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PSEUDOREGULAR RADICAL CLASSES

N.R. McCONNELL AND T. STOKES

We consider radical classes specified by an associating polynomial in two variables
which have a similar form to the polynomial defining the class of quasiregular rings.
In particular, the relationships of these classes to the classes of semiprime, nil and
quasiregular rings are explored.

Throughout, all rings are associative. The ring of integers will be denoted by Z. We
denote by o the circle composition operation on any ring R, defined by aob = a + b-ab

for all a , i € R.

Let Z0[x,y,z] be the free ring (that is, the ring of integer polynomials without
constant term) on the generators x, y, z\ similarly, let Z0[a;, y] be the free ring on the gen-
erators x, y. We view the latter as a subring of the former. An element / of Z0[x, y] is said
to be associating if there exists g € Z0[a;,2/,2:] such that f(f(x,y),z) = f(x,g(x,y,z)).

This notion is defined in much greater generality in [2], for instance by allowing more
than one "existential" variable y, or by allowing the expression / to be drawn from a set
so that the nil radical can be dealt with (amongst others).

For any / 6 Zo[a;, y], let TZf be the class of rings in V defined as follows: R is in TZf

providing that, for every r € R there exists s £ R such that f(r, s) = 0. By [2, Theorem
4], TZf is a radical class providing / is associating.

The classes of quasiregular and von Neumann regular rings have the form TZf for
some / : in the former case, we may let / = x + y + xy and g — y + z + yz; in the latter,
f — x — xyx and g = y + z — 2xyz + xyzyx. Indeed these examples may be generalised
as follows: if p, q € Z[x], then the element x - p(x)yq(x) of Z0[x,2/] is associating, as is
implicitly shown in [5], and the resulting radical class is the class of (p;q)-regular rings.
This family also includes Divinsky's D-regular radical class.

1. PSEUDOREGULARITY

In this paper we consider the special case in which f(x,y) — p(x) + q(x)y, where
we allow q(x) € Z[z]; thus we assume f(x,y) is (right) linear in y. (There is obviously
a dual theory for / ( z , y) = p(x) + yq(x).) We use the notation 7ZPtq as an alternative to
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We briefly put this choice in context. It is easy to show there are no associating
f{x,y) of the form f(x,y) — Po(x)+Pi(x)y+p2(x)y2-\ except those for which pi(x) = 0
for all i > 1. On the other hand, if we assume commutativity, the family fm(x,y) =

xoyoyo---oy (m times) for any square-free m are associating and give rise to the
distinct radical classes Jm — 7£/m as in [3]. (There are other similar associating / defined
in terms of o, but all give rise to one of these classes.) We know of no other commutative
cases. Returning to the non-commutative case, there may perhaps be cases in which y

occurs non-linearly in one or more monomials in f(x,y), although we conjecture there
are none. Thus it is quite possible that our apparently restrictive assumption on the form
of / ( x , y) is not very restrictive at all and only rules out of consideration cases where y

makes a single appearance in any one monomial.

It will be convenient to say that (p, q) € Z[x] x Z[x] is an TZ-pair if p(Q) = 0 and
f(x,y) = p(x) + q(x)y is associating. Whether or not f(x,y) is associating, we call
the condition f(x,y) = 0 the (p \ q)-pseudoregularity condition. (Generally, any pair of
polynomials written in the form (p, q) will be assumed to satisfy p(0) = 0.)

It turns out that even in the general non-commutative case, whether (p(x),q(x)) is
an 7?.-pair depends on single variable, and hence commutative, conditions on p, q.

THEOREM 1 . 1 . The pair (p(x), q(x)) is an Tl-pair if and only if

1. p(p{x)) -p(x) € (q(x)) and

2. q(p(x))e(q(x)),

where (q{x)) is the principal ideal generated by q(x) in Z[x].

PROOF: First suppose that f{x,y) —p{x) + q(x)y is associating. Then in Z0[x, y, z],

f(f(x,y),z) = f{x,g) for some g, so

+ q{x)y)z = p(x) + q{x)g(x, y, z).

Letting g(x, y, z) — s(x, y) + t(x, y)z, we have that

p(p(x) + q{x)y) + q(p{x) + q{x)y)z = p{x) + q(x)s{x, y) + q{x)t(x, y)z.

