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REPRESENTATIONS AND DIVISIBILITY OF OPERATOR 
POLYNOMIALS 

I. GOHBERG, P. LANCASTER, AND L. RODMAN 

I n t r o d u c t i o n . Let 3C be a complex Banach space and L ( J ? ) the algebra of 
bounded linear operators on 2£. In this paper we s tudy functions from the 
complex numbers to L(^T) of the form 

(1) L(X) = I\l + A j^X1-1 + . . . + A,\ + A0 

where A0, A\, . . . , A z_i and the identi ty I are members of L(«âT). Such a 
function is referred to as a monic operator polynomial and will be abbreviated 
to a m.o.p. For the case in which 2£ is of finite dimension, the subject mat te r of 
this paper has been investigated by the authors in two earlier papers, [3] and 
[4]. Here, we pay special a t tent ion to the case in which 9f is of infinite dimen
sion and emphasize those new features introduced by this more general hypo
thesis. Although this paper can be read independently, we shall rely heavily 
on the two earlier papers for those proofs in which the dimension of 2£ plays 
no par t . References to theorems and equations in those papers will be distin
guished with subscripts I and I I , as appropriate . 

In Section 1 of this paper several concepts are introduced leading up to the 
three s tandard forms for a m.o.p. described in Theorem 1 and concludes with 
some applications to differential and difference equations. Inverse theorems 
and spectral properties associated with eigenvalues are also developed. Section 
2 consists entirely of new material which arises very natural ly on consideration 
of spaces 2£ of infinite dimension, al though the questions concerning one-sided 
invertibility are new and significant in the finite-dimensional context. In 
Section 3 divisors of a m.o.p. are characterized using the concept of support ing 
subspace and spectral properties of products and quotients are investigated. 

Theorem 2 7 n concerning ' ' reducible" systems in the theory of control can 
be generalized to admit spaces of infinite dimension in an obvious way. This 
will not be presented explicitly. 

1. Representations and applications. 

.1.1 Standard pairs and standard triples. Let L(«âT, (W) denote the linear space 
of bounded linear operators having Banach space 2£ as domain and range in 
Banach space &. By <5Tr, r a positive integer, we mean the direct sum of r 
copies of 3f. 
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Consider an m.o.p. L as described in Equation (1). In the finite demensional 
case it has been shown that information about all eigenvalues and generalized 
eigenvectors of L can be concentrated in two matrices one of which is in 
Jordan normal form. On assuming «$T to be infinite dimensional this device is 
no longer available but it will be shown that the spectral information about L 
can be summarized in the properties of just two operators. Such a pair is as 
follows: Operators X £ L(9f\ 3T) and T (E Bffi1) form a standard pair for 
the m.o.p. L of (1) if the operator Q(X, T) Ç Lffi1) defined by 

(2) Q(X, T) = 

X 
XT 

X T i - i 

is invertible and 

(3) AoX + ArXT + + At-xXT1-1 + XT1 = 0. 

For the existence of a standard pair we have simply to take T = C\, the 
first companion operator for L given by 

(4) Ci 

0 
0 

I 
0 

0 
I 

0 0 
-Ac, -Ai 

0 
-A,_2 

0 
0 

and X = [I 0 . . . 0]. In this case Q(X, d ) = / and XT' = [-A0 -Ay . . . 
— Ai-i] from which (3) follows. 

For any X 6 L0t\ 3£) and r ç L ( f ' ) it is easily verified that, with 
Q(X, T) defined by (2), 

(5) Q(X,T)T = CiQ(X,T). 

Thus, X, T a standard pair implies that T is similar to d . 
For brevity, we now drop the explicit dependence of Q on X and T from 

the notation. There is an asymmetry about a standard pair X, T which is 
removed by going to the notion of a standard triple. Let R be the invertible 
map in L(^" ' ) defined by the biorthogonality relation 

(6) RBQ = / 
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where B £ Lffî1) is the invertible operator given by 

(7) B = 

Al A2 

A2 At 
A^ I 

I 0 

A^ 
I 

I 
0 

Then define the second companion operator C2 for L by 

(8) C2 = 

0 0 • 0 -A0 

/ 0 • 0 -A, 
0 I 

/ 0 -A i-2 

0 0 • • 0 / -A^ 

and it can be verified that C2 = BC\B~l. Then, using (4) and (5), 

C2 = BdB-1 = B(QTQ-l)B-1 = R~lTR 

so that RC2 = TR. The structure of C2 demands the following representation 
for R (dual to that for Q) : 

(9) R = [YTY. . . r ' ^ F ] 

where F G Bffî,^1), together with the relation 

(10) YAQ + TYA, + . . . + Tl-lYAi-X + TlY = 0. 

Now the representation of B~l as a matrix of operators will also have 
triangular form (ref. Equation (7)). Exploiting this fact, as was done in [3], 
it follows that X, T, Y satisfy 

(11) XT'"1 Y = 
0 1 , 2 , . . . , / — 1 

and we call X £ B(3t \ &), Te B{2£1) and F f ^ f ' l a standard triple 
forL. 

Give that X, T are a standard pair, the third member F of a standard triple 
is uniquely determined by the above construction. Conversely, if T, Y belong 
to a standard triple then R = R(T, Y) defined by (9) is invertible and X can 
be determined. We note that the relations (11) can also be written in the 
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equivalent forms: 

(12) Q(X, T)Y = , XR(T, Y) = [0. . . 0 7]. 

Beginning with the standard pair [I 0 . . . 0], d we find from (6) that 
JR(7\ F) = 5 - 1 which implies that 

(13) Xx = [ J 0 . . . 0 ] , Cu and Fj = 

0 

form a standard triple. Similarly, there is a standard triple 

X2 = [0. . . 0 7], C2, and F2 = 

0 

If (X, r , F), (Xi, 2"i, Fi) are both standard triples for the m.o.p. L, then 
it is easily verified that there exists an invertible M £ B(3Tl) such that 

Xl = XM, Tx = M~lTM, Fi = M~lY. 

Indeed, the map M is given by M = Q(X, T)~lQ(Xu 7\). 

