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Extensions by Simple C
∗-Algebras:

Quasidiagonal Extensions
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Huaxin Lin

Abstract. Let A be an amenable separable C∗-algebra and B be a non-unital but σ-unital simple C∗-

algebra with continuous scale. We show that two essential extensions τ1 and τ2 of A by B are approxi-

mately unitarily equivalent if and only if

[τ1] = [τ2] in KL(A,M(B)/B).

If A is assumed to satisfy the Universal Coefficient Theorem, there is a bijection from approximate uni-

tary equivalence classes of the above mentioned extensions to KL(A,M(B)/B). Using KL(A,M(B)/B),

we compute exactly when an essential extension is quasidiagonal. We show that quasidiagonal exten-

sions may not be approximately trivial. We also study the approximately trivial extensions.

Introduction

The study of C∗-algebra extensions of C(X) by compact operators was motivated
by the understanding of essentially normal operators on an infinite dimensional
Hilbert space. The Brown-Douglas-Fillmore Theory for essentially normal opera-

tors gives the classification of essentially normal operators up to unitary equivalence
([BDF1]). The original BDF-theory quickly developed into C∗-algebra extension
theory ([BDF2, BDF3]) and the KK-theory of Kasparov. Applications of this de-
velopment can be found not only in operator theory and operator algebras but also

in both geometry and non-commutative geometry.
Let 0→ B→ E→ A→ 0 be an essential extension of A by B. This is determined

by a monomorphism τ : A → M(B)/B. While KK-theory gives the classification
of extensions up to stable unitary equivalence, it does not give much information

on essential extensions when B 6= K, where K is the compact operators on l2. The
example in 1.1 below shows that a non-trivial extension τ may have [τ ] = 0 in
KK1(A,B). Other examples (see 4.8) show that there may be infinitely many non-
equivalent trivial extensions. Extensions by simple C∗-algebras have been studied in

a few special cases (see [Ln5], [Ln6], [Ln7] and [Ln8]).
In this paper, we study approximately unitary equivalence classes of essential ex-

tensions of separable amenable C∗-algebras by σ-unital simple C∗-algebras. One of
the reasons that BDF-theory was successful is that the Calkin algebra M(K)/K is

simple (and purely infinite). We will restrict ourselves to the case that M(B)/B is
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simple. It is shown in [Ln1] and more recently in [Ln21] that, for a non-unital and
σ-unital simple C∗-algebra A 6∼= K, M(A)/A is simple if and only if A has a con-

tinuous scale. Furthermore, in [Ln21] it is shown that when M(A)/A is simple it is
necessarily purely infinite simple.

With the Busby invariant, to study essential extensions of A by B it is sufficient to
study monomorphisms from A to M(B)/B. With recent development in classifica-

tion of simple amenable C∗-algebras, we know a great deals concerning monomor-
phisms from one amenable (simple) C∗-algebra to a separable amenable purely in-
finite simple C∗-algebra (see for example, [Ph1, Ln19, Ln20]). However, M(B)/B is
not amenable and we do not assume that A is simple. One of the main results of this

article is the following: Two essential extensions are approximately unitarily equiva-
lent if they induce the same element in KL(A,M(B)/B). If furthermore A satisfies the
Universal Coefficient Theorem, then there is a bijection between Extap(A,B), the ap-
proximately unitary equivalence classes of essential extensions, and KL(A,M(B)/B).

However, unlike the classical case, the zero element in KL(A,M(B)/B) does not
in general give an approximately trivial extension. On the contrary, at least in some
cases, [τ ] = 0 in KL(A,M(B)/B) never gives an approximately trivial extension and
only when [τ ] 6= 0 in KL(A,M(B)/B) may approximately trivial extensions occur.

To make matters worse, there may not be any essential trivial extensions of A by B

even though we can use the above mentioned bijection to classify extensions. This
leads us to study quasidiagonal extensions.

Quasidiagonality was defined by P. R. Halmos [H] in 1970. The C∗-algebra version

soon appeared. L. G. Brown, R. G. Douglas and P. A. Fillmore [BDF2] first recognized
that the study of quasidiagonal extensions might be approached by K-theory. They
noticed that limits of trivial extensions correspond to the quasidiagonal extensions.
L. G. Brown pursued this further in [Br2]. Further developments in the study of

quasidiagonality can be found in [Sa, V1, V2]. C. L. Schochet proved that stable
quasidiagonal extensions are the same as limits of stable trivial extensions and can
be characterized by Pext(K∗(A),K∗(B)) if A is assumed to be quasidiagonal relative
to B and it satisfies the Universal Coefficient Theorem. These results might lead one

to believe that quasidiagonal extensions are the same as limits of trivial extensions
in greater generality. However, in this paper we show this fails when B is neither
isomorphic to K nor purely infinite simple.

One should note that the existence of quasidiagonal extensions implies that B has

at least one approximate identity consisting of projections. Suppose that B is a non-
unital and σ-unital simple C∗-algebra with real rank zero, stable rank one and weakly
unperforated K0(B). If A is a quasidiagonal C∗-algebra, then there exists an essential
quasidiagonal extension of A by B. This condition is necessary if we assume that

B is also a quasidiagonal C∗-algebra. Using K-theory and the classification result
mentioned above, we give a necessary and sufficient condition for essential extensions
to be quasidiagonal for a large class of amenable quasidiagonal C∗-algebras A. We
also give a necessary condition for essential extensions to be approximately trivial

for amenable C∗-algebras which satisfy the UCT. As a consequence, a large class of
quasidiagonal extensions are not the limits of trivial extensions.

The essential extensions of a separable amenable C∗-algebra A by B (where B is
a non-unital and σ-unital C∗-algebra with a continuous scale) is proved in this pa-
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per to be determined by KL(A,M(B)/B). However, to determine which elements
in KL(A,M(B)/B) give an approximately trivial extension is still a difficult task. As

mentioned above, for example, the zero element in KL(A,M(B)/B) does not usu-
ally give an approximately trivial extension. When A is stably finite, both K0(A) and
K0(M(B)) have nice order while K0(M(B)/B) has no useful order. Even if we know
which homomorphism β : K0(A) → K0(M(B)/B) can be lifted to a homomorphism

from K0(A) to K0(M(B)), the lifting may not be positive. In this paper, at least for
some special cases, we give a precise condition for an element in KL(A,M(B)/B) to
be represented by approximately trivial extensions.

This paper is organized as follows.

Section 1: Preliminaries. This section is a preparation for the rest of the paper
which contains a computation of K-theory for M(B) and M(B)/B for σ-unital simple
C∗-algebra with real rank zero, stable rank one, weakly unperforated K0(B) and with
a continuous scale. We also point out that M(B)/B is simple (and purely infinite) if

and only if B has a continuous scale (if B 6∼= K).
Section 2: Monomorphisms from A⊗O2 into a purely infinite simple C∗-algebra.

This section studies homomorphisms from A ⊗ O2 into a purely infinite simple
C∗-algebra.

Section 3: Approximately unitarily equivalent extensions. We show that if B is a
non-unital and σ-unital simple C∗-algebra with a continuous scale, two monomor-
phisms from A to M(B)/B are approximately unitarily equivalent if and only if they
induce the same element in KL(A,M(B)/B).

Section 4: Extap(A,B). In this section, under the assumption that A satisfies the
UCT, we give a bijection Γ : Extap(A,B)→ KL(A,M(B)/B).

Section 5: Examples. In this section, we present a few examples which show that
the bijection Γ may not answer all questions about these extensions. For example, we

show that the zero element in KL(A,M(B)/B) does not represent an approximately
trivial extension in general.

Section 6: Quasidiagonal extensions—general and infinite cases. This section
discusses quasidiagonal extensions. Without assuming the UCT, we give a general

K-theoretical necessary condition for an essential extension to be quasidiagonal. We
also show that for any separable exact C∗-algebra A, there exist quasidiagonal exten-
sions of A by any σ-unital purely infinite simple C∗-algebras.

Section 7: Quasidiagonal extensions—finite case. Let A be a separable amenable

C∗-algebra and B be a σ-unital C∗-algebra admitting an approximate identity con-
sisting of projections and having the property (SP). We show that if A is a quasidiago-
nal C∗-algebra, then there exists an essential quasidiagonal extension. If, in addition
B is also assumed to be a quasidiagonal C∗-algebra, then the condition that A is qua-

sidiagonal is also necessary. When B is a σ-unital simple C∗-algebra with real rank
zero, stable rank one, weakly unperforated K0(B) and with a continuous scale, we
present a K-theoretical necessary and sufficient condition for an essential extension
to be quasidiagonal for a class of separable quasidiagonal amenable C∗-algebras.

Section 8: Approximately trivial extensions. In the last section, we give a gen-
eral K-theoretical necessary condition for essential extensions to be approximately
trivial. Combining this condition with the results in section 7, we show that there
are essential quasidiagonal extensions that are not approximately trivial extensions.
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We also show how to use the bijection Γ to determine which essential extensions are
approximately trivial at least in some special cases.

1 Preliminaries

Throughout this paper, we will use the following conventions:

(1) An ideal of a C∗-algebra is always a closed two-sided ideal.
(2) By a unital C∗-subalgebra C of a unital C∗-algebra A we mean C ⊂ A and

1C = 1A.

(3) If p and q are two projections in a C∗-algebra A, we say p is equivalent to q if
there exists a partial isometry v ∈ A such that v∗v = p and vv∗ = q.

(4) Let A and B be two C∗-algebras and L1, L2 : A → B be two maps. Let ε > 0 and
F ⊂ A be a subset. We write

L1 ≈ε L2 on F

if
‖L1(a)− L2(b)‖ < ε for all a ∈ F.

Suppose that A and B are unital and L1(1) and L2(1) are projections. If there is
an isometry s ∈ B such that s∗L2(1)s = L1(1), sL1(1)s∗ = L2(1) and

ad s ◦ L2 ≈ε L1 on F,

we will write

L2 ∼ε L1 on F.

(5) A separable C∗-algebra A is said to be amenable (or nuclear), if for any ε > 0
and finite subset F ⊂ A, there exists a finite dimensional C∗-algebra C and two
contractive completely positive linear maps L1 : A → C and L2 : C → A such
that

L2 ◦ L1 ≈ε idA on F.

(6) Let A be a separable amenable C∗-algebra. We say A satisfies the Universal
Coefficient Theorem (UCT) and write A ∈ N, if for any σ-unital C∗-algebra
C , the map γ : KK(A,C) → Hom(K∗(A),K∗(C)) is surjective and the map

κ : ker γ → ext(K∗(A),K∗(C)) is an isomorphism, i.e., there is a short exact
sequence:

0→ ext(K∗(A),K∗(C))→ KK(A,C)
γ−→ Hom(K∗(A),K∗(C))→ 0.

If h : A→ C is a homomorphism then h gives an element [h] in KK(A,C).
(7) An extension 0→ B→ E→ A→ 0 of C∗-algebras is said to be essential if

{e ∈ E : eb = be = 0 for all b ∈ B} = {0}.

If E is an essential extension of A by B as above, then it is determined by a
monomorphism τ : A → M(B)/B and E = π−1 ◦ τ (A), where π : M(B) →
M(B)/B is the quotient map.
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We start with the following essential extensions:

0→ A→ E→ C(D)→ 0,

where D is the unit disk and A = B ⊗ K and where B is a separable unital simple
AF-algebra with a unique tracial state. For example B may be a UHF-algebra. Let
I be the unique proper ideal of M(A) which contains A (see [Ell1, 3.2]). Denote

J = π(I), where π : M(A) → M(A)/A is the quotient map. Let p ∈ M(A)/A \ J be
a projection such that 1 − p ∈ J is a non-zero projection. To see such a projection
exists, one takes a projection q ∈ M(A) \ A with finite trace. Then q ∈ I. Define
p = 1 − π(q). It follows from [Ln7, 1.17(4)] that K1(M(A)/I)) = R. It is known

that M(A)/I is purely infinite and simple (see [Zh1]). Thus there is a unitary u ∈
p(M(A)/A)p such that π̄(u) is not in U0(M(A)/I), where π̄ : M(A)/A→ M(A)/I is
the quotient map. Let y ∈ (1 − p)M(A)/A(1 − p) with the spectrum sp(y) = D.

Set x = u + y. Define τ : C(D) → M(A)/A by τ ( f ) = f (x) for f ∈ C(D). It is
easy to see that τ is not trivial nor it is approximately trivial. However, it is known
that Ext(C(D),A) = KK1(C(D),A) = {0}. So certainly in this case KK1(C(D),A)
can not be used to understand extensions of C(D) by A. Clearly the complicity of the

extension is caused by the fact that M(A)/A is not simple. One can easily imagine
that when the ideal structure of M(A)/A is more complicated, equivalent classes of
extensions will be hard to compute if it is even possible to compute. The success of
the BDF-theorem for the classification of extensions by K depends on the fact that

M(K)/K, the Calkin algebra, is simple. In this paper, we will therefore consider only
those essential extensions by a simple C∗-algebra A such that M(A)/A is simple.

So the question is: When is M(B)/B simple?