Hence p(p(x) + q{x)y) = p(x) + q(x)s(x,y) and q(p{x) + q(x)y) = q(x)t(x,y) in Z[x,y].

Letting y = 0 gives the identities p(p(x)) = p(x) + q(x)s(x, 0) and q(p(x)) = q(x)t(x, 0),
holding in Z[x], and so p(p(x)) — p(x) G (q{x)) and q(p(x)) € (q(x)) in Z\x).

Conversely, if p(p(x)) — p(x) £ (?(x)) and q(p(x)) € (q{x)) in Z[x), then we can
write p(p(x)) = p(x) + r{x)q(x) and q(p{x)) - s{x)q{x) for some r,s£ Z[x}. Hence

f(f{x,y),z) = p(p(x) + q(x)y) + q(p(x) + q{x)y)z

= P(P{X)) + q{x)h(x, y) + q(p(x))z + q(x)k(x, y)z,
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for some h € Z0[z,y] , k € Z[a;,y], as can be seen by expanding. Hence

f(f(x, y),z)= p(x) + q(x)r{x) + q(x)h{x, y) + q{x)s(x)z + q{x)k(x, y)z

= p{x) + q(x) (r(x) + h(x, y) + s(x)z + k(x, y)z)

= p{x) + q{x)g(x,y,z),

where g(x, y, z) — r(x) + h(x, y) + s(x)z + k(x, y)z, and so f(x, y) is associating. D

Further to the earlier comments, there is no obvious way to generalise the form
f(x,y) — p(x) + q(x)y and still get simple conditions on p(x),q(x) as above, whether
by allowing an r(x) term on the right of the y or even by introducing new existential
variables to supplement y. Thus, there is a certain inevitability about our choice of form
for f(x,y). On the other hand, the conditions are by no means necessary. For instance,
the class of Boolean rings B is Ttx2+Xfi, ar»d hence is a (p | g)-pseudoregular radical
class, although surely (x2 + x, 0) is not an 72.-pair; nor does it seem likely that B is a
(p | g)-pseudoregular class for any 7£-pair (p, q).

An important special case is f(x,y) = x + q(x)y, a radical class for any q(x) £ Z[x],
as is immediate from the above theorem. These are (q; l)-regular classes. (The discovery
of the general (p; ̂ -regularity condition is attributed to McKnight in [5].) For instance,
f{x,y) = x + y — xy — x + (1 — x)y has this form, as does f(x,y) = x + xy. It is of
considerable interest to determine which of our classes are always equal to such classes;
that is, which (p | <7)-pseudoregular radical classes are also (x | g)-pseudoregular (possibly
for a different q). At present we conjecture that if |<7(0)| = 1, then TZp<q is such a case.

P R O P O S I T I O N 1 . 2 . The class TZPt(j contains the {q;l)-regular class TlXxQ.

PROOF: Write p(x) — xh(x), h(x) e Z[z]. If R is such that for all a 6 R there exists
6 € R for which a + q(a)b = 0, then a = —q(a)b, so p(a) = ah(a) = —q(a)bh(-q(a)b), so
p(a) + q{a)c = 0, where c = bh(-q(a)b) € R, and so R € Hp<q. D

There are a number of easily identified circumstances in which the conditions of
Theorem 1.1 are satisfied. Here is one.

PROPOSITION 1 . 3 . For any q(x),s(x) e Z[x] such that q{0) = 0, (s{x)q(x),
q{x)) is an It-pair.

PROOF: If p{x) has the stated form, then, modulo q(x),

p(p(x)) - p{x) = s(s(x)q(x))q(s{x)q(x)) - s{x)q(x) = s(0)q(0) = 0,

and q(p{x)) = q(s(x)q(x)) = q(0) = 0, as required. D

The D-regular radical class defined by f{x,y) = x + xy has this form, with s(x) -
1. If s(x) € Z0[x] in the above proposition, then one may let b = —s(a) and then
p(a) + q(a)b = 0 for all a in any ring R, so 7lPjq is the class of all rings.
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Not all factors q(x) of p(p(x)) — p(x) will divide q[p(x)). For instance, if p(x) —

x2 + 2x then p(p{x)) - p(x) = x(x + l)2(x + 2). Now q(x) = x,x + 1 both satisfy (2)

in Theorem 1.1 (as well as (1) of course), although q(x) = x + 2 does not. Nonetheless,
q(x) = x(x + 2) = p(x) does, by Proposition 1.3. In general we have the following, which
may be well-known and in a more general form, but we include its proof anyway.