1.2 Standard forms. Parts (i) and (ii) of the next theorem have their origin in 
a search for an appropriate generalization of the Jordan normal form from 
n X n matrices to n X n matrix polynomials. Part (iii) began as a matrix 
polynomial version of the spectral resolution of a resolvent operator. These 
ideas have been developed in [3] and [4]. First define the resolvent set for L by 

Res (L(X)) = {X e C : L " 1 ^ ) exists in L(#")}. 

THEOREM 1. Let L be a m.o.p. of degree I with standard triple X, T, Y. Then 

(i) L(X) = I\l - XT\\\ + F2X + . . . + FA'"1) 

where Vt Ç h^Fy3fl),for i = 1, . . . , / and 

[V, F 2 . . . F J = Q(X,T)-i 

(ii) L(X) - I\l - (Zi + Z2X + • • • + Z A ' - ^ r ' F 
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whereZi Ç 1Lffi\3?)fori = 1 , 2 , . . . , land 

Z1 

Z2 

R(T, F ) - 1 

(iii) If \ (z Res L, then 

L-i(X) = X(I\- T)~lY. 

Part (i) of the theorem presents a right standard form for L and the proof is 
that of Theorem lj. Part (ii) gives a left standard form and is proved as in 
Theorem 3i. Part (iii) is called a resolvent form and the proof is that of Theorem 
1311. A result of this kind for operator polynomials but proved under more 
restrictive hypotheses was presented earlier by Pattabhiraman and Lancaster 
[11]. Extending the result of Corollary 2 to Theorem 13n we have: 

COROLLARY. For X Ç Res L, 

* r r - i m _ {XT\I\ - T)~lY r = 0, 1, . . . , / - 1. 
A L W " \XT\I\ - T)~lY + J, r = /. 

1.3 Inverse theorems. Given operators X Ç Lffî1, &), T Ç Lffî1) which 
are candidates for a standard pair we show when, and how, a corresponding 
m.o.p. may be constructed. 

THEOREM 2. Let X £ L(3T\ T), T £ LOT*) and aw^w^ / t o Q(X, T) 
defined by (2) is invertible. Define Gi, . . . , Gx Ç L ( ^ , ^ ? ) fr;y 

[G1G2. . .GJ = O ^ J ) - 1 . 

JTzew X, T, F = G if or m a standard triple for 

L(X) = I\l - XTHGÏ + G2X + . . . + GA'-1) 

and L is the unique m.o.p. having X, T as a standard pair. 

Proof. Let Gi, . . . , Gi be as in the statement of the theorem and define 

At = -XTlGi+l G L ( ^ ) , i = 0, 1, . . . , / - 1. 

Then let L(X) = Zli=oAl\
i with ^ , = I W e have 

AoX + ^ x r + ... + ^ M i r M 

= -XTl{GxX + G2XT + . . . + dXT1-1). = -XT1 GQ = -XT1, 

which is condition (3). This, together with the invertibility of Q, ensures that 
X, T form a standard pair for L. 
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1050 I. GOHBERG, P. LANCASTER AND L. RODMAN 

But then the definition of Gi implies 

0" 

Q(X, T)Gl = 

and by comparison with the first of equations (12) we deduce t ha t if Y = G h 

then X, T, Y is a s tandard triple for L. The uniqueness follows immediately. 

In a similar way we obtain: 

T H E O R E M 3. Let Y Ç L ( # \ SFl) and T 6 \,{3Cl) and assume that R(T, Y) 

defined by (9) is invertible. Define Z\, . . . , Zx Ç \J(&1,2£) by 

~z; 

Zx 

R(T, Y)~ 

Then X = Zi, 7\ Y form a standard triple for 

L(X) = IX1 - (Zx + Z2X + . . . + Zx\
l-l)TlY 

and L is the unique m.o.p. having T, Y as members of a standard pair. 

In the finite dimensional case there is an inverse theorem involving the 
resolvent form of the following kind: If there exist operators X, T} Y for which 
(14) is t rue then they form a s tandard triple. This result is not generally t rue 
in the infinite dimensional case. T h e most we can expect is the following. 

T H E O R E M 4. Let L be a m.o.p. and assume there is an X £ L(3Tl, &), T Ç 
L&l)and Y G Lffi^1) such that 

(14) L- i ( \ ) = X(I\ - T)~lY 

when X G Res (L(X)). Then Q(X, T) has a right inverse and R(T, Y) has a 
left inverse. 

Proof. Following the a rgument of Theorem 1 4 : 1 it is found tha t conditions 
(11) are satisfied and these imply tha t 

Q(X, T)R(T} Y) = 

X 
XT 

XT1 

[YTY. . . TY1-1] 

0 

0 I 
i e 

o / 
/ e 
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a tr iangular matrix of operators in which 9 denotes operators of no immediate 

concern. Since the operator on the right is invertible the conclusion follows. 

To see tha t (14) cannot generally imply the invertibility of Q(X, T) consider 
L(X) = I\ — I and let X, Y be any operators on 9C for which XY = I, 
YX * L Then L-i(X) = X(IX - I)~lY. 

The implications of the one-sided invertibility of Q will be explored in some 
detail in Section 2. 

1.4 Eigenpairs. In this section we develop an earlier remark on the signifi
cance of a s tandard pair X, T for spectral theory. In the case of a matr ix 
polynomial acting on Cn , T can take a Jordan normal form and the columns of 
matr ix X display the Jordan chains of L. An appropriate generalization for 
the operator case will now be introduced. First a formal définition. 

Let X, T be a s tandard pair for m.o.p. L and let ££ C ^ T ' be an invar iant 
subspace of T. Then the pair of restrictions (X\&, T\#) is an eigenpair for L. 
Note tha t , in the sequel, when (X\#, T\#) is asserted to be an eigenpair for L 
it is assumed implicitly tha t X, T is a s tandard pair and tha t i f is an invariant 
subspace of T. 

Two eigenpairs (X\#, T\&) and (Xi\gi, Ti\# ) for the m.o.p. L are equivalent 
if there is an invertible D G L ( i f i , i f ) which is onto i f and for which 

i f i = D~1^, Xi = XD, Tx = D~lTD. 

We illustrate this idea with some examples. 