Let B be a σ-unital simple C∗-algebra. Recall [Ln1] that B is said to have a contin-

uous scale if for any approximate identity {en} of B satisfying en+1en = enen+1 = en

and any nonzero positive element a ∈ B+, there exists an integer N > 0 such that

(em − en) . a, for m > n ≥ N

i.e., there exists a sequence of elements rn ∈ B such that r∗k ark → em − en for all
m > n ≥ N . It should be noted that if p and q are projections and p . q, then p is
equivalent to a projection q ′ ≤ q.

It is proved in [Ln1] that, for non-unital separable simple C∗-algebra B 6∼= K,
M(B)/B is simple if B has a continuous scale. Recently we have proven the following:

Theorem 1.1 ([Ln21]) Let A 6∼= K be a non-unital and σ-unital simple C∗-algebra.

The following are equivalent:

(1) A has a continuous scale;

(2) M(A)/A is simple,

(3) M(A)/A is a purely infinite simple C∗-algebra.

Clearly every (non-unital) σ-unital purely infinite simple C∗-algebra has a contin-
uous scale. Essential extensions of separable C∗-algebras A which satisfy the UCT by
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a non-unital separable purely infinite simple C∗-algebra B is classified by KK1(A,B)
by Kirchberg’s absorbing theorem [K1].

In this paper we will focus on essential extensions by a σ-unital simple C∗-algebra
with real rank zero, stable rank one, weakly unperforated K0 and a continuous scale.

Suppose that B is a non-unital separable simple C∗-algebra with real rank zero,
stable rank one and weakly unperforated K0(B). Fix any nonzero projection e ∈ B.

Denote by T the set of those quasi-traces τ on B such that τ (e) = 1. Note that T is
(weak ∗-) compact convex set. Let a ∈ M(B)+. Define â(τ ) = τ (a) for τ ∈ T. Then
â is a lower semi-continuous affine function on T. If a ∈ A, then â is continuous.

To see examples of simple C∗-algebras with continuous scale, we quote the fol-

lowing result [Ln21]. It also justifies the terminology “continuous scale”.

Theorem 1.2 Let A be a non-unital but σ-unital simple C∗-algebra with real rank

zero, stable rank one and weakly unperforated K0(A). Let 1 be the identity of M(A).

Then A has a continuous scale if and only if 1̂(τ ) = τ (1) for τ ∈ T is a continuous

function on T.

It is also proved in [Ln21] that given any separable simple C∗-algebra A, there

is a non-unital hereditary C∗-subalgebra B such that B has a continuous scale. In
particular, M(B)/B is a purely infinite simple C∗-algebra. Note that B⊗K ∼= A⊗K

and B may not have any non-trivial projections. Furthermore, B may contain both
infinite and finite projections (given by Rørdam ([Ro5]).

Definition 1.3 Let T be a compact convex set. A function f defined on T is said to

be affine if f (aξ + (1 − a)ζ) = a f (ξ) + (1 − a) f (ζ) for all ξ, ζ ∈ T and 0 ≤ a ≤ 1.
We denote

Aff(T) = { f ∈ C(T) : f is affine}.
If f , g ∈ Aff(T) and f (t) > g(t) for all t ∈ T, we will write f ≫ g. Denote

Aff(T)++ = { f ∈ Aff(T) : f ≫ 0, or f = 0}.

Let B be a simple C∗-algebra with real rank zero, stable rank one and weakly un-
perforated K0(B). Fix a nonzero projection e ∈ B. Denote by T the set of those traces
τ defined on B such that τ (e) = 1. Define

ρB : K0(B)→ Aff(T)

by ρB([p])(τ ) = τ (p) for projections p ∈ Mm(B), m = 1, 2, . . . . It is known that ρB

is a positive homomorphism from (K0(B),K0(B)+) to (Aff(T),Aff(T)++) (see [BH]).
In fact (by [BH]), [p] ≥ [q] and [p] 6= [q] if and only if τ (p) > τ (q) for all τ ∈ T.

The following was first proved in [Ln2] in 1991.

Theorem 1.4 Let e ∈ B be a nonzero projection. Let

T = {τ : τ (e) = 1, τ is trace defined on B}.

Then
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(1) (K0(M(B)),K0(M(B))+) = (Aff(T),Aff(T)++);
(2) two projections p and q in M(B) \ B are equivalent if τ (p) = τ (q) for all τ ∈ T;

(3) for any f ∈ Aff(T)++, there is a projection p ∈ Mk(M(B)) \ Mk(B) (for some

k ≥ 1) such that p̂ = f ; and

(4) K1(M(B)) = {0} and U (M(B)) = U0(M(B)).

Proof Since B has real rank zero, we obtain an approximate identity {en} for B

consisting of projections (with e0 = 0). Let p ∈ M(B) be a projection. It follows from
[Zh2, Theorem 4.1] that we may assume that p =

∑∞
n=1 pn, where pn ≤ en+1 − en.

Since 1̂ is continuous on T, by the Dini Theorem, ρB(en) converges to 1̂ uniformly on
T. This implies that p̂ is also continuous. Define ρ : K0(M(B))→ Aff(T) by defining
ρ([p]) = p̂. It is clear that ρ is a well-defined homomorphism.

We now prove (2). It follows from [Zh2, Theorem 4.1] again that we may assume
that p =

∑∞
n=1 pn and q =

∑∞
n=1 qn, where pn, qn ≤ en+1−en and the sum converges

in the strict topology. Without loss of generality, we may assume that pn and qn are
not zero. Since B is simple, we have p̂1 ≪ p̂ = q̂. Since

∑∞
n=1 q̂n converges uniformly

on T, there is n1 > 1 such that
∑n1

j=1 q̂ j ≫ p̂1. It follows from [BH, III2.2; III2.3]
that there is a partial isometry v1 ∈ B such that

v∗1 v1 = p1 and v1v∗1 ≤
n1∑

j=1

q j .

There is m1 > 1 such that

τ (

m1∑

j=2

p j) > τ (

n1∑

j=1

q j − v1v∗1 ) for all τ ∈ T.

It follows that there is a partial isometry u1 ∈ B such that

u∗1 u1 =

n1∑

j=1

q j − v1v∗1 and u1u∗1 ≤
m1∑

j=2

p j .

Put w1 = v1 + u∗1 . Then

m1∑

j=1

p j > w∗1 w1 ≥ p1 and

n1∑

j=1

q j = w1w∗1 ≥ q1.

By induction one constructs a sequence of partial isometries wk ∈ B (w0 = 0) such

that
mk∑

j=1

p j −
k−1∑

j=1

w∗j w j > w∗k wk ≥
mk−1∑

j=1

p j −
k−1∑

j=1

w∗j w j

and
nk∑

j=1

q j −
k−1∑

j=1

w jw
∗
j ∗ = wkw∗k ≥

nk−1∑

j=1

q j −
k−1∑

j=1

w jw
∗
j ,
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where {nk} and {mk} are increasing sequences of positive integers.
Set W =

∑∞
k=1 wk. One checks that the sum converges in the strict topology and

W is a partial isometry in M(B). One then verifies that

W ∗W = p and WW ∗ = q.

This proves (2).

Note that (2) also implies that ρ is injective. In fact, if p ∈ M(B) \B and q ∈ B are
two projections such that τ (p) = τ (q) for all τ ∈ T, then p ⊕ 1 and q ⊕ 1 are both
in M(B) \ B. So, by (2), p ⊕ 1 and q⊕ 1 are equivalent. Therefore ρ is injective.

To see ρ is surjective, let f ∈ Aff(T). We need to show that f is in the image of ρ.

It is clear that it suffices to prove the case for f ≫ 0. So we may assume that f ≫ 0.
We claim that there exists a sequence of positive functions { fn} in ρB(K0(B)) such
that fn ≪ fn+1 such that fn → f uniformly on T.

Let d0 = inf{ f (t) : t ∈ T}. Then d0 > 0.
Let d0/2 > ε > 0. Since ρA(K0(B)) is dense in Aff(T) (see [BH]), there is g1 ∈

ρB(K0(B)+) such that
‖g1 − ( f − ε)‖ < ε/4.

Therefore (1 − ε/2) f ≪ g1 ≪ f . By applying the same argument to the function

f − g1, we obtain g2 ∈ ρB(K0(B)+) such that (1− ε/4)( f − g1)≪ g2 ≪ f − g1. Note
that g1 + g2 ∈ ρB(K0(B)+). From this the claim follows.

Now we will show that f is in the image of ρ. By replacing f by f − fn if necessary,
we may assume that f ≪ ê1. There are projections rn ∈ B such that ρ(rn) = fn− fn−1

(with f0 = 0). Since f ≪ ê1 and fn converges to f uniformly on T, we may assume
that

n1∑

k=1

( fk − fk−1)≪ ρ(e1) and

∞∑

k=n1+1

( fk − fk−1)≪ ρ(e2 − e1).

Thus we may assume that

n1∑

k=1

rk ≤ e1 and

m∑

k=n1+1

rk ≤ e2 − e1

for all m > n1. We obtain n2 > n1 such that

∞∑

k=n2

( fk − fk−1)≪ ρ(e3 − e2).

Therefore we also assume that

n2∑

k=n1+1

rk ≤ e2 − e2 and

m∑

k=n2+1

rk ≤ e3 − e2

for all m > n2. By induction, we obtain an increasing sequence of integers {nk} such
that

nk+1∑

i=nk+1

ri ≤ ek+1 − ek, k = 1, 2, . . . .
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Note that this implies that
∑∞

n=1 rn converges in the strict topology to a projection
p ∈ M(B). It is easy to see that p̂ = f . This proves (1) as well as (3).

Finally we note pBp has real rank zero for all projections p ∈ M(B) and by [Ln3]
cer(pAp) ≤ π. Thus (4) has been proved in Lemma 3.3 in [Ln4].

Corollary 1.5 Let B be as in Theorem 1.4. Then

(1) K1(M(B)/B) = ker ρB, and

(2) there is a short exact sequence

0→ Aff(T)/ρA(K0(B))→ K0(M(B)/B)→ K1(B)→ 0.

Proof

From the following six-term exact sequence

K0(B)
ρB−−→ K0(M(B)) −→ K0(M(B)/B)

↑ ↓
K1(M(B)/B) ←− K1(M(B)) ←− K1(B)

we obtain, by Theorem 1.4,

K0(B)
ρB−−→ Aff(T) −→ K0(M(B)/B)

↑ ↓
K1(M(B)/B) ←− 0 ←− K1(B)

This six-term exact sequence unsplices into

K1(M(B)/B) = ker ρB and 0→ Aff(T)/ρB(K0(B))→ K0(M(B)/B)→ K1(B)→ 0.

Remark 1.6 It should be noted that Aff(T) as an ordered group does not depend
on the choice of the non-zero projection e. In what follows when we write Aff(T) it
is understood that the projection e is fixed.

The following fact will be used in this paper.

Proposition 1.7 Let G be a dense ordered subgroup of R containing 1 and let T be

a Choquet simplex. Suppose that h : G → Aff(T) is a positive homomorphism with

h(1) = a. Then

h(z) = za for all z ∈ G.

Proof Since G is dense in R, there exists a sequence gn > 0 in G such that gn → 0.
We may assume that ngn < 1 for all n. Therefore

nh(gn) ≤ a, n = 1, 2, . . . .
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It follows that h(gn) → 0. Let fn > 0 in G such that fn → 0. Thus, for each m, there
exists N(m) such that fn ≤ gm if n ≥ N(m). This implies that h( fn) → 0. Thus h

is continuous. For each nonzero integer m, define h̃(1/m) = a/m. Then one checks
that h̃ is a positive homomorphism from QG to Aff(T). The same argument above
shows that h̃ is also continuous. Fix z ∈ G. Suppose that rn ∈ Q such that rn → z.
Then h̃(rn)→ h(z), or rna→ h(z). Therefore h(z) = az.

The following example shows that even in the case that M(B)/B is simple, in gen-
eral, KK1(A,B) can not be used to give a meaningful description of extensions of A

by B.

Example 1.8 Let A be a unital simple AF-algebra and B be a σ-unital simple C∗-al-

gebra with real rank zero, stable rank one, weakly unperforated K0(B) and a contin-
uous scale. Let r be an irrational number and Dr = {m + nr : m, n ∈ Z} (= Z⊕ Zr).
Suppose K0(A) = Dr ⊕ Z. Define

K0(A)+ = {x + z : x ∈ Dr, x > 0} ∪ {(0, 0)}.