LEMMA 1 . 4 . Let p,q,h € Z[x]. Then lettingd = gcd(p,q) and r = lcm(p,q), we
have that gcd(p{h),q(h)) = d(h), and lcm(p(/i), q(h)) = r(h).

PROOF: NOW we have that p = dp1 ,q = dq' for some p',q'- Then p(h) = d(h)p'(h)

and q(h) — d(/i)g'(/i), and so d(h) is a common divisor of p(h),q(h). Also, d — up + vq

for some u, v, so d(h) = u(h)p(h) + v(h)q(h) and any common divisor of p(h),q(h) is a
divisor of d(h). This proves d(h) — gcd(p{h),q(h)). However, we also have that r =

lcm(p,q) = pq/gcd(p,q) = pq/d, and so \cm(p(h), q(h)) = p(h)q{h)/gcd(p{h),q(h)) =

p(h)q(h)/d(h) = r(h). D

THEOREM 1 . 5 . Suppose (p,qi) and (p, q2) are both H-pairs. Then so are

(p,gcd(quq2)) and (p,\cm(qi,q2)). If qi(x)q2(x) divides p(p(x)) - p(x), then {p,qxq2)

is an It-pair.

P R O O F : If q\(x),q2{x) both divide p(p(x)) - p(x), so do q = gcd(qi,q2) and r =

\cm(q1,q2). Moreover, \cm(q1(p),q2{p)) = q(p). Also, qx(x) divides qi(p(x)) and q2{x)

divides q2(p{x)), so certainly q = gcd(ql,q2) divides gcd(qi(p),q2(p)) = q{p), and r =

lcm(qi,q2) divides \cm(qi(p(x)),q2(p(x))j = r(p(x)). Hence both (p,q) and (p,r) are

7^-pairs as required.

Now becauseq{(x) divides qi(p(x)), i = 1,2, we have that q(p(x)) = q\(p(x))q2(p(x))

is divisible by qi(x)q2(x), so if also qi(x)q2(x) divides p(p{x)) -p{x), then (p, qxq2) is an
"^-pair. D

Suppose q(x) = r(p(x)) divides p(p(x)) — p(x). Then q(p(x)) = r(p(p(x))j =

r(p(x)) = q(x) = 0 (modulo q(x)), so [p(x),r{p(x))j is an 7^-pair. There are certain

factors of p(p{x)) —p(x) which have this form and hence always form 7£-pairs with p(x).

In general, for p(x) satisfying p(0) = 0, we have that p{x) = xh{x) where h{x) =

p(x)/x G Z[x], so

p(p(x)) — p(x) = xh(x)h(xh(x)) - xh(x)

= xh{x)(h{xh{x)) - l )

of which three obvious factors are p(x) itself, h(p(x)) - 1 , and their product p(p(x)) —p{x)
itself. Thus q{x) = r(p(x)) where r(x) — x, r(x) = h(x) - 1, or r(x) = p{x) - x, is a
factor of p(p(x)) -p(x). Summing up, we have
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PROPOSITION 1 . 6 . Given p(x) with p(0) = 0, the following are U-pairs:

1. (p(x)tp(x)),

2. (p(x),p(p(x)) -p(x)J, and

3.

2. SEMIPRIME CLASSES

A radical class is semiprime if it contains the prime (Baer) radical class. Semiprime
(p; <?)-regular classes turn out to be of special importance, and are characterised, by the
property that |p(0)| = |g(0)| = 1. In fact, the semiprime (p; g)-regular radical class is
equal to the semiprime (pq\ l)-regular class by [4, Corollary 16], in turn equal to the
(x | pg)-pseudoregular class.