Example 1. Consider the s tandard pair T = d and X = [I 0 . . . 0] of 
Equat ion (13). If i f is an invariant subspace of C\ then X\#, Ci\& form a 
s tandard pair and, in this case X\# is the projection on S£ mapping x Ç i f C 
Sfc1 onto its first component. In particular, if i f has dimension one, then 
x G i f if and only if x = (xi, Xxi, . . . , Xz_1Xi) and L(X)x\ = 0 for some X £ C 
and Xi 9^ 0 in«3T. Thus , X\# projects x £ ^ onto an eigenvector x\ of L. 

Example 2. Suppose now tha t X, T is an arbi t rary s tandard pair and tha t i f 
is a one-dimensional invariant subspace of T. If X0 is the complex number for 
which Tx = X0x, x £ S£ and x 9^ 0, then Xx is an eigenvector of L correspond
ing to the eigenvalue X0. 

T o see this we use par t (i) of Theorem 1 and write 

i 

(15) L(\) = IX1 -XT1 £ ViX*-1 

i=l 

where [Vi V2 . . . Vl] = Q{X, T)~\ Then, if x G i^7, x ^ 0 

(16) x = ( 2 F i X r 1 " 1 ) x = X) Xo^ViXx 
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and we deduce Xx 9e 0. Then use (15) to write 

L(\o)Xx = IW -XT1 £ Xo^F, Xx 

^-lx = X(\olx) -XT1 £ VtXT* 

= x(\olx) -i(r'x) 
using (16). Since Tlx = X0

?x it follows that Xx is the required eigenvector of L' 

Example 3. More generally, let X, T be a standard pair, and i f a /^-invariant 
subspace with basis ex, <?2, . . • . Assume further that there are complex numbers 
Xi, X2, . . . for which Tef = X^ , i = 1 , 2 , . . . . Then vectors Xex, Xe2, . . . are 
eigenvectors of L with corresponding eigenvalues Xi, X2, . . . . 

We omit the proof but note that the hypotheses of this theorem correspond 
to the study of subspaces ££ for which the eigenvalues X< (not necessarily 
distinct) of T\# (and hence of L) have only linear associated elementary 
divisors. 

Example 4. The prototype result for nonlinear divisors is presented in the 
next result. First we need the definition (now widely used in the literature) of 
a Jordan chain (chain of generalised eigenvectors) for L. The vectors x1} x2, . . . , 
xk £ S£ form a Jordan chain of length k corresponding to eigenvalue X0 of L if 
Xi j£ 0 and, for p = 0, 1, . . . , k — 1, 

p i 

/ > ~~, T (Xo)xP-f+i = 0 
i=0 2! 

THEOREM 5. Let {X\#} T\#) be an eigenpair for m.o.p. L and letS£ be a finite 
dimensional subspace of 2fl. Let ex, e2, . . . , ek be a basis for S£ and assume that 
the representation of T\# in this basis is a Jordan normal form. If eu ei+i, . . . , 
ei+r is a basis for a Jordan cell of T\# corresponding to eigenvalue X0 then 
[Xeu Xei+i, . . . ,Xei+r} is a Jordan chain for L corresponding to eigenvalue X0. 

Proof. Without loss of generality, assume that T\# is unicellular, i.e. ei, . . . , 
ek is a basis of the unique Jordan-cell of T\# corresponding to eigenvalue X0. 
Defining et = 0 if i < 1 we first prove 

(17) T ep = 2^ \ • jXo e^u \ 

Proceeding by induction on m note the result is trivially true when m = 0. 
Then 

Tm+1ep 

m 

= E 
i - 0 

(m\ m- Tep_ 

= \ 0 / U
m+1ep + 

m 

S 
z = l 

required. 

•-5(7)= X0
m (Xo^p-i + <?p_*-l) 

(™)v+1- ,+ (i™1)x,"+'-' 

+(:)w.-i,(-rij Ao ^p 
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The definition of the V\ implies 

Z Vt+iXT* = I 
i=0 

so tha t , using (17) we may write 

(18) ep+1 = Z Vi+1X(rep+1) = £ Vt+lX £ (*); 
1=0 1=0 ;'=0 \Jt 

We can now proceed to verify the theorem: 

ô ep+\-

- l + l 
To i 

i 

= E u 
*=o *!L ( / -» ' ) ! 

' 'I 

-'I -XT1 £ T r-
i (J-iV-

I l - l 

4-Xo'-'V, \Xe P-i+l 

Ao Xep-i+i 
i=0 W 

Now use (18) followed by (17) to obtain 

± U(i)(X0)Xep.i+1= £ (l. 

xr'Z E Vho'-'VtX, 

z=0 1> i=0 

i =0 ?= i 

Xo Xep-i+i — XT" ep+i 

V-M-I-

i 

x£ (()xo'-V*+i = o. 
1=0 W z=0 W 

1.5 Applications. In this section we consider briefly some fundamental 
applications to constant coefficient differential and difference equations on 
Banach spaces. The proofs are generally omitted and are natural generaliza
tions of those in [3]. First consider a homogeneous constant coefficient differen
tial equation of order / on<3T. Thus , if A0, AY, . . . , A z_i are the coefficients of 
an m.o.p. as in (1), we consider the equation 

(19) u^{t) + A^u^it) + . . . + Aillait) + A0u(t) = 0 

where t is the real independent variable. 

PROPOSITION. Let X, T be a standard pair for the m.o.p. of Equation (1). Then 
every solution of (19) has the form 

(20) u(t) = Xe^'-'tic 

for some real to and some c £ 9?'. 

Proof. Wi th C\ the first companion operator (4) we can write (19) in the 
form v{1) (t) = C\v(t) where 

x(t) 

v(t) 

x™(t) 

x<'-»(t) 
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It is well-known that every solution of this equation has the form v(t) = 

eCi(t~t0)Ci for s o m e r e a ) /0 a n c j Cl çi^f\ Examining the image of v(t) under the 
map X\ = [10 . . . 0], we obtain x(i) = XieCl{t~H)Ci. But we have seen that 
Xi, Ci is a standard pair for L (Equation (13)) and the conclusion follows from 
the remark at the end of Section 1.1. 