Suppose that there is a group homomorphism θ : K0(A) → Aff(T)/ρB(K0(B)) such

that θ((0, 1)) 6= 0, where (0, 1) denotes the generator of the last summand Z of K0(A).
This gives a group homomorphismα : K0(A)→ K0(M(B)/B) which maps (0, 1) to r.
Let Φ : Aff(T)→ Aff(T)/ρB(K0(B)) be the quotient map. Then θ = Φ ◦ α gives one
such homomorphism. Since M(B)/B is a purely infinite simple C∗-algebra, it is easy

to construct a homomorphism τ : A → M(B)/B such that τ∗0 = θ (see for example
Theorem 4.6). This τ gives an essential extension of A by B which gives an element
in KK1(A,B). Let E be the C∗-algebra determined by τ . Then we have the following
commutative diagram:

K0(B) //

= &&MMMMMMMMM
K0(E) //

��

K0(A)

τ∗0

xxqqqqqqqq

��

K0(B) // K0(M(B)) // K0(M(B)/B)

��
K1(M(B)/B)

OO

0oo K1(B)oo

K1(A)

OO

88qqqqqqqq

K1(E)oo

OO

K1(B)oo

=

ffMMMMMMMMM

Since the image of τ∗0 is in Aff(T)/ρB(K0(B)), by (2) in Corollary 1.5 and from

the above diagram one concludes that the map from K0(A) to K1(B) is zero. Since
K1(A) = {0}, one further concludes that the map from K1(A) to K0(B) is also zero.
By the Universal Coefficient Theorem, one computes that [τ ] ∈ extZ(K0(A),K0(B)).
Using the map α or using the fact that K0(A) is finitely generated free group, [τ ] = 0

https://doi.org/10.4153/CJM-2005-016-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-016-5


Extensions by Simple C∗-Algebras 361

in KK1(A,B). However, there is no homomorphism h : A → M(B) such that (π ◦
h)∗0 = θ. Otherwise, since h∗0 is positive, it maps ker ρA = Z into zero. That would

imply that τ∗0 maps ker ρA to zero. But we constructed otherwise. Therefore τ is
not trivial. Furthermore it can not be even approximately trivial (see Theorem 8.1
below). This shows that even in the case that M(B)/B is simple, KK1(A,B) cannot be
used to give a good description of extensions of A by B.

2 Monomorphisms from A⊗ O2 into a Purely Infinite Simple
C

∗-algebra

Definition 2.1 Recall that a family ω of subsets of N is an ultrafilter if

(i) X1, . . . ,Xn ∈ ω implies
⋂n

i=1 Xi ∈ ω,
(ii) ∅ /∈ ω,
(iii) if X ∈ ω and X ⊂ Y , then Y ∈ ω and

(iv) if X ⊂ N then either X or N \ X is in ω.

An ultrafilter is said to be free, if
⋂

X∈ω X = ∅. The set of free ultrafilters is identified
with elements in βN \ N, where βN is the Stone-Cech compactification of N.

A sequence {xn} (in a normed space for example) is said to converge to x0 along ω,

written limω xn = x0, if for any ε > 0 there exists X ∈ ω such that ‖xn − x0‖ < ε for
all n ∈ X.

Let {Bn} be a sequence of C∗-algebras. We write l∞({Bn}) for the C∗-algebra∏∞
n=1 Bn. Fix an ultrafilterω. The ideal of l∞({Bn}) which consists of those sequences
{an} in l∞({Bn}) such that limω ‖an‖ = 0 is denoted by cω({Bn}). Define

qω({An}) = l∞({Bn})/cω({Bn}).

If Bn = B, n = 1, 2, . . . , we use l∞(B) for l∞({Bn}), cω(B) for cω({Bn}) and qω(A)
for qω({An}), respectively.

Lemma 2.2 Let A be a separable C∗-algebra and {Bn} be a sequence of unital C∗-al-

gebras. Let ω ∈ βN \ N. Suppose that ψm, φm : A → Bm are two bounded sequences of

maps such thatψ = π◦{ψm}, φ = π◦{φm} : A→ qω({Bn}) are two homomorphisms,

where π : l∞({Bm})→ qω({Bn}) is the quotient map.

(1) Suppose that there are isometries un ∈ qω({Bn}) such that

lim
n→∞

‖u∗nψ(a)un − φ(a)‖ = 0 for all a ∈ A.

Then there is an isometry w ∈ qω({Bn}) such that

w∗ψ(a)w = φ(a) for all a ∈ A.

(2) Suppose that ψ and φ are approximately unitarily equivalent in qω({Bn}). Then

they are unitarily equivalent.
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Proof Suppose that there is a sequence of isometries un ∈ qω({Bn}) such that

lim
n→∞

‖u∗nψ(a)un − φ(a)‖ = 0

for all a ∈ A. Let {an} be a dense sequence of A. By passing to a subsequence if
necessary, we may assume that

‖u∗nψ(a j)un − φ(a j)‖ < 1/n, j = 1, 2, . . . , n.

It follows from [Ro4, 6.2.4] that there exists, for each n, a sequence of isometries
u(n)

m ∈ Bn such that π({u(n)
m } = un, where π : l∞({Bn}) → qω({Bn}) is the quotient

map. For each n, there exists Xn ∈ ω such that for m ∈ Xn,

‖(u(n)
m )∗ψm(a j)u(n)

m − φm(a j)‖ ≤ 1/n, j = 1, 2, . . . , n.

Since ω is free, there is for each j, Y ′j ∈ ω such that j 6∈ Y ′j . Let Y j =
⋂

1≤k≤ j Y ′j .

Then Y j ∈ ω and {1, 2, . . . , j} ∩ Y j = ∅. Let Z ′k = Xk ∩ Yk. Then Z ′k ∈ ω and⋂
k≥N Z ′k = ∅, N = 1, 2, . . . . Put Zk =

⋂
1≤ j≤k Z ′j . Then Zk ∈ ω and Z1 ⊃ Z2 ⊃

· · · ⊃ Zk ⊃ · · · . Moreover, Zk ⊂ Xk, k = 1, 2, . . . .
Define l(m) as follows. If m ∈ Zk \ Zk+1, define l(m) = k, k = 1, 2, . . . ; and if

m 6∈ Z1, define l(m) = m, m = 1, 2, . . . . Put wm = u(l(m))
m ∈ Bm and w = π({wm}).

Then, for any ε > 0 and j, let k > 0 be an integer such that 1/k < ε and j ≤ k.
If m ∈ Zk, then m ∈ Zk ′ \ Zk ′+1 for some k ′ ≥ k. Thus wm = u(k ′)

m and m ∈ Xk ′ .
Therefore

‖w∗mψm(a j)wm − φm(a j)‖ = ‖u(k ′)
m ψm(a j)u(k ′)

m − φm(a j)‖ < 1/k ′ ≤ 1/k < ε

for all j = 1, 2, . . . , k. This implies that

lim
ω
‖w∗mψm(a j)wm − φm(a j)‖ = 0

for all j. Hence
w∗ψ(a j)w = φ(a j) j = 1, 2, . . . .

Since {an} is dense in A,

w∗ψ(a)w = φ(a) for all a ∈ A.

This proves (1).
To prove (2), we note that if un are unitaries, so is w.

Lemma 2.3 ([KP], Proposition 1.4) Let A be a unital separable C∗-subalgebra of a

unital purely infinite simple C∗-algebra B and let φ : A→ B be an amenable contractive

completely positive linear map. Then for any finite subset F ⊂ A and any ε > 0 there is

a non-unitary isometry s ∈ B such that

‖s∗as− φ(a)‖ < ε for all a ∈ F.
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Proof By the assumption that φ is amenable there are contractive completely posi-
tive linear maps σ : A → Mn(C) (for some integer n > 0) and η : Mn(C) → B such

that
φ ≈ε η ◦ σ on F.

We may therefore assume that φ = η ◦ σ. It is well known (see for example, [Ln16,

2.3.5]) that there exists a contractive completely positive linear map σ̃ : B → Mn(C)
such that σ̃|A = σ. Define φ̃ = η◦σ̃. Since now B is purely infinite and φ̃ is amenable,
the lemma follows immediately from [KP, 1.4].

Corollary 2.4 Let B be a unital purely infinite simple C∗-algebra and A be a separable

amenable C∗-algebra. Let φ, ψ : A → B be two monomorphisms. Then there are two

sequences of isometries sn and wn in B such that

lim
n→∞

‖s∗nφ(a)sn − ψ(a)‖ = 0 and lim
n→∞

‖w∗nψ(a)wn − φ(a)‖ = 0

for all a ∈ A.

The proof of the following proposition is exactly the same as [Ro4, 6.2.6].

Proposition 2.5 Let Bn be a sequence of purely infinite simple C∗-algebras. Then

qω({Bn}) is a purely infinite simple C∗-algebra for every free ultrafilter ω.

Proposition 2.6 ([KP, 3.4]) Let Bn be a sequence of unital purely infinite simple

C∗-algebras and A be a unital separable amenable simple C∗-algebra. Suppose that

j : A→ qω({Bn}) is a monomorphism. Then the relative commutant j(A) ′ in qω({Bn})
is a unital purely infinite simple C∗-algebra.

Proof Let a ∈ j(A) ′ be a nonzero positive element with ‖a‖ = 1. It suffices to show
that there is an isometry s ∈ j(A) ′ such that s∗as = 1. Let X = sp(a) ⊂ [0, 1] and
define two homomorphisms φ, ψ : C(X)⊗ A→ qω(B) by

φ( f ⊗ b) = f (a)b and ψ( f ⊗ b) = f (1)b

for f ∈ C(X) and b ∈ A. Since A is an amenable simple C∗-algebra, φ is a monomor-
phism. It follows from Proposition 2.5 that qω(B) is a purely infinite simple C∗-alge-

bra. Therefore by Lemma 2.3 there is a sequence of isometries sn ∈ qω(B) such that

lim
n→∞

‖s∗nφ(x)sn − ψ(x)‖ = 0

for all x ∈ C(X)⊗ A. It follows from Lemma 2.2 that there is an isometry s ∈ qω(B)
such that

s∗φ(x)s = ψ(x) for all x ∈ C(X)⊗ A.

In particular,
s∗as = s∗φ(ı⊗ 1)s = ψ(ı⊗ 1) = 1,

where ı is the identity function ı(t) = t . We also have

s∗bs = s∗φ(1⊗ b)s = ψ(1⊗ b) = b.

Hence s ∈ j(A) ′ by [Ro4, Lemma 6.3.6].
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Theorem 2.7 Let B be a unital purely infinite simple C∗-algebra and A be a unital

separable amenable C∗-algebra. Suppose that φ, ψ : A ⊗ O2 → B are two monomor-

phisms. Then ψ and φ are approximately unitarily equivalent.

Proof Let p1 = φ(1A⊗O2
) and p2 = ψ(1A⊗O2

). It follows from[Ro1, 3.6] that
φ|1⊗O2

and ψ|1⊗O2
are approximately unitarily equivalent. It follows that p1 and

q1 are equivalent in B. Therefore we may assume, without loss of generality, that

p1 = p2. By replacing B by p1Bp1, we may further assume that both φ and ψ are
unital.

Let Ψ,Φ : A ⊗ O2 → l∞(B) be defined by Ψ = {ψ(a), ψ(a), . . . , ψ(a), . . . ) and
Φ(a) = {φ(a), φ(a), . . . , φ(a), . . . ) for a ∈ A, respectively. Fix a free ultrafilterω. Put
φ̄ = π ◦ Φ and ψ̄ = π ◦Ψ, where π : l∞(B)→ qω(B) is the quotient map. It follows
from [Ro1, 3.6] that φ̄|1⊗O2

and ψ̄|1⊗O2
are approximately unitarily equivalent. It

follows from Lemma 2.2 that they are unitarily equivalent in qω(B). Without loss of
generality, we may assume that

φ̄|1⊗O2
= ψ̄|1⊗O2

.

Let D = φ̄(1 ⊗ O2). Then D ∼= O2. By [Ro2] O2 ⊗ O2
∼= O2. Let ı : O2 → O2 ⊗ O2

be defined by ı(a) = a⊗ 1 and let λ : O2 ⊗ O2 → O2 be an isomorphism. Then λ ◦ ı

and idO2
are approximately unitarily equivalent.

Let γ : A ⊗ O2 → A ⊗ O2 ⊗ O2 → A ⊗ O2 ⊗ 1 be the homomorphism induced
by λ ◦ ı above. Then φ̄ ◦ γ is approximately unitarily equivalent to φ̄ and ψ̄ ◦ γ
is approximately unitarily equivalent to ψ̄. To prove that ψ̄ and φ̄ are approximately
unitarily equivalent it suffices to show that φ̄◦γ and ψ̄◦γ are approximately unitarily
equivalent.

There is a unital C∗-subalgebra D1 ⊂ D of qω(B) which is isomorphic to O2 and
its commutant contains both the images of φ̄ ◦ γ and ψ̄ ◦ γ.

Let D ′1 be the commutant in qω(B). Then by Proposition 2.6 D ′ is purely infinite
simple. It follows from Corollary 2.4 that there are isometries sn,wn ∈ D ′1 such that

lim
n→∞

‖s∗nψ̄ ◦ γ(a)sn − φ̄(a)‖ = 0 and lim
n→∞

‖w∗n φ̄ ◦ γ(a)wn − ψ̄(a)‖ = 0

for all a ∈ A. Since ((D1) ′) ′ contains a unital subalgebra D1 which is isomorphic to
O2, by [Ro4, Lemma 6.3.7 ], φ̄◦γ and ψ̄◦γ are approximately unitarily equivalent. It
follows that φ̄ and ψ̄ are approximately unitarily equivalent in qω(B). It follows from

[Ro4, 6.2.5] that φ and ψ are approximately unitarily equivalent.

