X, T)|g is tnvertible. Then
Z'=Y @ ImR,,

and themap B : X% — Im R ,_, generated by R ,_; is invertible.

For 1 i<k and 1 £7 21—k define Wi & -, and Z;:
Im R, — Z by

Z ]
Zs
0X, Dl = [Wi... W], #'=|

Z
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Thenif P € L(Z"Y) is the projection on Im R ,_y along &,
(@1) L) =[INF = (Zi+ ...+ Zi\ T PTPY]
X [INC — XTH Wy + ... + WM.

As indicated in Paper I, the factors in (41) require little modification to
produce standard forms. The description of the left factor as a right standard
form can also be found in that paper.

If 2 is a Hilbert space—inducing the usual Hilbert-space structure on 27,
r = 1,2,...and.# is the orthogonal complement of ¥ in %", then

(R l—k|m)—1 T'(Ril.a)

is the second companion operator associated with the left factor.

It is also pointed out in Paper I that the subspace Im R,_; plays no essential
role; the results can be formulated in terms of any complementary subspace for
& in% . Using the standard triple (13) the geometry of subspaces is clarified
as indicated in the following result. The proof is a straight-forward verification
and is therefore omitted. Let P, € L(Z ") be the projection onto the first &
components of Z ¢ (so that P;, C, form a standard pair).

THEOREM 16. Let L be an m.o.p. of degree | with associated first companion
operator C1. A subspace & C XV is a supporting subspace of L with respect to
Cy associated with right divisor L, of degree k if and only if the following conditions
hold:

(i) & is an invariant subspace of C;.
(ii) The subspace (I — P)Z ' of X ' is a direct complement of L .

When these conditions hold, then

L1(>\) = I}\k = I)\k — Plclk([fl + I/Q)\ —I'" e + Vk)\k—l)

where (V... V] = (Pilg)™n
If LN) = La(N)Li(N) and we define

0

Y=| |, R =[VYGY... 1Y),

0
I

and X as the tnvertible map from % =*to Im R ,_, generated by R ,_;, then

Lo(N) = INF — (Zy 4+ Zox+ ... + Z NTY)PCRPY
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where P is the projector on Im R _; along ¥ and
Z
= %_1
Zi1x
We turn now to the possibility of extracting successive right divisors.

THEOREM 17. Let L be an m.o.p. of degree l. Let £ 1, ¥ s be supporting subspaces
for L (with respect to T') associated with monic right divisors Ly, Ly of L degrees
ki, ko, respectively. If ky < ky and £y C & then Ly is a right divisor of L.

The proof of this theorem is that of Theorem 10; and the natural extension
to a chain of nested supporting subspaces also follows, as in Theorem 11;.

Theorem 15 can be combined with the resolvent form (iii) of Theorem 1 to
obtain the next result. The proof is just that of Theorem 18;;.

TaEOREM 18. If m.o.p. L has a standard triple X, T, YV, L = L,L, where
Ly, Ly are m.o.p. and L is the supporting subspace of L, with respect to T then,
in the notation of Theorem 15,

(42) Li7'(N) = X|g(IN = Tlg)"' Wy,
43) Ly '(N) = Zik(IN — PTP|1mp)7tY.

3.4 Divisors and the spectrum. It is apparent that, if L, is a monic right divisor
of L, then the point spectrum of L, is contained in that of L. On the other hand,
it is not necessarily the case that ¢(L;) C o(L) as the following example of
Marcus and Mereutsa [9] shows.

Example. Let V be the unilateral shift operator on /, and V* its Hilbert
adjoint. It is well known that V*V =1 # VV* and that o¢(IN — V) =
{NEC: [N 21} = ¢(IN — V*). Define m.o.p. L of degree two by

(44) L) = IN — (V*+ N+ T = (IN — V*)(Ix — V).

Then it can be verified that o(L) = {N € C: |\ = 1}.
As an illustration of the Corollary to Theorem 14 observe that

| o I
Cl_[-[ v+ V]

and the right divisor displayed in (44) has the associated supporting subspace

-

which is invariant under C.
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Note also that, in the representation of the quotient given in (41)

Zy=10 I, P=[_OV ﬂ Y:[g}

from which it is easily verified that the quotient is, indeed, IN — V*.

In contrast to the above example, the next theorem characterizes some
divisors whose spectra are proper subsets of the spectrum of the ‘“‘parent”
m.o.p. First some definitions: A point X € C is a regular point of m.o.p. L if
L(\) has an inverse in L(Z"). Let T be a contour in C consisting of regular
points of L. A monic right divisor L, of L is a T spectral right divisor of L =
LoLy if o(Ly), o(Ls) are inside and outside T, respectively.

THEOREM 15. Let L be an m.o.p. with standard triple X, T, YV and let L, be a
T-spectral right divisor of L having associated supporting subspace & with
respect to T. Then ¥ = Im Ry where Ry is the Riesz projector corresponding to
T andT:

Re = - ff (IN — T)"'
27 r

Conversely, if T is a contour of regular points and & = Im Ry is the sup-
porting subspace for the monic right divisor Ly of L with respect to T, then L, is
a T-spectral right divisor.

Proof. The first statement is proved as in Theorem 20;;. For the converse
we have that.¥ = Im Ry is the supporting subspace for divisor L;. As described
in Theorem 15 we have the decompositionZ ! =% & Im R ,_; and then.¥ an
invariant subspace of 7" implies that the representation of 7" with respect to
this decomposition has the form

|7l 7w ]

r= [ 0 PTP

where P is the projection on Im R,_; along . Now, from the classical theory
(Dunford and Schwartz [1, Theorem VII1.3.20]), ¢ (IN — 1'|4) is precisely the

subset of ¢ (IN — 1') = o(L(\)) inside T. Furthermore, the above representa-
tion of 7" implies that

o(IN = T) = o(IN — T]y) \J o(IN — PTP).

Hence, o (IN — PTP) is outside T'. It follows from (42) and (43) that ¢ (L;()\))
= o¢(IN — T'|g) and o(L2(\)) = o(IN — PTP) and so L, is a I'-spectral di-
visor of L.
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