Now let °tt be the linear space of piecewise continuous functions (for example) 
on [t0j <& ). For the inhomogeneous problem we have: 

PROPOSITION. Let X, T, Y be a standard triple for m.o.p. L of Equation (1) 
and let f G °U. Then every solution of 

(21) «<')(*) + ,4 ,_lW( *-!>(/) + ...+A0u(t) =f(t) 

has the form 

(22) u(t) = XeT{t-t0)c+X I l eT{t-T)Yf(r)dr 
J to 

for some real to and some c Ç 2fl. 

The proof of this theorem is by verification and uses part (iii) of Theorem 1 
along with the biorthogonality conditions (11). Using this representation of 
the general solution it is possible to obtain an explicit formula for the solution 
of the initial value problem with u(r) (t0) = ur, r = 0, 1, . . . , / — 1. Thus, 
differentiate (22) / — 1 times and put t = to to obtain 

X 
XT 

_XTL~\ 

c = 

Uo 

U\ 

_Ul-i_ 

We recognize the operator on the left as Q(X, T) whose inverse can be written 
down using (7) and (9). Thus 

c = R(T, Y)B 

An attack can be made on two-point boundary value problems by assuming 
that there is a decomposition Sfc1 = <3/ © 3? where both & and 3? are in
variant subspaces of T and, as before, (X, T, Y) is a standard triple for L. 

If P is the projection on <$/ along 3?, define 

Xx - XP, X2 = X(I - P), Yx = PY, Y2= (I - P)Y, 
j \ = PTP, T2 = (I - P)T(I - P). 

Uo 

Ui-i 
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G ( / , T ) = 

Then define the operator valued function G(t, T) on [a, b] X \a, b] by 

" -Xle
Tl{l~r)Y1 i i a ^ t ^ T 

'2e
Til'-r)Y2 i i r S t è b , 

and it can be verified using Theorem 1, par t (iii) and equations (11) t ha t G has 
the properties required of a Green's function: 

(a) As a function of /, G satisfies (19) on [a, b] X [a, b) provided / F^ T. 
(b) Differentiating with respect to /, 

G ( f V r + - G ( r ) | l - r . 
0 ifr = 0, 1, . . . , / - 2 
/ if r = I - 1. 

(c) The function 

u(t) G(/, T)/(r)dr 

is a solution of (21). 

Finally, we comment on the difference equation 

(23) A0ur + Axur^ + . . . + A i-iur-i + ur = fr, r = 1, 2, . . . , 

where {./V}£li C<5T is given and solution sequences {ur}^Li C <5T are sought. 
Again, the operator coefficients A0, Ai} . . . , A j_i define the m.o.p. L of (1). 

PROPOSITION. Le£ X, 7\ Y be a standard triple for L. Then every solution of (23) 
has the form u i = Xc, 

(24) ur = XTr-\ + £ AT'"*"1/*, r = 2, 3, . . . , 

for some c £ £~l, 

As in the case of differential equations, consider the solution determined by 
initial conditions. In this case, ur = vr, say, for r = 1, 2, . . . , / . Then the 
vector c of (24) must have the form: 

v2 

c = R(T, Y)B 

where R(T, Y) and B are defined by (9) and (7). 

2. Generalizations of the invertibility of Q. 

2.1 One-sided invertibility of the operator Q. We abbreviate Q(X, T) and 
R(T, Y) to Q and R where this causes no confusion. In section 1.3 it has been 
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shown tha t the invertibility of Q, or of R, is sufficient for the solution of the 

inverse problem. If either of these operators has only a one-sided inverse we 

are still able to draw some interesting conclusions. Suppose now tha t both ££ 

and & are Banach spaces. 

T H E O R E M 6. Let X £ L(&, St) and T 6 L ( $ 0 be such that the operator 
Q(X, T) G L ( ^ , 3fl) has a left inverse QL~\ Define operators At 6 L(<T) by 
A, = -XTlGt+ui = 0, 1, . . . , / - 1 where [Gi. . . GJ = Qrl G L($Tl,&). 
Then 

(25) AoX + 4 i A T + . . . + A^iXT1-1 + XT1 = 0. 

Let L be the m.o.p. on2f defined by L(\) = Ylli=o Ai\\ Ai = I, and let C\ be 

the first companion operator of L. Then 

(26) T = QL~% Cx\JtQ 

where ^ = Im Q. 

Proof. Using the definition of the A t we have 

AoX + . . . +Al-1XT'~l = [AOAL^A^Q = 

-XTl[Gi . . . Gt]Q = -XT', 

which gives (25). With L and C\ as defined it is easily verified tha t , as a conse
quence of (25), QT = CiQ. I t is apparen t from this relation t h a t ^ ^ i s invar iant 
under C\. Using the decomposi t ion2£ l = (Ker QL~l) ®^, the representat ion 
(26) follows from this fact. 

Note also tha t the left inverse is unique if and only if the A t are uniquely 
defined, and in this case Q must be invertible. 

This theorem admits the extension of operator pairs X, T (T £ L ( ^ ) ) to 
s tandard pairs; the prototype s tandard pair being [10 . . . 0], C\ (C\ £ L 0 T ' ) ) . 
T h e need for such extensions has arisen in the work of Gohberg, Kaashoek and 
Rodman [2], for example. A special case of the theorem gives impor tan t new 
information in the finite dimensional case when X, T are, say, n X p and 
p X p complex matrices with T in Jo rdan normal form. Suppose t h a t we are 
to construct a monic matr ix polynomial L of order / for which the columns of 
X form corresponding Jordan chains. Suppose, however, t ha t X does not have 
enough columns in the sense p < In. T h e theorem then says tha t as long as Q 
has full rank, in which case a left inverse exists, then the above construct ion 
can be used to determine an L which will have a s tandard pair which extend X 
and T appropriately. 