3 Approximately Unitarily Equivalent Extensions

The purpose of this section is to prove Theorem 3.7 and Theorem 3.9. The statements

have been proved for the case that the target C∗-algebra is a separable amenable
purely infinite simple C∗-algebra. The problem we deal with in this section is to
show a certain absorption property in the absence of “approximate divisibility” for
M(B)/B.
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Lemma 3.1 Let B be a non-unital and σ-unital C∗-algebra and A be a separable

C∗-algebra. Let τ : A → M(B)/B be a homomorphism. Then there is a sequence of

non-zero mutually orthogonal elements an ∈ τ (A) ′, where τ (A) ′ is the commutant of

τ (A) in M(B)/B.

Proof Let D be a separable C∗-algebra in M(B) such that τ (A) ⊂ π(D), where
π : M(B) → M(B)/B is the quotient map. It follows from [Ln21, Lemma 3.1]
that there exists an approximate identity {en} such that en+1en = enen+1 = en,
n = 1, 2, . . . , and

‖ekd− dek‖ → 0 as k→∞

for all d ∈ D. Fix a subsequence X ⊂ N, then aX =
∑

n∈X(en+1 − en) is a positive
element in M(A). Since limk→∞ ‖ekd − dek‖ = 0 for each d ∈ A, π(aX)π(d) =

π(d)π(aX). In other words aX ∈ τ (A) ′. Suppose that X and Y are two disjoint

subsets of N such that for any n ∈ x and m ∈ Y , |n−m| ≥ 2. By the assumption that
en+1en = enen+1 = en, we conclude that aXaY = aY aX = 0. From this it is easy to see
that there exists a sequence of nonzero mutually orthogonal elements in τ (A) ′.

Lemma 3.2 Let A be a unital separable amenable C∗-algebra, B be a non-unital but

σ-unital simple C∗-algebra with a continuous scale and let ω ∈ βN \ N be a free ul-

trafilter. Suppose that τ : A → M(B)/B is an essential unital extension. Let τ∞ : A →
l∞(M(B)/B) be defined by τ∞(a) = (τ (a), τ (a), . . . ) and let ψ = Φ ◦ τ∞, where

Φ : l∞(M(B)/B) → qω(M(B)/B). Then there is a unital C∗-subalgebra C ∼= O∞ in

the commutant of ψ(A) in qω(M(B)/B).

Proof Let J : M(B)/B → qω(M(B)/B) be defined by J(b) = Φ((b, b, . . . , b, . . . ))
for b ∈ B. By (the proof of) [Ln19, 7.4], there exists a unital separable purely infinite

simple C∗-algebra D ⊂ M(B)/B such that τ (A) ⊂ D. It follows from Lemma 3.1
that there is a sequence of nonzero mutually orthogonal positive elements {an} in
D ′, the commutant of D in M(B)/B. Let X = sp(a1). Without loss of generality we
may assume that ‖a1‖ = 1 and 1 ∈ X. Define L1, L2 : A ⊗C(X) → qω(M(B)/B) by

L1(x⊗ f ) = ψ(x) f ( J(a)) and L2(x⊗ f ) = ψ(x) f (1) for x ∈ A and f ∈ C(X). Define
L3 : D⊗C(X)→ qω(M(B)/B) by L3(y⊗ f ) = y f ( J(a)) for y ∈ D. Sinceψ is injective
and D is purely infinite simple, one concludes that L3 is injective. Consequently, L1 is
injective. Now we apply an argument in [KP]. Since A⊗C(X) is amenable, the Choi-

Effros lifting theorem provides unital completely positive lifting ρ, σ : A ⊗ C(X) →
l∞(B) of L1 and L2 [CE]. Write

ρ(a) = (ρ1(a), ρ2(a), . . . , ρn(a), . . . ) and σ(a) = (σ1(a), σ2(a), . . . , σn(a), . . . )

for a ∈ A⊗C(X), where ρk and σk are unital, completely positive maps from A⊗C(X)
into Bk. It follows from [Ro4, 6.3.5 (iii)] that there are non-unitary isometries sk ∈ Bk

(k = 1, 2, . . . ) such that

lim
n→∞

‖s∗nρn(a)sn − σn(a)‖ = 0 for all a ∈ A⊗C(X).
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Put t1 = π(s1, s2, . . . , sn, . . . ) ∈ l∞(B). Then t1 is a non-unitary isometry. It follows
that

t∗1ψ(a)t1 = t∗1 L1(a⊗ 1)t1 = L2(a⊗ 1) = ψ(a)

for all a ∈ A. It follows from [Ro4, Lemma 6.3.6] that t1 ∈ (ψ(A)) ′. Furthermore,

t∗1 J(a1)t1 = t∗1 L1(1⊗ ı)t1 = L2(1⊗ ı) = 1,

where ı is the function ı(t) = t . Let t1t∗1 = q1. Then q1 ∈ ψ(A) ′ and q1 ∈
J(a1)ψ(A) ′ J(a1). We repeat the above argument for a2, a3, . . . . Then we obtain a

sequence of isometries t1, t2, . . . . in ψ(A) ′ such that t∗n tn = 1 and

n∑

i=1

tit
∗
i ∈ (

n∑

i=1

J(ai))ψ(A) ′(

n∑

i=1

J(ai)).

It follows that
∑n

i=1 ai ≤ 1. Therefore we obtain a unital C∗-subalgebra C ∼= O∞ in

ψ(A) ′.

Lemma 3.3 Let A be a unital separable amenable C∗-algebra and C be a unital sep-

arable amenable purely infinite simple C∗-algebra. Suppose that A ⊗ C is a unital

C∗-subalgebra of a unital C∗-algebra B. Then there is an embedding j : A ⊗ C →
A ⊗ O2 → B satisfying the following: for any ε > 0, any finite subset F ⊂ A ⊗ C

and any integer n > 0, there exists a partial isometry u ∈ Mn+1(B) such that u∗u = 1,

uu∗ = 1⊕ j(1A⊗C )⊕ j(1A⊗C )⊕ · · · ⊕ j(1A⊗C ) (where j(1A⊗C ) repeats n times) and

u∗(idA⊗C ⊕ j ⊕ j ⊕ · · · ⊕ j)u ≈ε idA⊗C on F,

where j repeats n times.

Proof Let ε > 0 and G ⊂ C be a finite subset. It follows from [KP] that there is
homomorphism ı : C → O2 → C satisfying the following: for any ε > 0, any finite
subset G ⊂ C and any integer n there exists a partial isometry w ∈ Mn+1(C) such that
w∗w = 1C , ww∗ = p = 1C⊕ ı(1C )⊕ ı(1C )⊕· · ·⊕ ı(1C ) (where ı(1C ) repeats n times)

and
w∗(idC ⊕ ı⊕ ı⊕ · · · ⊕ ı)w ≈ε/2 idC on G,

where ı repeats n times. Let u = 1⊗w and define j : A⊗C → B by j(a⊗b) = a⊗ı(b))
for a ∈ A and b ∈ C . One checks that the lemma follows.

Lemma 3.4 Let A be a unital separable amenable C∗-algebra and B be a non-unital

but σ-unital simple C∗-algebra with a continuous scale. Suppose that h : A→ M(B)/B

is a unital injective homomorphism and ω ∈ βN \ N is a free ultrafilter. Let

π : l∞(M(B)/B)→ qω(M(B)/B)

be the quotient map. Define H0 : A→ l∞(M(B)/B) by

H0(a) = (h(a), h(a), . . . , h(a), . . . )
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and H = π ◦ H0. Then, there exists an injective homomorphism j : A → A ⊗ O2 →
qω(M(B)/B) satisfying the following: For any ε > 0, any finite subset F ⊂ A and

any integer n > 0 there exist an isometry u ∈ Mn+1(qω(M(B)/B) with u∗u = 1,

uu∗ = 1⊕ j(1A)⊕ · · · ⊕ j(1A) (where j(1A) repeats n times) such that

u∗(H ⊕ j ⊕ j ⊕ · · · ⊕ j)u ≈ε H on F,

where j repeats n times. Moreover, there is q ∈ qω(M(B)/B) such that [q] = [H(1A)]
and q j(a) = j(a)q for all a ∈ A and q jq is an injective full homomorphism.

Proof Fix a free ultrafilter ω ∈ βN \ N. We identify h(A) with A. It follows from
Lemma 3.2 that H(A) ′ contains a unital C∗-subalgebra C ∼= O∞. Thus we obtain
an injective homomorphism Ψ : A ⊗ O∞ → qω(M(B)/B). Thus the first part of the
lemma follows from this and Lemma 3.3.

To prove the very last part of the lemma, we may assume that [ı(1C )] 6= [1C ],
where ı is as in Lemma 3.3. There is a projection q ∈ C such that q ≤ ı(1C ) and
[q] = [1C ]. Then q j(a) = j(a)q for all a ∈ A. Since Ψ is injective, for any nonzero
element a ∈ A and b ∈ C , ab = 0 implies that b = 0. Thus q jq is injective. To see

that q jq is full we note that qω(M(B)/B) is purely infinite (see [Ro4, 6.26]).

Definition 3.5 Let A be a separable amenable C∗-algebra and B be a σ-unital C∗-al-
gebra. Then KL(A,B) is defined to be KK(A,B)/T(A,B), where T(A,B) is the sub-

group of stable approximately trivial extensions (see [Ln18]). When A is in N, then
KL(A,B) = KK(A,B)/ Pext(K∗(A),K∗(B)) (see [Ro3]).

Let Cn be a commutative C∗-algebra with K0(Cn) = Z/nZ and K1(Cn) = 0. Sup-
pose that A is a C∗-algebra. Then set Ki(A,Z/kZ) = Ki(A⊗Ck) (see [Sc1]). One has
the following six-term exact sequence (see [Sc1]):

K0(A) // K0(A,Z/kZ) // K1(A)

k ��
K0(A)

k

OO

K0(A,Z/kZ)oo K1(A)oo

In [DL], Ki(A,Z/nZ) is identified with KK i(In,A) for i = 0, 1.
As in [DL], we use the notation

K(A) =

⊕

i=0,1,n∈Z+

Ki(A; Z/nZ).

By HomΛ(K(A),K(B)) we mean all homomorphisms from K(A) to K(B) which

respect the direct sum decomposition and the so-called Bockstein operations (see
[DL]). It follows from the definition in [DL] that if x ∈ KK(A,B), then the Kas-
parov product KK i(In,A)× x gives an element in KK i (In,B) which we identify with

Hom(Ki(A,Z/nZ),K0(B,Z/nZ)). Thus one obtains a map

Γ : KK(A,B)→ HomΛ

(
K(A),K(B)

)
.
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It is shown by Dadarlat and Loring [DL] that if A is in N then, for any σ-unital
C∗-algebra B, the map Γ is surjective and ker Γ = Pext(K∗(A),K∗(B)). In particular,

Γ : KL(A,B)→ HomΛ(K(A),K(B))

is an isomorphism.

We will use the following theorem. It is a consequence of the uniqueness theorem
in [Ln16, 5.6.4] which first appeared in [Ln10]. It is proved in [Ln18].

Theorem 3.6 ([Ln18, Theorem 3.9]) Let A be a separable unital amenable C∗-alge-

bra and let B a unital C∗-algebra. Suppose that h1, h2 : A → B are two unital homo-

morphisms such that

[h1] = [h2] in KL(A,B).

Suppose that h0 : A→ B is a full unital monomorphism. Then, for any ε > 0 and finite

subset F ⊂ A, there is an integer n and a unitary W ∈ U (Mn+1(B)) such that

‖W ∗diag(h1(a), h0(a), . . . , h0(a))W − diag(h2(a), h0(a), . . . , h0(a))‖ < ε

for all a ∈ F.

Theorem 3.7 Let A be a separable amenable C∗-algebra and B be a non-unital and

σ-unital simple C∗-algebra with continuous scale. Suppose that τ1, τ2 : A → M(B)/B

be two essential extensions. Then τ1 and τ2 are approximately unitarily equivalent if

and only if

[τ1] = [τ2] in KL(A,M(B)/B).

Proof Fix an ultrafilter ω ∈ βN \ N. Let π : l∞(M(B)/B) → qω(M(B)/B) denote
the quotient map. Define Ψi : A → l∞(M(B)/B) by Ψi(A) = (τi(a), τi(a), . . . ) for

a ∈ A. Set Hi = π ◦Ψi . We will show that for any ε > 0 and any finite subset F ⊂ A

there is a unitary w ∈ qω(M(B)/B) such that

ad w ◦H1 ≈ε/2 H2 on F.

There are unitaries un ∈ M(B)/B such that π((u1, u2, . . . , un, . . . )) = w. Therefore

lim inf
ω
‖u∗n h1(a)un − h2(a)‖ ≤ ε/2

for a ∈ F. Hence, there exists a subset X ⊂ ω such that for all n ∈ X,

‖u∗nh1(a)un − h2(a)‖ < ε for all a ∈ F.

Then the theorem follows.
Let j1 and q be as in Lemma 3.4 associated with H1 and j2 be as in Lemma 3.4

associated with H2. It follows from Theorem 3.6 that there is a unitary

z ∈ MK+1(qω(M(B)/B))
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for some integer K > 0 such that

ad z ◦ (H1 ⊕ q j1q⊕ q j1q⊕ · · · ⊕ q j1q) ≈ε/5 H2 ⊕ q j1q⊕ q j1q⊕ · · · ⊕ q j1q on F.