Thus an (x | g)-pseudoregular class (which is always radical, being a (q; l)-regular
radical class) is semiprime if and only if |g(0)| = 1. "On the other hand, there are
pseudoregular classes TZPtq with |g(0)| — 1 which are not even radical classes. For instance,
(p, q) = (2x, 1 - x) is easily seen not to be an 7?.-pair, but does not even define a radical
class. To see this, first note that no ring with identity of characteristic other than 2 is in
ftp,,, so in particular R=ZA& Hp<q. However, the ideal / = {0,2} = Z\ e 1Zp,q (where
M° denotes the zeroring on the Abelian group M), and R/I = Z2 € ~R-P,q- Hence HVA is
not closed under extensions. It is possible that the third class of examples in Proposition
1.6 will provide examples of (p | g)-pseudoregular radical classes for which |g(0)| = 1 yet
which is not a (p; <7)-regular class for any p, q. For instance, putting p(x) — x2 gives the
radical class Hx

2,x3-i> which may or may not be a (p; <?)-regular class for any p, q.

A radical class is semiprime if and only if it contains all zerorings ([5, Lemma 3]).
Quite generally we have

THEOREM 2 . 1 . TZp<q contains all zerorings if and only if the coefficient of x in

p(x) is a multiple ofq(0).

PROOF: Let p(x) — a\x + a-ix2 -\ and q(x) — b0 + bix ^ . Now suppose q(0) =

b0 # 0. Let R be the zeroring on Zbo, the additive cyclic group of integers modulo b0. If
1ZPiQ contains all zerorings, then for all r & R there exists s £ S for which a i r + bgs = 0,
that is, air = 0 for all r e R, and so b0 divides ay. Conversely, if ai = boc for some
integer c, then for any zeroring R, if r G R, then p(r) — axr = cbor = bo(cr) — crq(r),

and so R € 7£Pi<7.

Now suppose 60 = 0. Then for any zeroring R and any r,s € R, p(r) + q(r)s = ajr ,
so if ai — 0 then 7£Pi(? contains all zerorings. Conversely, if TZPiQ contains all zerorings,
then letting R be the zeroring on Z, we see that R e TZPiq implies a\ — 0. U,

COROLLARY 2 . 2 . If{p, q) is an K-pair, then TZPiQ is semiprime if and only if the
coefficient ofx in p(x) is a multiple ofq(Q). •
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From the earlier comments, this actually generalises the corresponding fact for (p; q)-

regular classes.

All semiprime (p; <?)-regular classes contain J, the Jacobson radical. Here is an
example to show that in general a semiprime pseudoregular radical class need not. Let
f{x,y) = x2 + (x4-x2)y, so thatp(a:) = x1 and q(x) = x 4 - i 2 ; the conditions of Theorem
1.1 are satisfied as is easily checked, so IZf is a radical class. It is easy to see that all
zerorings are in 11 f, which is therefore semiprime, so if it were (p; g)-regular for some p, q,

then it would contain J (by [4, Theorem 3]). However, R — Z0\X]/(X3) is nil and not
in 1Z f, since (writing li for the image of X in R), there would need to be a P(X) € R

such that X - X P(X) = 0, which there is not.

For (p; g)-regularity, semiprimeness is equivalent to |p(0)g(0)| = 1. If this latter
condition is satisfied, then from [1, Corollary 7] and Proposition 1.2, J C HXiq C %pq.

Hence we have

PROPOSITION 2 . 3 . If \q{G)\ = 1 then all quasiregular rings are in Hpiq.

3. EQUIVALENT PAIRS

We say (p,q) and (p',q') are equivalent if 1Zp>q = H^^. In general we have the
following

PROPOSITION 3 . 1 . If (p, q) is an %-pair then so is (p + sq, q) for any s for

which s(0)q(0) = 0. If s(0) = 0 then (p,q) and (p + sq,q) are equivalent.

PROOF: If (p, q) is an 7£-pair, then letting p1 = p + sq, we see that p'(0) = 0, and
that modulo q(x), p'(x) = p{x), so

p'(p'(x))-p'(x)=p'{p(x))-p(x)

= P ( P W ) + s(p(x))q(p(x)) - p(x)

= p(p(x)) - p(x)

= 0,

and q(p'(x)) = q(p(x)) = 0, so (p',g) is an 7l-pair.
Now note that p'(x) + q{x)y = p(x) + q(x)(s(x) +y), so if s(0) = 0 then evidently

1ZPA is equivalent to Tlp>,q. D

We say (p, q) and (p',g') are strongly equivalent if q = q' and p — p' € (xq(x)), the
ideal generated by xq(x) in Z[x\. Notation: (p, q) -o (p',?')- From the last proposition,
strong equivalence of (p, q) and (p', q') implies their equivalence, and each or neither is
an 72.-pair. Equivalence does not imply strong equivalence: for instance, all (p, 1) are
equivalent, since all define the (radical) class of all rings.