Next we have a dual theorem: 

T H E O R E M 7. Let X £ L ( ^ , 3C) and T £ L ( $ 0 be such that the operator 
Q(X, T) G L(^,<3T*) has a right inverse QR~1. Define operators Zt Ç L(^T) by 

A i = -XTlVw ,i = 0, 1, . . . , / - 1 where [Vl . . . Vl] = QR~* £ L ( < T < , $ 0 , 

https://doi.org/10.4153/CJM-1978-088-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-088-2


OPERATOR POLYNOMIALS 1057 

and hence the monic operator polynomial L(\) = 2^=o At\\ Ax = I. Then if 

*srff = Im QR~1 and P is the projection in L ( $ 0 on ^ along Ker Q, we have 

(27) C, = Q{PT)\MQR-\ 

Proof. Using the definition of the A t and the fact tha t QQR~1 = I it can be 
verified tha t 

QTQR~l = 

XT 

XT1 

[ 7 i . . . 7 J = Ci. 

In view of the decomposition <%/ = (Ker Q) © ^ the relation (27) follows 
immediately. 

The interpretat ion of this result is t ha t existence of a right inverse for Q 
admits the construction of a s tandard pair by restriction of the given pair X, T. 
Heuristically, if X, T contain redundancies or inadmissible duplications then, 
provided QR~1 exists, these are removed in the construction of a s tandard pair 
via equation (27). 

The existence of QR~1 and a set of operators A0, . . . , A z_i satisfying (25) 
does not imply tha t Q is invertible although, in this case, the operators Ao, . . . , 
A j_i are necessarily unique. For example, take 1=1 when Q = X 6 L(«3T) 
and assume XV = I, VX ^ I. Then S£ = (Ker X) ® (Im V). Select any 
operators 7 \ £ L ( K e r i F ) and T2 (E L ( I m F) and define T £ L(5T) by 

TJT1 O] 

In this decomposition of <3T, X and F have representations 

(28) X = [ 0 I 2 ] , F = 
0 

LF2J 

where X 2 G L ( I m 7 , J ) , F 2 Ç L(#" , Im F) and F 2 X 2 = J | I m F . Thus VX * I. 
Furthermore , since XT = XT VX the equation A0X + Z r = 0 has a solu
tion A0 = XTV. 

For the uniqueness, suppose tha t A0, . . . , A ;_: also satisfy (25). Then 

(4o - i0)x + ... + u M - ii-Oir^-1 = 0 
and the existence of a right inverse for Q implies A t — A t for i = 0, 1, . . . , 
/ - 1. 

T o see tha t the existence of QR~1 does not imply the existence of operators A t 

for which (25) is true, consider again the case / = 1 with X £ L(«5T), XV = / , 
VX ^ J. 
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Let T G L($T) have the representation 

TJT1 r/1 

with respect to the decomposition (Ker X) © (Im V) of 9C and assume 7 3̂ ^ 0. 
Recall the representations (28) for X and V. Now the relation A0X + XT = 0 
has the form 

[o A0X2] + [x2r3 z2r2] = o 
and T% F^ 0, Z 2 invertible mean tha t there is no solution A0. 

We conclude this section with a result characterizing the case in which Q is 
right invertible and operators A0, . . . , A ;_i G Bffi) exist for which (25) is 
true. First, we need the following concept introduced by Gohberg, Kaashoek 
and Rodman [2]. Given X £ L(&~\&) and T £ L&1) let Ç r (X , T), (more 
briefly Ç r) denote the operator in L(«S3TZ, S£~r) defined by 

(29) Qr(X,T) = 

and note tha t , in the notat ion of the earlier remarks, Qi(X, T) = Qx = Q. 
Define the index of stabilization of the pair (X, T) to be the least positive integer 
p for which Ker Qp = Ker Qr for all r ^ p. Wri te £ = ind (X, T). 

T H E O R E M 8. LetX ^ ( f ^ ^ J G L&1) be such that Q^X, T) is right in
vertible. Then there exist Ao, Ai, . . . , A z_i £ L($T) /or which (25) is satisfied 
if and only if ind (X, T) ^ /. 

Proof, (a) We show first t ha t ind (X, T) ^ / is equivalent to 

(30) T (Ker (20 C K e r Q , . 

Given this inclusion, if x Ç Ker (^, then 7"rx Ç Ker Qz for r = 0, 1, 2, . . . . 
I t follows tha t x G Ker ( Q z r r ) and x G Ker Qr for r = 1, 2, T h u s , (30) 
implies Ker Qt C Ker Q r for r ^ / and hence ind (X, T) S I. 

Conversely, suppose ind (X, T) ^ /. Then by definition of the index, r ^ / 
implies Ker Qx = Ker Qr. But it is easily seen t ha t Ker Qi+\ C Ker (QtT). 
Thus , x G Ker Qt = Ker Qt+i implies x G Ker (QiT) and this is equivalent 
to Tx Ç Ker Qh 

(b) As a second preliminary we need the decomposition 

(31) $Tl = KerQ ® (Ker I H I m QR~l) 0 Im VL 

T o see this note first t ha t XV\ = I implies S£l = Ker X © Im V\ so we are 

X 
XT 

XTr-i 
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done when we show tha t 

Ker Q ® (Ker I H I m QR~l) = Ker X. 

Now QQR~l = I y i e l d s ^ ' = Ker Q © Im QR~l so the sum on the left is 
certainly direct. Then Ker Q C Ker X means the subspace on the left is con
tained in tha t on the right. For the reverse inclusion let x £ Ker X and write 
x — Xi + x2 where Xi Ç Ker Q, x2 £ Im QR~l. Then x2 = x — X\ Ç Ker X 
so tha t x £ Ker Q © (Ker I H I m QR~1) as required. 

(c) Now to go directly to the proof of the theorem, observe tha t A 0, ^4i, . . . , 
A i-i G LOST) satisfy (25) if and only if they have the form At = —-XT'F i + i , 
i = 0, 1, . . . , / — 1 (as in Theorem 7). This means tha t (25) may be writ ten 
in the form 

- (XT1) VQl + XT1 = XTl{I - VQt) = 0. 

Let P = I — VQi, the projector on Ker Qt along Im V = Im QR~1, SO tha t the 
existence of A 0, ^41,. . . , A z_i Ç L (<3T) is equivalent to the s ta tement XTlP = 0. 