Therefore (by adding (1 − q) j1(1 − q) ⊕ · · · ⊕ (1 − q) j1(1 − q)) there is a unitary
v ∈ MK+1(qω(M(B)/B)) such that

ad v ◦ (H1 ⊕ j1 ⊕ j1 ⊕ · · · ⊕ j1) ≈ε/5 H2 ⊕ j1 ⊕ j1 ⊕ · · · ⊕ j1 on F.

In particular, we may assume that v∗(1⊕ j(1A)⊕ · · · ⊕ j(1A))v = 1. It follows from

Lemma 3.4 and Theorem 2.7 that

H1 ⊕ j1 ⊕ j1 ⊕ · · · ⊕ j1∼ε/5 H1 on F.

By Theorem 2.7,

j1∼ε/5 j2.

By Lemma 3.4 and Theorem 2.7 again,

H2 ⊕ j1 ⊕ j1 ⊕ · · · ⊕ j1∼2ε/5 H2 on F.

Combining these inequalities, we obtain a unitary w ∈ qω(M(B)/B) such that

ad ◦w H1 ≈ε H2 on F.

When A satisfies the UCT, we have the following approximate version of Theo-
rem 3.7. This statement is very close to that of [Ln19, Theorem 6.3].

Theorem 3.8 Let A be a separable amenable C∗-algebra in N. For any ε > 0 and

finite subset F ⊂ A, there exists a finite subset P ⊂ K(A) satisfying the following: if

h1, h2, h3 : A → C are three homomorphisms where C is a unital purely infinite simple

C∗-algebra such that

[h1]|P = [h2]|P,
then there is an integer n > 0 and a unitary u ∈ Mn+1(C) such that

ad ◦(h1 ⊕ h3 ⊕ h3 ⊕ · · · h3) ≈ε h2 ⊕ h3 ⊕ h3 ⊕ · · · h3) on F,

where h3 repeats n times.

Proof Let {Pn} be a sequence of finite subsets of K(A) such that
⋃∞

n=1 Pn = K(A).

Suppose that there are three sequences of homomorphisms φn, ψn, fn : A → Cn,
where Cn is a sequence of unital purely infinite simple C∗-algebras such that

[φn]|Pn
= [ψn]|Pn

, n = 1, 2, . . . .

It suffices to show that there exists N > 0 and K > 0 such that when n ≥ N there are

unitaries un ∈ MK+1(Cn) satisfying the following:

ad un(φn ⊕ fn ⊕ fn ⊕ · · · ⊕ fn) ≈ε (ψn ⊕ fn ⊕ fn ⊕ · · · ⊕ fn) on F,
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where fn repeats K times. Let H1 = {φn},H2 = {ψn} and H3 = { fn} be ho-
momorphisms from A into l∞({Cn}) and let H̄i = π ◦ Hi , where π : l∞({Cn}) →
l∞({Cn})/c0({Cn}) is the quotient map, i = 1, 2, 3. So it suffices to show that there
exists K > 0 such that there is a unitary U ∈ MK+1(l∞({Cn})/c0({Cn}) such that

ad U (H̄1 ⊕ H̄3 ⊕ H̄3 ⊕ · · · ⊕ H̄3) ≈ε H̄2 ⊕ H̄3 ⊕ H̄3 ⊕ · · · ⊕ H̄3 on F,

where H̄3 repeats K times.
Since each Cn is a unital purely infinite simple C∗-algebra, it follows from [Ln18,

6.5] that H̄3 : A → l∞({Cn})/c0({Cn}) is full. So the theorem follows from Theo-

rem 3.6 if we can show that

[H̄1] = [H̄2] in KL(A, l∞({Cn})/c0({Cn}).

It follows from [GL, Corollary 2.1] that, if each Cn is purely infinite and simple,

Ki(l∞({Cn})) =

∏

n

Ki(Cn), i = 0, 1,

Ki(l∞({Cn}),Z/kZ)) ⊂
∏

n

Ki(Cn,Z/kZ), i = 0, 1, k = 2, 3, . . .

and

Ki(l∞({Cn})/c0({Cn}) =

∏

n

Ki(Cn)/⊕n Ki(Cn), i = 0, 1,

Ki(l∞({Cn})/c0({Cn}),Z/kZ)) ⊂
∏

n

Ki(Cn,Z/kZ)/⊕n Ki(Cn,Z/kZ), k = 2, 3, . . . .

Thus, since [H1]|Pn
= [H2]|Pn

for each n, we conclude from the above computation

that
[H̄1] = [H̄2] in HomΛ(K(A),K

(
l∞({Cn})/c0({Cn})

)
.

Therefore the theorem follows.

The following is an approximate version of Theorem 3.7.

Theorem 3.9 Let A be a unital separable amenable C∗-algebra in N and B be a non-

unital but σ-unital simple C∗-algebra with a continuous scale. Suppose that

h1, h2 : A→ M(B)/B

are two monomorphisms. For any ε > 0 and any finite subset F ⊂ A, there exists a

finite subset P ⊂ K(A) satisfying the following: if

[h1]|P = [h2]|P

then there exists a unitary u ∈ M(B)/B such that

ad ◦h1 ≈ε h2 on F.
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Proof The proof is exactly the same as that of Theorem!3.7 but applying Theo-
rem 3.8 instead of Theorem 3.6.

Corollary 3.10 Let A be a separable amenable C∗-algebra in N and B be a non-unital

but σ-unital simple C∗-algebra with a continuous scale. Let τ1, τ2 : A → M(B)/B be

two essential extensions. Then there exists a sequence of unitaries un ∈ M(B)/B such

that

lim
n→∞

ad un ◦ τ1(a) = τ2(a) for all a ∈ A

if and only if [τ1] = [τ2] in KL(A,M(B)/B).

4 Extap(A,B)

Definition 4.1 Let A be a separable C∗-algebra and C be a non-unital and σ-unital
C∗-algebra. Let τ1, τ2 : A → M(C)/C be two essential extensions. We say τ1 and τ2

are strongly approximately unitarily equivalent if there exists a sequence of unitaries

Un ∈ M(C) such that

lim
n→∞

π(Un)∗τ1(a)π(Un) = τ2(a) for all a ∈ A.

An essential extension τ : A→ M(C)/C is said to be approximately trivial if there
is a sequence of trivial extensions τn : A→ M(C)/C such that τ (a) = limn→∞ τn(a)

for all a ∈ A. Denote by Extap(A,B) the set of approximately unitarily equivalent
classes of essential extensions.

Let B be a non-unital but σ-unital simple C∗-algebra with a continuous scale and

A ∈ N. In this section we will classify essential extensions of A by B:

0→ B→ E→ A→ 0

up to strong approximately unitary equivalence.

Lemma 4.2 Let B be a unital purely infinite simple C∗-algebra and let Gi be a count-

able subgroup of Ki(B) (i = 0, 1). There exists a unital separable purely infinite simple

C∗-algebra B0 ⊂ B such that Ki(B0) ⊃ Gi and j∗i = idKi (B0), where j : B0 → B is the

embedding.

Proof Since B is purely infinite, all elements in K0(B) and in K1(B) can be repre-
sented by projections and unitaries in B, respectively. Let p1, . . . , pn, . . . be projec-

tions in B and u1, u2, . . . , un, . . . be unitaries in B such that {pn} and {un} generate
G0 and G1, respectively. Let B1 be a unital separable purely infinite simple C∗-algebra
containing {pn} and {un} (see the proof of 7.4 in [Ln19]). Note that Ki(B1) is count-
able. The embedding j1 : B1 → B gives homomorphisms

( j1)∗i : K0(B1)→ Ki(B).
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Let F1,i be the subgroup of K0(B1) generated by {pn} and {un}, respectively. It is clear
that ( j1)∗i is injective on F1,i , i = 0, 1. In particular, the image of ( j1)∗i contains Gi ,

i = 0, 1. Let N ′1,i = ker( j1)∗i and let N1,i be the set of all projections (if i = 0),
or unitaries (if i = 1) in B1 which have images in N ′1,i . Let {p1,n} be a dense subset
of N1,0 and {u1,n} be a dense subset of N1,1, respectively. Fix a nonzero projection
e ∈ B1 such that [e] = 0 in K0(B). For each p1,n, there exists a partial isometry

w1,n ∈ B such that e = w∗1,nw1,n and w1,nw∗1,n = p1,n, n = 1, 2, . . . . For each u1,n,
there are unitaries z1,n,k ∈ B, k = 1, 2, . . . ,m(n) such that

‖z1,n,1 − 1‖ < 1/2, ‖z1,n,m(n) − u1,n‖ < 1/2 and ‖z1,n,k − z1,n,k+1‖ < 1/2,

k = 1, 2, . . . ,m(n), n = 1, 2, . . . . Let B2 be a separable unital purely infinite simple

C∗-algebra containing B1 and all {w1,n} and {z1,n,k}. Note that if p ∈ B1 is a projec-
tion and [p] ∈ N1,0, then [p] = 0 in K0(B2). Similarly, if u ∈ B1 and [u] ∈ N1,1,
then [u] = 0 in B2. Suppose that Bl has been constructed. Let jl : Bl → B be the em-
bedding. Let Nl,i = ker( jl)∗i , i = 0, 1. As before, we obtain a unital separable purely

finite simple C∗-algebra Bl+1 ⊃ Bl such that every projection p ∈ Bl with [p] ∈ Nl,0

has the property that [p] = 0 in K0(Bl+1), and every unitary u ∈ Bl with [u] ∈ Nl,1

has the property that [u] = 0 in K1(Bl+1). Let B0 be the closure of
⋃∞

l=1 Bl. Since each
Bl is purely infinite and simple, so is B0. Note also that B0 is separable. Let j : B0 → B

be the embedding.
We claim that j∗i is injective. Suppose that p ∈ B0 is a projection such that [p] ∈

ker j∗0 and [p] 6= 0 in B0. Without loss of generality, we may assume that p ∈ Bl for

some large integer l. Then [p] must be in the ker( jl)∗0. By the construction, [p] = 0
in K0(Bl+1). This would imply that [p] = 0 in K0(B0). Thus j∗0 is injective. Exactly
the same argument shows that j∗1 is also injective. The lemma then follows.

Lemma 4.3 Let B be a unital purely infinite simple C∗-algebra. Suppose that Gi ⊂
Ki(B) and Fi(k) ⊂ Ki(B,Z/kZ) are countable subgroups such that the image of Fi(k) ⊂
Ki(B,Z/kZ) in Ki−1(B) is contained in Gi−1 (i = 0, 1, k = 2, 3, . . . ). Then there

exists a separable unital purely infinite simple C∗-algebra C ⊂ B such that Ki(C) ⊃
Gi , Ki(C,Z/kZ) ⊃ Fi(k) and the embedding j : C → B induces an injective map

j∗i : K0(C) → Ki(B) and an injective map j∗ : Ki(C,Z/kZ) → Ki(B,Z/kZ), k =

2, 3, . . . .

Proof It follows from Lemma 4.2 that there is a separable unital purely infinite sim-
ple C∗-algebra C1 such that K0(C1) ⊃ G0, K1(C1) ⊃ G1 and j induces an iden-
tity map on K0(C1) and K1(C1), where j : C → B is the embedding. Let Ki(C1) =

{g(i)
1 , g

(i)
2 , . . . , }. Suppose that {s(i)

1 i, s(i)
2 , . . . , } be a subset of Ki−1(B) such that the

map from Ki(B,Z/kZ) to Ki−1(B) maps s(i)
j to g(i)

j . For each z(i) ∈ Ki(C1,Z/kZ),

there is s(i)
j such that z(i) − s(i)

j ∈ Ki(B)/kKi(B). Since Ki(C1) is countable, the set of

all possible z(i)− s(i)
j is countable. Thus one obtains a countable subgroup G( ′)

i which

contains Ki(C1) such that G( ′)
i /kKi(B) contains the above the mentioned countable

set as well as Fi(k) ∩ (Ki(B)/kKi(B)) for each k. Since the union of countably many

countable sets is still countable, we obtain a countable subgroup G(2)
i ⊂ Ki(B) such
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that G(2)
i contains G( ′)

i and kKi(B) ∩ G(2)
i = kG(2)

i , k = 1, 2, . . . , and i = 0, 1. Note

also Fi(k) ∩ (Ki(B)/kKi(B)) ⊂ G(2)
i /kKi(B). By applying Lemma 4.2, we obtain a

separable purely infinite simple C∗-algebra C2 ⊃ C1 such that Ki(C2) ⊃ G(2)
i and

embedding from C2 to B gives an injective map on Ki(C2), i = 0, 1. Repeating
what we have done above, we obtain an increasing sequence of countable subgroups
G(n)

i ⊂ Ki(B) such that G(n)
i ∩ kKi(B) = kG(n)

i for all k and i = 0, 1 and an in-

creasing sequence of separable purely infinite simple C∗-subalgebras Cn such that
Ki(Cn) ⊃ G(n)

i , and the embedding from Cn into B gives an injective map on Ki(Cn),

i = 0, 1, and n = 1, 2, . . . . Moreover F(k)
i ∩ (Ki(B)/kKi(B)) ⊂ Ki(Cn)/kKi(B). Let C

denote the closure of
⋃

n Cn and j : C → B be the embedding. Then C is a separable
purely infinite simple C∗-algebra and j∗i is an injective map, i = 0, 1. We claim that
Ki(C) ∩ kKi(B) = kKi(C), k = 1, 2, . . . , and i = 0, 1. Note that Ki(C) =

⋃
n G(n)

i .