PROPOSITION 3 . 2 . Ifq(x) has leading coefficient of magnitude 1, then {p,q)
is strongly equivalent to (r, q), where r(x) is the remainder ofp(x) on division by xq(x).
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P R O O F : We can divide p(x) by xq{x) since the latter has leading coefficient of size
1, in such a way that the remainder r(x), congruent to p(x) modulo xq(x), has degree at
most that of q(x). Moreover (r, q) is strongly equivalent to (p, q) by Proposition 3.1. U

4. S O M E SPECIAL CASES

THEOREM 4 . 1 . For n > 0, the expression f(x, y) = i " + (xm — xl)y is associating

if and only ifm, I ^ n2 and m — I divides n2 — n.

P R O O F : We want q(x) = xm - xl to divide q(p(x)) = xnm - xnl, which it surely does
as is easily seen from working modulo q(x), but also to divide p(p(x)) — p(x) = x"2 - xn.
For this to occur it must be the case that m—l can divide n2 — n but also that m,l ^ n2. D

For example, from this we obtain that f(x,y) = xn+1 + xny — xn+1y — xn(xo y)

is associating. IZj defines a class which obviously contains J. However, xn+l + (xn —

xn+1)y = xn+1 + (1 - x)z where z = xny, so 7£In+i+(I»_In+i)!/ C 'R.x
n+1+{i-x)y> but

xn+i + (l - x)y defines the same class as xn+l + (1 - x)(x + x2 H 1- xn) + (1 - x)y =

x + (1 — x)y — x o ?/, so 'R-xn(xoy) = J', for all n ^ 0. A great many radical T2.Pi9 turn out
to be J as is evident from results in [4]: if |<?(0)| = 1 then this is the case exactly when
q(x) has a factor of the form (ax + 1), where a ^ 0 and for each prime divisor m of a,
there is an integer n such that m divides p(n).

THEOREM 4 . 2 . Suppose (p, q) is an TZ-pair. If q(l) = 0 and p( l ) = 1 then

ftp,, C J.

P R O O F : NOW if <?(1) = 0 then q(x) = (x - l)h(x) for some h(x). If in the ring R,

p(a) + (a - l)h(a)b = 0, then p(a) + (a - l )c = 0 for c = h(a)b € R, so 7£Pi9 C ftPiX_i.
Now if (p, g) is an 7^-pair, then p(p(x)) — p(x) is divisible by q(x) and hence certainly
by x - 1, and moreover p(x) - 1 is divisible by a; — 1 exactly when p( l ) = 1, so that
in this case, (jp(x),x - l ) is an 7?.-pair. But as can be seen by computing p(x) modulo
x(x - 1) = x2 - x, (p(x), x - l ) <=> (^(1)3:, x - l ) = (x, x - 1), which defines J. D

Letting p(x) — q(x) — x gives the D-regular radical, which is surely not in J since
it contains all rings with identity, while p(x) — q(x) = x2 - x gives a still smaller radical
class, although one which still contains all rings with identity and hence is not in J either.
These provide examples to show that both conditions in the above theorem statement
are necessary.

Combining Theorem 4.2 with Proposition 2.3 gives

COROLLARY 4 . 3 . If(p, q) is an TZ-pair with p( l ) = 1, q(l) = 0 and \q(0)\ = 1
then 1lPtq = J.

The requirement that |<?(0)| = 1 in this corollary cannot be dropped, as the fact
that J ^ 7£I2,I4-I2 shows.
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COROLLARY 4 . 4 . Ifp(l) = 1, then (p(x), 1 -p(x)) is an H-pa.h, that isp(x)oy

is associating, and moreover 1Zp,i-p = J•

This result is rather surprising; it implies for instance that for a ring to be quasireg-

ular, it is sufficient for all n-th powers to be quasiregular, for any single n > 0. On the

other hand, the following result holds quite generally, and follows easily from Proposition

3.1.

PROPOSITION 4 . 5 . For any t(x) £ Z[X], the class of rings defined by f(x,y) =
x(t{x) o y) is a radical class.

Next we consider which pseudoregular classes contain all nil rings.