Consider the representations of operators X , r \ P with respect to t he 
decomposition (31): 

X = [0 0 Z 2 r = O 4 z O 5 i O 6 7 

O 7 i S 8 i O 9 < 

P = 

and note tha t X2 (i L ( I m Fi , ^ ) is invertible and XT1 = [Sit S8i S$ J . The 
condition XT2 ' |KerQ = 0, i = 0, 1, . . . , / — 1 then implies t ha t Su = 0 for 
z" = 1, 2, . . . , / — 1 and the condition XTlP = 0 may be writ ten S7z = 0. 
Thus , 

Ker Qi+\ = Ker 

xr 

D K e r Q z . 

But we have seen in par t (a) tha t this is equivalent to T(Ker Qt) C Ker Q? 
and this, in turn, is equivalent to ind (X, T) ^ /. 

A sequence of parallel remarks can be made, and conclusions drawn, con
cerning operator pairs T £ Lffî1), Y d L,ffî,3Tl) via the s tudy of operators 

Rr(T, Y) = [YTY. . . Tr~lY] 

irom&r X.oS£l. For example, the dual of Theorem 6 is: 

T H E O R E M 10. Let T £ L ( $ 0 and Y £ L(<ST, <W) be such that the operator 
Rt(T, Y) e L($T\ <&) has a right inverse RR~\ Define operators At £ L 0 O 
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by At = -Wi+1T
lY,i = 0, 1 / - 1 where 

Wl 

= RB-\ 

and hence them. o. p. L(\) = 2(*=o^4A\ At = / . Then 

YAo + TYAt + ... + T'-iYA,-! + TlY = 0 

and, if Ci is the second companion operator of L, then 

T = K(PC2\J{)RB^ 

whereof = Im i ^ _ 1 and P (E L(<3T?) is the projection on Je along Ker K. 

Once more, a result is obtained admitting the extension of the operator pair 
to a standard pair. 

2.2 The case of Q(X, T)~l unbounded. As in the preceding section we consider 
pairs of bounded operators X £ lu(St\ 9f) and T £ L(«3T') and the derived 
operator Q(X, T) G Lffî1). Suppose Ker Q = 0 a n d ^ = Im Q is a proper, 
dense, subspace of <3T*. Then Q has an unbounded inverse Q~l defined on^#. 
Assume that it is possible to write Q~l in the form [Vi . . . Vi] where each 
Vi \ 3? —>!%~l may be unbounded. For example, this possibility exists if we 
can write 

i 

Je = X) © ^ c\St i 

and& i is the ith component space of<5T?. 
Then we can define an associated m.o.p. L by 

L(X) = I\l - XTl(Vl + V2\ + . . . + VlK
l~1) 

where, in general, the coefficients may be unbounded. However, it is possible 
for them to be bounded as the following example shows. 

Let / = 2 and B £ L 0 T ) with Im B a proper, dense subspace of «3T and 
Ker B = 0. Consider the pair X, T defined by 

X = [I I], T = 
"o o" 
.0 B_ 

Then 

Q(X, T) = 
' X ' 
.XT. = 

I I 
0 B. 1 • o"' " [.' 

- 5 " 
5 - 1 

and 

L(\) = A 2 - [0 B2]\ 
T / ] 
.Lo J + ["£"]]• = A 2 

as required. 

5X, 
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When L has bounded coefficients then, of course, the associated first com
panion operator d is bounded and we have QT = CiQ. Thus C\ and T may 
be said to be similar even though the transforming operator Q has an un
bounded inverse. 

In general, even though T and C\ may both be bounded, one cannot assert 
that they are related by a "bounded" similarity transformation. To see this, 
consider the above example again and let B be compact. We have 

T - r° °i r - r° ji 
r ~ L o BY 6 l ~Lo B\ 

and assume there is an 5 Ç B(3f2) with bounded inverse for which ST = CiS. 
Write 

and it is found that ST = CiS implies 5 3 = 0, S2B = S4 and 54 has a bounded 
inverse. Thus, S^Sf1 = / which is not consistent with the assumed compact
ness of B. 

In this example it is easily seen that T is not a linearization of the m.o.p. 
L(\) — IX2 — B\ we have associated with (X, T). 

3. Multiplication and division theorems. 

3.1 The basic theorems. Results are presented in this section which develop 
relationships between the spectra (via standard triples) of products of m.o.p.s 
and of divisors of m.o.p.s when such exist. 

THEOREM 11. Let L\, L2 be m.o.p. on$f with standard triples Xi, 7\, Y\ and 
X2, T2, Y2, respectively and let L(X) = L2(X)Li(X). Then 

(a) L-i(x) = X(IX - T)~lY 

where 

x-vc, 01, r - [ ^ »£•]. y . [ » ] . 

(b) X, T, Y is a standard triple for L. 

Proof. The proof of part (a) is just that of Theorem 17n provided Corollary 
1 of Theorem 13n is replaced by its operator version, Theorem 1, part (iii) 
of this paper. 

For part (b) the proof used in II relies in an essential way on the finite di
mension of 3?. More generally, let Li} L2 have degrees k1} k2 and write / = 
k\ + k2. It will be proved that the operator Q(X, T) ox\9^1 is invertible and 
this, combined with (a) implies that X, T, Y form a standard triple. 
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Using the definitions of X, T we have 

Q(X, T) = 

X, 0 

i-i 

XxTi'-1 £ (XtTSYJXiTt1-*-* 

and then the biorthogonality relations for Xi, 7\, Y\ yield 

X, 0 

Q(X, T) = 
XiTp-1 

XiTp 
X1T1

k^+1 

0 
i Xi 

Z (X1T1'+^-1Y1)(X2T^-1-i) 

In a top left block of this matrix representation we have Q{X\, T\) which is 
invertible and then the complementary bottom right block can be factored in 
the form 

XJ-^Yx 
0 
I 

XiT^Yi XJY-zYx 

0 

/ 0 
X.T^Y, I 

X2 

X2T2 

X2T2
k>~1 

which is clearly invertible. It follows that Q(X, T) is invertible, as required. 

It turns out that, by representing m.o.p. in right (or left) standard forms, 
an explicit representation of quotients and remainders in a division process 
can be obtained. This is described in: 

THEOREM 12. Let L, L\ be m.o.p. on S£ of degrees I, k and having standard 
triples X, T, Y and X\, 7\, Fi respectively. Assume 1 ^ k < I and write L, 
L\ in right standard form: 

(32) L(X) = I\l - XTl(F1 + F2\ + . . . + FzX*-1). 