Since G(n)
i ∩kKi(B) = kG(n)

i ⊂ kKi(C), we see that Ki(C)∩kKi(B) = kKi(C), i = 0, 1.

Thus Ki(C)/kKi(C) = Ki(C)/kKi(B). Since Ki(C)/kKi(B) ⊃ F(k)
i ∩ (Ki(B)/kK0(B)),

we conclude also that Ki(C,Z/kZ) contains Fi(k). Since j∗0 is injective, j induces an
injective map from K0(C)/kK0(C) into K0(B)/kK0(B) for all integer k ≥ 1. Using
this fact and the fact that j∗i : Ki(C) → Ki(B) is injective by chasing the following

commutative diagram,

K0(C) //

j∗0 $$IIIIIII

K0(C,Z/kZ) //

j∗
��

K1(C)

j∗1

zzuuuuuuu

��

K0(B) // K0(B,Z/kZ) // K1(B)

��
K0(B)

OO

K1(B,Z/kZ)oo K1(B)oo

K0(C)

OO

j∗0

::uuuuuuu

K1(C,Z/kZ)oo

j∗

OO

K1(C)oo

j∗1

ddIIIIIII

one sees that j induces an injective map from Ki(C,Z/kZ) to Ki(B,Z/kZ).

Theorem 4.4 Let A be a unital separable amenable C∗-algebra in N and B be a non-

unital but σ-unital simple C∗-algebra with a continuous scale. Then, for any x ∈
KL(A,M(B)/B), there exists a monomorphism h : A→ M(B)/B such that [h] = x.

Proof Put Q = M(B)/B. Since A satisfies the UCT, we may view x as an element
in HomΛ(K(A),K(Q)). Note that Ki(A) is a countable abelian group (i = 0, 1). Let

G(i)
0 = γ(x)(Ki (A)), i = 0, 1, where γ : HomΛ(K(A),K(Q))→ Hom(K∗(A),K∗(Q))

is the surjective map. Then G(i)
0 is a countable subgroup of Ki(Q), i = 0, 1. Consider

https://doi.org/10.4153/CJM-2005-016-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-016-5


374 Huaxin Lin

the following commutative diagram:

K0(A) //

γ(x)

$$JJJJJJJ

K0(A,Z/kZ) //

×x

��

K1(A)

γ(x)zzuuuuuuu

��

K0(Q) // K0(Q,Z/kZ) // K1(Q)

��
K0(Q)

OO

K1(Q,Z/kZ)oo K1(Q)oo

K0(A)

OO

γ(x)
::uuuuuuu

K1(A,Z/kZ)oo

×x

OO

K1(A)oo
γ(x)

ddJJJJJJJ

It follows from Lemma 4.3 that there is a unital purely infinite simple C∗-algebra

C ⊂ Q such that Ki(C) ⊂ G(i)
0 , Ki(C) ∩ kKi(Q) = kKi(C), k = 1, 2, . . . , and

i = 0, 1, and the embedding j : C → Q induces injective maps on Ki(C) as well as on
Ki(C,Z/kZ) for all k and i = 0, 1. Moreover Ki(C,Z/kZ) ⊃ (×x)(Ki (A,Z/kZ)) for
k = 1, 2, . . . . and i = 0, 1. We have the following commutative diagram:

K0(A) //

γ(x)

$$IIIIIII

K0(A,Z/kZ) // K1(A)

γ(x)zzuuuuuuu

��

K0(C) // K0(C,Z/kZ) // K1(C)

��
K0(C)

OO

K1(C,Z/kZ)oo K1(C)oo

K0(A)

OO

γ(x)
::uuuuuuu

K1(A,Z/kZ)oo K1(A)oo
γ(x)

ddIIIIIII

We will add two more maps on the above diagram. From the fact that the image
of Ki(A,Z/kZ) under ×x is contained in Ki(C,Z/kZ), (k = 2, 3, . . . , i = 0, 1), we
obtain two maps βi : Ki(A,Z/kZ) → Ki(C,Z/kZ), k = 2, 3, . . . , i = 0, 1 such that
j∗ ◦ βi = ×x and obtain the following commutative diagram:

K0(A) //

γ(x) $$JJJJJJJ

K0(A,Z/kZ) //

β0

��

K1(A)

γ(x)

zzuuuuuuu

��

K0(Q) // K0(C,Z/kZ) // K1(C)

��
K0(C)

OO

K1(C,Z/kZ)oo K1(C)oo

K0(A)

OO

γ(x)

::uuuuuuu

K1(A,Z/kZ)oo

β1

OO

K1(A)oo

γ(x)
ddIIIIIII
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Consider the following commutative diagram:

// Ki(A,Z/mnZ) //

��

Ki(A,Z/nZ) //

��

Ki−1(A,Z/mZ) //

��
// Ki(Q, Z/mnZ) // Ki(Q, Z/nZ) // Ki−1(Q, Z/mZ) //

Since j∗ ◦ βi = ×x and all vertical maps in the following diagram are injective

// Ki(C,Z/mnZ) //

��

Ki(C, Z/nZ) //

��

Ki−1(C, Z/mZ) //

��
// Ki(Q, Z/mnZ) // Ki(Q, Z/nZ) // Ki−1(Q, Z/mZ) //

we obtain the following commutative diagram:

// Ki(A,Z/mnZ) //

��

Ki(A,Z/nZ) //

��

Ki−1(A,Z/mZ) //

��
// Ki(C,Z/mnZ) // Ki(C, Z/nZ) // Ki−1(C,Z/mZ) //

Thus we obtain an element y ∈ KL(A,C) such that y× [ j] = x. Since A satisfies the

UCT, one checks that KL(A,C) = KL(A ⊗ O∞,C). It follows from [Ln20, 6.6 and
6.7] that there exists a homomorphism φ : A ⊗ O∞ → C ⊗ K such that [φ] = y.
Define ψ = φ|A⊗1. It is then easy to check that [ψ] = y. Since A is unital, we may
assume that the image of ψ is in Mm(C) for some integer m ≥ 1. Since C is a uni-

tal purely infinite simple C∗-algebra, 1m is equivalent to a projection in C . Thus we
may further assume that ψ maps A into C . Put h1 = j ◦ ψ. To obtain a monomor-
phism, we note that there is an embedding ı : A → O2 (see [KP, Theorem 2.8]).
Since M(B)/B is purely infinite, we obtain a monomorphism ψ : O2 → M(B)/B. Let

e = ψ(1O2
). There is a partial isometry w ∈ M2(M(B)/B) such that w∗w = 1M(B)/B

and ww∗ = 1⊕ e. Define h = w∗(h1 ⊕ ψ ◦ ı)w. One checks that [h] = [h1] and h is
a monomorphism.

Theorem 4.5 Let A be a unital separable amenable C∗-algebra in N and B be a non-

unital but σ-unital simple C∗-algebra with a continuous scale. Let τ1, τ2 : A → M(B)
be two unital essential extensions of A by B. Then τ1 and τ2 are approximately unitarily

equivalent if and only if

[τ1] = [τ2] in KL(A,M(B)/B).

Proof We only need to prove the “if” part of the statement. Suppose that [τ1] =

[τ2] in KL(A,M(B)/B). It follows from Corollary 3.10 that there is a sequence of
unitaries wn ∈ M(B)/B such that

lim
n→∞

‖w∗nτ1(a)wn − τ2(a)‖ = 0 for all a ∈ A.
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Theorem 4.6 Let A be a separable amenable C∗-algebra in N and B be a non-unital

but σ-unital simple C∗-algebra with a continuous scale. Then there is a bijection:

Γ : Extap(A,B)→ KL(A,M(B)/B).

Proof This follows immediately from Theorem 4.5 and Corollary 3.10.

Corollary 4.7 Let A be a unital separable amenable C∗-algebra satisfying the UCT

and B be a non-unital but σ-unital simple C∗-algebra with a continuous scale. Let τ
be a unital essential extension and ψ : A → M(B) be a contractive completely positive

linear map such that π ◦ ψ = τ . Suppose that [τ ] = [t] in KL(A,M(B)) for some

trivial extension t. Then, there exists a sequence of monomorphisms hn : A → M(B)

such that

lim
→∞

π ◦
(

hn(a)− ψ(a)
)

= 0

for all a ∈ A.

Example 4.8 Let B be a non-unital separable simple C∗-algebra with finite trace
and K0(B) = Q . So B has a continuous scale and K0(M(B)/B) = R/Q . Let ξ 6= 0, 1
in R/Q . Suppose that A is a unital separable amenable C∗-algebra which satisfies

the UCT and suppose that there are two nonzero elements g1, g2 in K0(A) such that
[1A] = g1 and the subgroup generated g1 and g2 is not cyclic. Since R/Q is divisible,
there is a group homomorphism α : K0(A)→ K0(M(B)/B) such that α(g1) = 1 and
α(g2) = ξ. It follows from Theorem 4.6 that there is an essential unital extension

τξ : A → M(B)/B such that (τξ)∗0 = α and (τξ)∗1 = 0. Since K0(B) = Q and
K1(B) = 0, we compute that [τξ] = 0 in KK(A,B) for any such ξ. However, [τξ] 6=
[τξ ′] in KL(A,M(B)/B) if ξ 6= ξ ′. This shows that there are uncountably many
non-equivalent essential extensions which represent the same element in KK1(A,B).

This example shows how KL(A,M(B)/B)) can be used to compute Extap(A,B), while
KK1(A,B) fails.

5 Examples

Theorem 4.6 provides a complete classification of Extap(A,B). However, it is not
immediately clear which elements in KL(A,M(B)/B) give an approximate trivial ex-
tension or a quasidiagonal extension. It turns out it is rather a complicated problem.

First of all from item (1) below, it could be the case that there are no essential ex-
tensions which are approximately trivial. Second, item (2) and item (3) below show
that that [τ ] = 0 in KL(A,M(B)/B) does not imply that τ is an approximately trivial
extension. In this section we will discuss these problems.

In this section B is a non-unital and σ-unital simple C∗-algebra with real rank zero,

stable rank one, weakly unperforated K0(B) and with a continuous scale.

We will show the following:

(1) There are A and B such that there are no trivial essential extensions of A by B.
(2) There are essential extensions τ such that [τ ] = 0 in KL(A,M(B)/B) which are

not limits of trivial extensions.
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(3) For the same A and B as in (2), there are trivial essential extensions τ such that
[τ ] 6= 0.

Example 5.1 Let A be a unital separable amenable C∗-algebra and B be a non-
unital but σ-unital simple C∗-algebra (with a continuous scale). It is possible that
there are no essential trivial extensions of the form:

0→ B→ E→ A→ 0.

For example, let A = On (n ≥ 2) and B be any non-unital AF-algebra with a contin-
uous scale. There are many extensions of A by B. This is because M(B)/B is purely
infinite simple and one can easily find monomorphisms from On into M(B)/B. But

none of them are splitting. In fact there is no monomorphism h : A → M(B). Since
M(B) admits a tracial state, h(A) would have a tracial state too. But this is impossible.

From this example, one sees clearly that for many C∗-algebras A there is no single

essential trivial extension of A by B. Therefore some restriction on A is needed to
guarantee that there are trivial essential extensions.

Lemma 5.2 Let A be a unital AF-algebra such that there is a positive homomorphism

α : K0(A) → Aff(T). Then there exists a homomorphism h : A → M(B) such that

h∗0 = α and h(A) ∩ B = {0}.

Proof It is easy to see and well known that the lemma holds for the case that A is fi-
nite dimensional. Let F be a finite dimensional C∗-algebra. Suppose that h1, h2 : F →
M(B) are two homomorphisms such that hi(F) ∩ B = {0}. Suppose also that

(h1)∗0 = (h2)∗0. Then by (2) in Theorem 1.4, h1 and h2 are unitarily equivalent.

Now let A be the closure of
⋃∞

n=1 An, where An ⊂ An+1 and dim An <∞. Denote

by jn the embedding from An to A. Let αn = α ◦ ( jn)∗0. Let h1 : A1 → M(A) be such
that h1(A1) ∩ B = {0} and (h1)∗0 = α1. Suppose that hm : Am → M(B) has been
defined such that hm|A j

= h j for j < m, hm(Am) ∩ B = {0} and (hm)∗0 = αm. Let
φm+1 : Am+1 → M(B) be such that φm+1(Am+1) ∩M(B) = {0} and (φm+1)∗0 = αm+1.

Let ım : Am → Am+1 be the embedding. Then we have αm = (hm)∗0 = (φm+1 ◦ ım).
From what we have shown, there is a unitary um+1 ∈ M(B) such that

ad ◦ φm+1 ◦ ım = hm.