THEOREM 4 . 6 . Suppose p{x) =a,x3 + as+ixa+l + --- andq(x) - btx
t + bt+ixt+1 +

• • • with as,bt ^ 0. If the class Hp,q contains all nil rings then s > t, and if also bt divides

all other bj, then bt divides all a{.

Conversely, if s > t and bt divides all other a* as well as all bj, then T2.P)9 contains all

nil rings.

PROOF: Suppose first that 7£Pi? contains all nil rings. Suppose s ^ t. Let R =

Z0[X]/(Xt+1). Then R is nil and so for the image ~X of X in R, there is some h e R
n S-4-1 t t

for which aaX -f as+iX + • • • + atX = (btX )h, which is zero since h is a multiple
of X; hence a, = as+i = • • • = at = 0, a contradiction, so s > t. Hence we can write
p(x) = at+\xt+l + at+2Xt+2 + • • •, where all at — 0 for i < s (if any such i ^ t + 1 exist).

Now assume all bj are divisible by bt. Let R - Zlt[X]/{Xm), the ring of polynomials
over Zbt with zero constant term factored by the ideal (Xm), where m exceeds the maximal
degrees of x in either p(x) or q(x). Then R is nil, so, again letting X be the image of
X in R, there is h € R for which at+\X + at+2X

 + H = 0 in R, since all bj are
divisible by bt. Hence a,t+i,a,t+2, • • • are divisible by bt also.

Now suppose conversely that bt divides all bj and all Oj. Let b\ — bi/bt and a\ = a,i/bt

for all i > t. Then let r(x) — b't+lx + b't+2x
2 + • • • and w(x) = a'sxs-t+l + a ' J + 1x s_ t + 2 H ;

then p(x) = btx
lw(x) and q(x) = btxl{\ — r(x)). Suppose R is nil, with a € R such that

a" = 0. Let b = -w(a)(l + r(a) + r(a)2 H h r(a)""1), noting that r(a)n = 0. Then

p(a) + q(a)b

= bta
lw{a) - bta

l (l - r(a))w(a) (l + r(a) + r{a)2 + •••' + r(a)n-1)

= bta'wia) ( l - ( 1 - r ( o ) ) ( l + r(a) + r ( a ) 2 + ••• + r ( a ) " - 1 ) )

= bta
lw(a) ( l - ( 1 + r(a) + r ( a ) 2 + ••• + r ( a ) " - 1 - r(a) - r ( a ) 2 r(a

= 6ta'u;(a)(l-l)

= 0.

Hence R € ftM.
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This has immediate application to cases where (p, q) is an 7^-pair, in terms of radical

classes containing the nil radical class. It would be nice to tighten the above result to if

and only if status, dropping the need to assume bt divides all other bj in the first part of

the statement. There is also the question of the uniqueness of the element b given a in

the nil ring R, satisfying p(a) + q(a)b = 0, a question of interest for pseudoregular rings

generally. Both of these issues may require the assumption that (p, q) is an TZ-pah in

order to make progress.

It is easy to give sufficient conditions for hereditariness of 11 f. These are the relevant

version of conditions given in [5], which they generalise in the (q; l)-regular case.

PROPOSITION 4 . 7 . TZf is hereditary providing either of the following holds:

1. \q(0)\ = l;or

2. q(x)=p(x)s(x),s(0)=0.

PROOF: If \q(0)\ = 1 then q(x) — 1 + xs(x) or - 1 + xs(x) for some s(x) G Z[x\.

Hence in the first case, f(x,y) = p(x) + q{x)y = p(x) + y + xs(x)y, so if R G TZf,

with / an ideal of R, and if a € / then p(a) + b + as(a)b — 0 for some b G R, so

6 — -p{a) - as(a)b G / . Similarly with the second case.

Suppose q(x) = p(x)s(x), s(0) = 0. Let R G TZf, f(x) = p(x)+q(x)y, with / an ideal

of R. If a G / then there exists b G R for which 0 = p(a) + q(a)b = p(a) + p(a)s(a)b =

p(a) + s(a)p(a)b - p(a) + s(a)(-q{a)b)b = p(a) + q(a)(-s(a)b2) — p(a) + q(a)c, where

c = -s(a)b2 G / . Hence I E TZf and so TZj is hereditary. D

It is not known if a converse for this result can be obtained.
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