(33) Lx(X) = I\k - XiWid + G2X + • • • + GA*-1). 
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Define 

(34) Gap = XiTfGfi, 1 S fi è k, a = 0, 1, 2, . . . 

(35) FaS = XiVFe, l ûfi ûh a = 0, 1, 2, . . . . 

Then 

L(X) = ^ 1 (X)L 1 (X) + ^ 2 ( X ) 

p=0 \ i=p+2 / 

and 

^2(X) = £ ( G „ - É *•«/?«-!.,) X*"1. 

The proof of this theorem uses only algebraic properties of the noncom-
muta t ive algebra L(«$T) and makes no reference to the dimensionality of 9f. 
Thus , the argument of Theorem 61 applies almost verbat im. There is a dual 
theorem, the generalization of Theorem 7i cast in terms of left s tandard forms. 

3.2 Characterization of divisors. Let L be a m.o.p. with s tandard triple X, T, 
Y. The next theorem characterizes divisors of L by means of certain invariant 
subspaces of T. Recall the notat ion introduced in Equat ion (29). 

T H E O R E M 13. Let L be a m.o.p. onSf of degree I with standard triple X, T, Y. 
Let <f£ be an invariant subspace of T on which Qk(X, T), viewed as an operator 
from f£ to 3fk, is invertible. Then there exists a right divisor L\ of L with the 
representation 

(36) Lx(X) = I\* - XTk(W1 + W2\ + . . . + Wk\
k~l) 

where W\, . . . , Wk £ L(3T,«if ) are defined by 

(37) [W1W2....Wk] = Qk(X1T)\^. 

Conversely, for every monic right divisor Lx of L of degree k there is a unique 
invariant subspace J£ of T such that Qk(X, T)\# is invertible and (36) holds. 

The proof is t ha t of Theorem 8i. 

Remark 1. The invariant subspaceS£ of T associated uniquely with the right 
divisor Lx of L is called a supporting subspace for L with respect to T. 

Remark 2. As pointed out in paper I, it follows from the details of proof of 
Theorem 13 tha t Qk(X, T)\# determines the similarity transforming T\z to 
the first companion operator for Lx. Thus : 
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COROLLARY. If we write Lx(\) = J^^o BfX*, Bk = I, then 

Qk(X, T)\*T\AQ*(X, n i ^ ) - 1 = 

0 
0 

I 
0 

-Bo —Bi 
I 

-Bk-! 

The following theorem is due to Langer [8]. It can be proved directly from 
the more primitive Theorem 12 but we present it here as a consequence of 
Theorem 13. 

THEOREM 14. Let L be an m o.p. ondff of degree I and let d £ Lffî1) be the first 
companion operator for L. There exists an m.o.p. L\ of degree k < I which divides 
L on the right if and only if there exists an invariant sub spaced of C\ of the form 

<£ = I m 
h 
G 

for some G 6 L ^ * , ^ " 1 - * ) , {and h t L(#"*)). 
Furthermore, if the right divisor L\ exists, G = [Gk-i+itj], i 

and j = I, . . . , k, then 
1, / 

(38) U{X) = IX* - (G,! + Gk2X + . . . + G^X*-1). 

Proof. Let C\ have an invariant subspacejSf as described and let W = 

Now the map X = [I 0 . . . 0] iromS^1 to «ST together with C\ form a standard 
pair for L. Thus, 

Qk(x, co = [iko] e usr\sr*) 

and for any x £ ££*, Qk(X, C\)\^ maps r onto x. This operator is obviously 

invertible. Furthermore, it is apparent that 

Thus, in (37) we have [W\ . . . Wk] = W and, since 

XCi* = [0. . . 0 7 0 . . .0] 

with I in the k + 1 position, XC\kW = [Gk\ . . . Gkk\. It follows from Theorem 
13 that L1 of (38) is a right divisor of L. In fact, if [Gi . . . Gk] = Qk(Xu Ti)~l 

for any standard pair X\, T\ of L\ we can go further and identify 

(39) Gtj = XiTSGj, 0 , 1 , 2 , . . . , j = 1,2, . . . , * . 
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For the converse, the existence of the right divisor Lx ensures (by Theorem 
13) the existence of an invariant subspace S£ of G on which Qk(X, G ) is 
invertible. Since Qk(X, G ) = [Ik0] it follows easily (Part (a) of the lemma for 

Theorem 9j) that «if = Im for some G Ç L(^k
f^

l~k). This completes 
|_ Gr J 

the proof. 

The case of divisors of degree one is of particular interest (see Langer [7], 
for example) partly because of the connection with the solution of operator 
equations provided by the remainder theorem: 

There exists a right divisor Li(\) = I\ — D for m.o.p. L if and only if 

(40) L(D) = A0 + A,D + . . . + A^D1-' + Dl = 0. 

Putting k = 1 in Theorem 14 we obtain Gn = XiT^X^1 from (39) and 
writing Li(\) = I\ — D we deduce: 

COROLLARY. The m.o.p. L has a right divisor I\ — D, D £ L(«$T) if and only if 
there exists an invariant subspace L of G of the form 

I 
D 

S£ = Ir 

pl-
This result can be found in the work of Langer, and for the case of a 

spectral divisor, in a paper by Mereutsa [10]. 

3.3 Characterization of the quotient. We proceed now to a description of the 
quotient polynomial resulting when Theorems 13 and 14 apply. 

THEOREM 15 Let L be an m.o.p. and X, T,Y be a standard triple for L. Define 
Qk(X, T) by (29) andR^k(T, Y) G L(Tl~k,3Tl) by 

Ri-k(T, Y) = [Y TY. . . Tl-k~lY}. 

Let S£ be an invariant subspace for T on which Qk(X, T)\# is invertible. Then 

S£l = S£ 0 I m i ^ _ , 

and the map 3% \3Sl~k —> Im R X-k generated by R i_k is invertible. 
For 1 ^ i ^ k and 1 ^ j ^ / — k define W{. Sfc —>if, and Z,: 

ImR^k-*3Tby 
" Z, 

Qk(X,T)\x-i = [W,...Wkl 

Zl-K 
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Then if P £ L ffîl) is the projection onlmR t_k along ^f, 

(41) L(\) = [I\l~k - (Zx + . . . + Zl_k\
l~^)PTl-kPY] 

X [A* - XT*(Wi + . . . + T^tX*-1)]. 