Put hm+1 = ad ◦φm+1. Then we have the following commutative diagram:

A1 //

h1��

A2 //

h2��

A3 //

h3��

· · · A

M(B)
idM (B) // M(B)

idM (B) // M(B)
idM (B) //

· · · M(B)

It follows that there is a monomorphism h : A → M(B) such that h(A) ∩ B = {0}.
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Theorem 5.3 Let A be a separable amenable C∗-algebra satisfying the UCT. Suppose

that A can be embedded into a unital simple AF-algebra. Then for any B there exists an

essential trivial extension τ of A by B.

Proof Suppose that C is a unital simple AF-algebra and j : A → C is an embed-
ding. Let t be a normalized trace on C . Define β : K0(C) → Aff(T) by β([p]) =

t(p)[1M(B)/B] for projection p ∈ C . Then β is a positive homomorphism. It follows
from Lemma 5.2 that there is a monomorphism h : C → M(B) such that h∗0 = β
and h(C) ∩ B = {0}. Define φ : A → M(B) by φ = h ◦ j. One sees that φ give an
essential trivial extension of A by B.

Suppose that there are trivial essential extensions of A by B. One would like to
know when an extension is trivial, or when an extension is the limit of trivial exten-
sions.

Example 5.4 There are essential extensions τ which are not approximately trivial
but [τ ] = 0 in KL(A,M(B)/B).

Let A be a unital separable amenable C∗-algebra and let τ be an essential extension

of A by B such that [τ ] = 0 in KL(A,M(B)/B). Such τ exists (by Theorem 4.6 or by
first mapping A to O2 and then mapping O2 into M(B)/B).

To be more precise, we let A be the unital simple AF-algebra with K0(A) = Dθ,
where θ is an irrational number and

Dθ = {m + nθ : m, n ∈ Z}.

with the usual order inherited from R. We may assume that [1A] = 1. Let B be a
non-unital (non-zero) hereditary C∗-subalgebra of the UHF-algebra with K0(B) =

Z[1/2]. Note that B has a unique normalized trace, so it has a continuous scale.
We further assume that [1M(B)/B] = 0. So there is an essential extension τ of A

by B such that [τ ] = 0. However, there is no (non-zero) positive homomorphism
α : K0(A) → K0(B). If there is a trivial extension τ of A by B with [τ ] = 0 in

KL(A,M(B)/B), then τ∗0 : K0(A)→ K0(M(B)/B) is zero. It follows Lemma 5.2 that

K0(M(B)/B) = Aff(T(B))/K0(B) = R/Z[1/2].

If τ were trivial, there would be a monomorphism h : A→ M(B) such that h|∗0 maps

K0(A) to K0(B) ⊂ Aff(T(B)) positively. However there is no positive homomorphism
from Dθ into Z[1/2]. In fact any positive homomorphism from Dθ into R has to be
the form (see Corollary 1.7)

h∗0(r) = (h)∗0(1)r for all r ∈ Dθ.

So τ can never be trivial. Furthermore, τ cannot be approximately trivial. To see this,
assume that τn : A→ M(B)/B are trivial extensions such that

lim
n→∞

τn(a) = τ (a)
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for all a ∈ A. Let G0 ⊂ K0(A) which contains 1 and θ. Thus, for all large n,
(τn)∗0(θ) = 0. Suppose that hn : A → M(B) such that π ◦ hn = τn, n = 1, 2, . . . ,
where π : M(B)→ M(B)/B is the quotient map. Thus (hn)∗0 is a positive homomor-
phism from Dθ into R. From the above expression of h∗0 (see Corollary 1.7) we see
that (hn)∗0 cannot map both 1 and θ into rational numbers. In other words, such an
hn does not exist. Hence τ is not approximately trivial.

Example 5.5 Nevertheless, there are essential trivial extensions of A by B such that

[τ ] 6= 0 in KL(A,M(B)/B).

Let s be the unique normalized trace on B. Suppose that [1A] = 1 in Dθ. Let
β : Dθ → R the usual embedding. It follows from Lemma 5.2 that there is a mono-

morphism h : A→ M(B) such that h∗0 = β and h(A)∩B = {0}. Let τ = π◦h, where
π : M(B) → M(B)/B is the quotient map. Then τ is a trivial essential extension.
However, τ∗0 : Q → R/Z[1/2](∼= K0(M(B)/B)) is not zero. Therefore [τ ] 6= 0 in
KL(A,M(B)/B).

6 Quasidiagonal Extensions—General and Infinite Cases

Definition 6.1 Let A be a separable C∗-algebra, C be a non-unital but σ-unital
C∗-algebra and τ : A→ M(C)/C be an essential extension. Let π : M(C)→ M(C)/C

be the quotient map. Set E = π−1(τ (A)). The extension τ is said to be quasidiagonal

if there exists an approximate identity {en} of C consisting of projections such that

lim
n→∞

‖enb− ben‖ = 0

for all b ∈ E.

Suppose that there is a bounded linear map L : A → M(B) such that π ◦ L = τ .
Then

‖enL(a)− L(a)en‖ → 0 as n→∞

for all a ∈ A.

In this section and the next, we will study quasidiagonal extensions. The first
question is when quasidiagonal extensions exist.

Theorem 6.2 Let A be a separable amenable C∗-algebra and B be a non-unital and

σ-unital C∗-algebra. Suppose that τ : A → M(B)/B is an essential quasidiagonal ex-

tension. Then for each finitely generated subgroup G of K(A) there exists a homomor-

phism α : G→ K(M(B)) such that

π∗ ◦ α|G = (τ∗)|G,

where π : M(B)→ M(B)/B is the quotient map.

Proof Suppose that τ : A → M(B)/B is a quasidiagonal essential extension of A

by B. Let L : A → M(B) be a contractive completely positive linear map such that
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π ◦ L = τ . Since τ is quasidiagonal, there exists an approximate identity {en} for B

such that

‖enL(a)− L(a)en‖ → 0, as n→∞
for all a ∈ A. Define Ln : A→ M(A) by Ln(a) = (1− en)L(a)(1− en) for a ∈ A. Then
{Ln} is a sequence of asymptotically multiplicative contractive completely positive
linear maps. It follows that for each finitely generated subgroup G of K(A), there

exists N > 0 such that {Ln} gives a homomorphism αn : G → K(M(B)) for all
n ≥ N . Since π ◦ Ln = τ for all n, it follows that π∗ ◦ α|G = (τ∗)|G.

Corollary 6.3 Let A be a separable amenable C∗-algebra and B be a σ-unital and

stable C∗-algebra. Suppose that τ : A → M(B)/B is an essential quasidiagonal exten-

sion. Then τ induces the zero map from K(A) to K(M(B)/B). Furthermore the six-term

exact sequence in K-theory associated with the extension splits into two pure extensions

of groups:

0→ Ki(B)→ Ki(E)→ Ki(A)→ 0 i = 0, 1.

Proof This follows from the fact that when B is stable, Ki(M(B)) = 0 (i = 0, 1) and
Theorem 6.2.

Lemma 6.4 Let A be a separable amenable C∗-algebra and C be a non-unital but

σ-unital C∗-algebra. Suppose that τ : A→ M(C)/C is an essential extension such that

there exists a sequence of quasidiagonal extensions τn : A→ M(C)/C such that

lim
n→∞

τn(a) = τ (a)

for all a ∈ A. Then τ is quasidiagonal.

Proof Let {an} be a dense sequence in the unit ball of A. Suppose that

‖τn(a)− τ (a)‖ < 1/2n+3

for all a ∈ {a1, a2, . . . , an}, n = 1, 2, . . . . Let Ln : A → M(B) be a contractive
completely positive linear map such that π ◦ Ln = τn. There exists an approximate

identity {e(n)

k } for B consisting of projections such that

lim
n→∞

‖e(n)

k Ln(a)− Ln(a)e(n)

k ‖ = 0

for all a ∈ A. Let L : A→ M(B) be a contractive completely positive linear map such
that π ◦ L = τ . Suppose that b is a strictly positive element for B. We may assume
that

‖(1− e(1)
1 )(L1(a)− L(a))‖ < 1/23 and ‖(L1(a)− L(a))(1− e(1)

1 )‖ < 1/23

for a = a1. Put q1 = e(1)
1 . Note that

‖q1L(a1)− L(a1)q1‖ < 1/2.
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By changing notation if necessary, we may assume that

‖(1− e(2)
2 )(L2(a)− L(a))‖ < 1/22+2 and ‖(L2(a)− L(a))(1− e(2)

2 )‖ < 1/22+2

for a ∈ {a1, a2} as well as

‖(1− e(2)
2 )q1‖ < 1/22+3 and ‖(1− e(2)

2 )b‖ < 1/23.

There is a projection q2 ≥ q1 such that

‖e(2)
2 − q2‖ < 1/23.

Note also
‖q2L(a)− L(a)q2‖ < 1/22 for a ∈ {a1, a2}.

We also have
‖(1− q2)b‖ < 1/22.

We may assume that

‖(1− e(3)
3 )(L3(a)− L(a))‖ < 1/23+2 and ‖(L3(a)− L(a))(1− e(3)

3 ‖ < 1/23+2

for a ∈ {a1, a2, a3} as well as

‖(1− e(3)
3 )qi‖ < 1/23+3, i = 1, 2 and ‖(1− e(3)

3 )b‖ < 1/24.

There exists a projection q3 ≥ q2 such that

‖e(3)
3 − q3‖ < 1/24.

Thus we have

‖q3L(a)− L(a)q3‖ < 1/23 for a ∈ {a1, a2, a3}.

We also have

‖(1− q3)b‖ < 1/23.

We continue in this fashion. It follows that we obtain an increasing sequence of

projections {qn} in B such that

‖qnL(a)− L(a)qn‖ < 1/2n a ∈ {a1, a2, . . . , an}

and
‖(1− qn)b‖ < 1/2n,

n = 1, 2, . . . . It remains to show that {qn} is an approximate identity for B. Since

lim
n→∞

‖(1− qn)b‖ = 0,
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one concludes that for any positive function f ∈ C0((0, ‖b‖]),

lim
n→∞

‖(1− qn) f (b)‖ = 0.

For any a ∈ A and ε > 0 there exists a positive function f ∈ C0((0, ‖b‖]) such that

‖ f (b)a− a‖ < ε/3.

Choose N > 0 such that

‖(1− qn) f (b)‖ < ε/3(‖a‖ + 1) for all n ≥ N.

Then, for n ≥ N ,

‖(1− qn)a‖ ≤ ‖qna− qn f (b)a‖ + ‖qn f (b)a− f (b)a‖ + ‖ f (b)a− a‖ < ε.

It follows that {qn} is an approximate identity for B.

Results in this paper can be also used to prove the following.

Theorem 6.5 (Brown-Salinas-Schochet) Let A be a separable amenable C∗-algebra

in N and B be a σ-unital stable C∗-algebra. Suppose that there exists an essential qua-

sidiagonal extension of A by B. The zero element in KL(A,M(B)/B) corresponds to the

set of stably quasidiagonal extensions as well as stably approximately trivial extensions.

Proof It is proved in [Ln18] that stably approximately trivial extensions correspond
to the zero element in KL(A,M(B)/B) without assuming A satisfies the UCT. Corol-
lary 6.3 proves that quasidiagonal extensions give a zero element in KL(A,M(B)/B).

It follows from [Ln18, 3.9] that extensions which represent the same element in
KL(A,M(B)/B) are stably approximately unitarily equivalent. Then by Lemma 6.4
every (stably) approximately trivial extension is stably quasidiagonal.

Theorem 6.6 Let A be a separable exact C∗-algebra and B be a σ-unital purely infinite

simple C∗-algebra. Then there are essential quasidiagonal extensions.

Proof Let e ∈ B be a nonzero projection such that [e] = 0 in K0(B). Then by [Br1]

eBe ⊗ K ∼= B ⊗ K. It follows from a result of S. Zhang that B ∼= B ⊗ K [Zh3].
Thus we obtain an approximate identity {en} of B such that each en is a projection
and [en] = 0. Since A is exact, by [KP, Theorem 2.8], there exists a monomorphism
ı : A → O2. Since enBen is purely infinite and [en] = 0, there is an embedding

φn : O2 → enBen. Now define

ψ(a) =

∞∑

n=1

φn ◦ ı(a) for a ∈ A.

Then ψ is an injective homomorphism from A into M(B) such that ψ(A)∩ B = {0}.
Let τ = π ◦ ψ. Then τ is an essential quasidiagonal extension of A by B.
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Corollary 6.7 follows from Theorem 6.6, [Sc2, Theorem 1.4] and Kirchberg’s ab-
sorbing theorem [K1]. It also follows from Theorem 6.6 and Corollary 6.3.

Corollary 6.7 Let A be a separable amenable C∗-algebra in N and B be a non-unital

and σ-unital purely finite simple C∗-algebra. Suppose that τ : A→ M(B)/B is an essen-

tial extension. Then τ is a quasidiagonal extension if and only if it is an approximately

trivial extension, and, if and only if τ induces a zero element in KL(A,M(B)/B).

In the next section we will discuss the case that B is not purely infinite.