As indicated in Paper I, the factors in (41) require little modification to 
produce standard forms. The description of the left factor as a right standard 
form can also be found in that paper. 

If 3f is a Hilbert space—inducing the usual Hilbert-space structure o n f r , 
r — 1 , 2 , . . . a n d ^ # is the orthogonal complement of J£ in «ST*, then 

{R^JI)-1 T(Rk\M) 

is the second companion operator associated with the left factor. 
It is also pointed out in Paper I that the subspace Im Ri-k plays no essential 

role; the results can be formulated in terms of any complementary subspace for 
o£f m&1. Using the standard triple (13) the geometry of subspaces is clarified 
as indicated in the following result. The proof is a straight-forward verification 
and is therefore omitted. Let Pk £ Lffî1) be the projection onto the first k 
components of 3Tl (so that Pi , C\ form a standard pair). 

THEOREM 16. Let L be an m.o.p. of degree I with associated first companion 
operator C\. A subspace J£ Ç^9fl is a supporting subspace of L with respect to 
C\ associated with right divisor Li of degree k if and only if the following conditions 
hold: 

(i) Jsf is an invariant subspace of C\. 
(ii) The subspace (I — Pk)S^1 of 3fl is a direct complement of J£. 

When these conditions hold, then 

Lx{\) = A* = A* - PiCi*(7i + F2X + . . . + Vk\
k~i) 

where [VL. . Vk] = ( P ^ ) " 1 . 
If L(\) = L2(X)Li(\) and we define 

P,_ , = [YC.Y... C i ' - ^ F ] , 

and S% as the invertible map from 3f~l~k to I m R z_fc generated by R i_k, then 

L2(X) = A ' - * - (Z1 + Z2X + . . . + Z^X^-^PC^PY 

Y = 
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where P is the projector onlm R z_fc along J^ and 

We turn now to the possibility of extracting successive right divisors. 

THEOREM 17. Let L be an m.o.p. of degree I. Let J£ \,J£ 2 be supporting sub spaces 
for L (with respect to T) associated with monic right divisors Lu L2 of L degrees 
ki, k2, respectively. If k2 < &i and J£\ C ££\ then L2 is a right divisor of Lx. 

The proof of this theorem is that of Theorem 101 and the natural extension 
to a chain of nested supporting subspaces also follows, as in Theorem l l j . 

Theorem 15 can be combined with the resolvent form (iii) of Theorem 1 to 
obtain the next result. The proof is just that of Theorem 18n. 

THEOREM 18. / / m.o.p. L has a standard triple X, T, Y, L = L2LX where 
Li, L2 are m.o.p. and££ is the supporting subspace of L\ with respect to T then, 
in the notation of Theorem 15, 

(42) LrlM = x\<?(i\ - ri^-w*, 

(43) L2"UX) = Zt_k(I\ - PTP\lmP)~iY. 

3.4 Divisors and the spectrum. It is apparent that, if L\ is a monic right divisor 
of L, then the point spectrum of Lx is contained in that of L. On the other hand, 
it is not necessarily the case that <T(LI) C <?{L) as the following example of 
Marcus and Mereutsa [9] shows. 

Example. Let V be the unilateral shift operator on l2 and V* its Hilbert 
adjoint. It is well known that V*V = I ^ VV* and that a(IX — V) = 
{X G C: \\\ S 1} = <T{I\ - V*). Define m.o.p. L of degree two by 

(44) L(X) = A2 - (V* + V)\ + / = (A - V*)(I\ - V). 

Then it can be verified that a(L) = { \ £ C : | \ | = 1}. 
As an illustration of the Corollary to Theorem 14 observe that 

Ci = 
0 iJ 

and the right divisor displayed in (44) has the associated supporting subspace 

i f = Im m 
which is invariant under C\. 
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Note also tha t , in the representation of the quot ient given in (41) 

from which it is easily verified tha t the quot ient is, indeed, IX — V*. 

In contrast to the above example, the next theorem characterizes some 
divisors whose spectra are proper subsets of the spectrum of the " p a r e n t " 
m.o.p. First some definitions: A point X £ C is a regular point of m.o.p. L if 
L(X) has an inverse in L(<$T). Let F be a contour in C consisting of regular 
points of L. A monic right divisor Li of L is a V spectral right divisor of L = 
L2Li if o-(Li), a(L2) are inside and outside V, respectively. 

T H E O R E M 15. Let L be an m.o.p. with standard triple X, T, Y and let L\ be a 
V-spectral right divisor of L having associated supporting sub s pace f£ with 
respect to T. Then££ = Im Rr where Rr is the Riesz projector corresponding to 
T and V : 

^r = Tl § (/X - T^dX 

Conversely, if T is a contour of regular points and J£ = Im Rr is the sup
porting sub space for the monic right divisor Lx of L with respect to T, then L1 is 
a T-spectral right divisor. 

Proof. The first s ta tement is proved as in Theorem 2 0 n . For the converse 
we have t h a t ^ = Im Rr is the support ing subspace for divisor Lx. As described 
in Theorem 15 we have the decomposition 9fl = <f£ © Im R^k and then «if an 
invariant subspace of T implies t ha t the representat ion of T with respect to 
this decomposition has the form 

T = \ T \ X TU~\ 

L 0 PTPJ 

where P is the projection on Im Rt-k along<if. Now, from the classical theory 
(Dunford and Schwartz [1, Theorem VII .3 .20]) , a(IX — T\#) is precisely the 
subset of a(IX — T) — a(L(X)) inside T. Fur thermore , the above representa
tion of T implies tha t 

a(I\ - T) = a(IX - T\#) U a(lX - PTP). 

Hence, a(IX - PTP) is outside T. I t follows from (42) and (43) tha t cr(Li(X)) 
= <J(IX - T\^) and <J(L2(X)) = a(lX - PTP) and so Lx is a F-spectral di

visor of L. 
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