7 Quasidiagonal Extensions—Finite Case

Definition 7.1 Recall that a separable C∗-algebra is said to be quasidiagonal if there
exists a faithful representationφ : A→ B(H) for some separable Hilbert space H such
that

‖pnφ(a)− φ(a)pn‖ → 0 as n→∞
for all a ∈ A, where {pn} is an approximate identity of K consisting of finite rank
projections.

All AF-algebras are quasidiagonal. All commutative C∗-algebras are quasidiago-
nal. All AH-algebras are quasidiagonal. All residually finite dimensional C∗-algebras
are quasidiagonal. Inductive limits of quasidiagonal C∗-algebras are quasidiagonal.

Recall that a C∗-algebra A is said to have the property (SP) if every non-zero
hereditary C∗-subalgebra contains a nonzero projection. One should note that every
C∗-algebra with real rank zero has the property (SP) but the converse is not true.

Theorem 7.2 Let A be a separable quasidiagonal amenable C∗-algebra and C be a

non-unital but σ-unital simple C∗-algebra which admits an approximate identity con-

sisting of projections and has the property (SP). Then there exists an (essential) quasidi-

agonal extension τ : A→ M(C)/C.

Proof We may assume that C 6= K. There is a sequence of contractive completely
positive linear maps Ln : A → Fn, where Fn are finite dimensional C∗-algebras, such
that

‖Ln(ab)− Ln(a)Ln(b)‖ → 0, as n→∞
for all a, b ∈ A. Let {an} be a dense sequence in the unit ball of A. By passing to a
subsequence, we may assume that

‖Ln(ab)− Ln(a)Ln(b)‖ < 1/2n+1

for all a, b ∈ {a1, . . . , an}.
Let {en} be an approximate identity for B consisting of projections. We may as-

sume that en+1 − en 6= 0 for all n. It is known (see [Ln16, 3.5.7]) that there is a
monomorphism jn : Fn → (en+1 − en)C(en+1 − en). Define

L(a) =

∞∑

n=1

jn ◦ Ln(a) for a ∈ A.
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Note that the sum converges in the strict topology. One checks that L : A→ M(C) is
a (completely) positive linear contraction. Note also, for any a, b ∈ {a1, a2, . . . , an},

∥∥∥
n+m∑

k=n

(
Ln(ab)− Ln(a)Ln(b)

)∥∥∥ < 1/2n for all m > 0.

This implies

L(ab)− L(a)L(b) =

∞∑

n=1

jn ◦
(

Ln(ab)− Ln(a)Ln(b)
)
∈ C

for all a, b ∈ A. Let τ = π ◦ L, where π : M(C) → M(C)/C is the quotient map.
Then τ is an essential quasidiagonal extension.

Theorem 7.3 Let A be a separable amenable C∗-algebra and let C be as in Theo-

rem 7.2. Suppose that, in addition, C is also a quasidiagonal C∗-algebra. Then there is

an (essential) quasidiagonal extension of A by B if and only if A is quasidiagonal.

Proof It suffices to show the “only if” part. Suppose that L : A → M(C) is a
bounded linear map such that π ◦ L : A→ M(C)/C is a monomorphism and

lim
n→∞

‖enL(a)− L(a)en‖ = 0 for all a ∈ A,

where {en} is an approximate identity consisting of projections. Let {an} be a dense
sequence of A. We may assume that

‖enL(a)− L(a)en‖ < 1/2n for a ∈ {a1, a2, . . . , an},

n = 1, 2, . . . . Since π ◦ L is a monomorphism, we may further assume that

‖enL(a)en‖ ≥ ‖a‖ − 1/2n for a ∈ {a1, a2, . . . , an},

n = 1, 2, . . . . Since C is quasidiagonal, it follows that there exists a finite dimensional

C∗-algebra Fn and a contractive completely positive linear map φn : enCen → Fn such
that

‖φn(b)‖ ≥ ‖b‖ − 1/2n and ‖φn(bc)− φn(b)φn(c)‖ < 1/2n

for b ∈ enL(ai)en, i = 1, 2, . . . , n and n = 1, 2, . . . . Define Ln : A → Fn by Ln(a) =

φn(enL(a)en) for a ∈ A. Then

‖Ln(ai)‖ ≥ ‖ai‖−1/2n−1, i = 1, 2, . . . , n and lim
n→∞

‖Ln(ab)−Ln(a)Ln(b)‖ = 0

for all a, b ∈ A. It follows from Theorem 1 in [V2] that A is quasidiagonal.

For the rest of this section B is always a non-unital but σ-unital simple C∗-algebra

with real rank zero, stable rank one, weakly unperforated K0(B) and a continuous scale.

https://doi.org/10.4153/CJM-2005-016-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-016-5


Extensions by Simple C∗-Algebras 385

Lemma 7.4 Let A be a finite dimensional C∗-algebra. Let τ : A → M(B)/B be a

monomorphism such that im τ∗0 ⊂ Aff(T)/ρB(K0(B)). Then τ is trivial and there is a

monomorphism h : A→ M(B) such that π ◦ h = τ .

Proof Suppose that A = Mr(1) ⊕ · · · ⊕Mr(k)), so K0(A) is k copies of Z. Let ei be a
minimal projection in Mr(i), i = 1, 2, . . . , k. There are xi ∈ Aff(T(B))/ρ(K0(B)) such

that [τ (ei)] = xi , i = 1, 2, . . . , k and
∑k

i=1 r(i)xi = [τ (1A)]. It follows from [Ln8,
Lemma 1.3] that there are projections qi ∈ M(B) such that [π(qi)] = r(i)[τ (ei)].

Thus we obtain a positive homomorphism α : K0(A) → Aff(T) such that π∗0 ◦ α =

τ∗0. It follows from Lemma 5.2 that there is a monomorphism h : A → M(B)
such that h(A) ∩ B = {0} and h∗0 = α. It then follows that [π ◦ h] = [τ ] in
KL(A,M(B)/B). Since A is finite dimensional, it follows that π ◦ h is strongly unitar-

ily equivalent to τ . In other words, τ is trivial.

Lemma 7.5 Let A be a separable amenable C∗-algebra. Suppose that

τ : A→ M(B)/B

is an essential quasidiagonal extension. Then τ∗1 = 0, im τ∗0 ⊂ Aff(T)/ρB(K0(B))
and [τ ]|Ki (A,Z/kZ) = 0 for i = 0, 1 and for all k ≥ 2.

Proof Since K1(M(B)) = {0} (see Theorem 1.4), by Theorem 6.2, τ∗1 = 0. By
Theorem 6.2 and Definition 1.5, im τ∗0 ⊂ Aff(T)/ρB(K0(B)). Since K0(M(B)) =

Aff(T) is torsion free, τ∗0|tor(K0(A)) = 0. Let Ck be as in Definition 3.5. Then L ⊗
idC(Ck) : A ⊗ C(Ck) → M(B) ⊗ C(Ck) lifts τ ⊗ idC(Ck). Since K0(M(B)) = Aff(T) is

divisible and K1(M(B)) = 0, K0(M(B),Z/kZ) = {0} for all k ≥ 2. It follows from
Theorem 6.2 that [τ ]|K0(A,Z/kZ) = 0.

Note also that since K0(M(B)) is torsion free and K1(M(B)) = 0,

K1(M(B),Z/kZ) = {0}.

The same argument above also shows that [τ ]|K1(A,Z/kZ) = 0, k = 2, 3, . . . .

Remark 7.6 It should be noted that, since Aff(T)/ρB(K0(B)) is divisible,

K0(M(B)/B)/kK0(M(B)/B) = K0(B)/kK0(M(B)/B).

Therefore one sees that, for any nonzero homomorphism

γ : K0(A)→ Aff(T)/ρB(K0(B)),

there is α ∈ HomΛ(K(A),K(M(B)/B)) such that α|K0(A) = γ but [α]|K0(A,Z/kZ) = 0,
k = 1, 2, . . . . Furthermore, if K1(B) is also divisible (or K1(B) = {0}), one computes
that τ∗1 = 0 and im τ∗0 ⊂ Aff(T)/ρB(K0(B)) imply that

[τ ]|K0(A,Z/kZ) = 0, k = 2, 3, . . . ,
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by using the six-term exact sequence in Definition 3.5. One should note that
[τ ]|K1(A,Z/kZ) = 0 for k = 2, 3, . . . , implies that τ∗0(tor(K0(A))) = 0. On the other

hand, if τ∗0(tor(K0(A)) = 0 and kerρB is divisible (or ker ρB(K0(B)) = {0}), then

[τ ]|K1(A,Z/kZ) = 0, k = 2, 3, . . . .

Proposition 7.7 Let A be the closure of
⋃∞

n=1 An, where each An is a separable amen-

able C∗-algebra in N and let jn : An → A be the embedding. Suppose that τ : A →
M(B)/B is an essential extension such that τ ◦ jn is a quasidiagonal extension for each

n. Then τ is also a quasidiagonal extension.

Proof The proof is almost the exactly the same as that of Lemma 6.4.

Definition 7.8 Denote by Cafem the class of separable C∗-algebras A satisfying the
following: there is an embedding j : A → C such that j∗0 : K0(A)/tor(K0(A)) →
K0(C) is injective, where C is a unital AF-algebra.

Clearly every AF-algebra is in Cafem. It is easy to see that C∗-algebras of the form

C(X)⊗Mn are in Cafem, where X is a finite CW complex. But much more is true.
Recall that a C∗-algebra A is called residually finite dimensional if there is a sep-

arating family Π of finite dimensional irreducible representations of A, i.e., for any
a ∈ A, there is φ ∈ Π such that φ(a) 6= 0.

The following is a modification of Dadarlat’s construction.

Theorem 7.9 Let A be a separable amenable residually finite dimensional C∗-algebra

in N. Then there exists a separable unital simple AF-algebra C and an embedding

j : A → C such that j∗0 induces an injective map from K0(A)/tor(K0(A)) into K0(C).

In particular, A ∈ N ∩ Cafem.

Proof Fix a separating sequence of finite dimensional irreducible representations

{tn}. For convenience, we assume that each tn repeats infinitely many times in the
sequence. Suppose that tn(A) has rank k(n). For each n, define ψn : A → Mk(n) by

the composition: A
tn→Mk(n)

id⊗1A−−−→ Mk(n)(A). We define a homomorphism h1 : A →
MI(2)(A), where I(2) = 1 + k(1), by

h1(a) = diag(a, ψ1(a)) for a ∈ A.

Suppose that hm : MI(m)(A) → MI(m+1)(A) is defined. Define hm+1 : MI(m+1)(A) →
MI(m+2)(A) by

hm+1(a) = diag(a, ψ̄1(a), ψ̄2(a), . . . , ψ̄m+1(a)) for a ∈ MI(m+1)(A),

where I(m+2) = I(m+1)(1+
∑m+1

i=1 k(i)) and ψ̄i = ψi⊗ idI(m+1), i = 1, 2, . . . ,m+1.
Set B = limm→∞(MI(m)(A), hm). It is shown (see [Ln16, 3.7.8; 3.7.9]) that B is a
unital separable amenable simple C∗-algebra with TR(B) = 0. Since each MI(m)(A)
satisfies the UCT, so does B. It follows from [Ln17] that B is isomorphic to a unital
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simple AH-algebra with real rank zero and with no dimension growth. Let C be a
unital simple AF-algebra with K0(C) = K0(B)/tor(K0(B)). It follows from [EG] that

there exists a monomorphism φ from B into C such that φ∗0 is the quotient map
from K0(B) onto K0(B)/tor(K0(B)) = K0(C).

Thus it remains to show that h1,∞ : A → B induces an injective map (h1,∞)∗0 on
K0(A).

It suffices to show that (hm)∗0 is injective. Suppose that p and q are two projections
in MI(m)(A) such that hm(p) and hm(q) are equivalent. Then ψ̄ j◦hm(p) and ψ̄ j◦hm(q)
are equivalent (in a matrix algebra) for each j. Therefore

diag(ψ̄1(p), . . . , ψ̄m+1(p), ψ̄1(p), . . . , ψ̄m+1(p))

and
diag(ψ̄1(q), . . . , ψ̄m+1(q), ψ̄1(q), . . . , ψ̄m+1(q))

are equivalent. Let t be any finite dimensional representation of MI(m)(A). Then
(t ⊕ t) ◦ hm(p) and (t ⊕ t) ◦ hm(q) are equivalent (in a matrix algebra). From the
above, it follows that t(p) ⊕ t(p) and t(q) ⊕ t(q) are equivalent in a matrix algebra.
Thus t(p) and t(q) are equivalent in the matrix algebra. This in turn implies that

diag(0, ψ̄1(p), ψ̄2(p), . . . , ψ̄m(p)) and diag(0, ψ̄1(q), ψ̄2(q), . . . , ψ̄m(q))

are equivalent. Consequently

[p] = [q] in K0

(
MI(m)(A)

)
.

This implies that (hm)∗0 is injective for each m.

Theorem 7.10 Let A be a separable amenable C∗-algebra in N ∩ Cafem. Suppose that

τ is an essential extension.

Then τ is quasidiagonal if and only if τ∗1 = 0, im τ∗0 ⊂ Aff(T(B))/ρ(K0(B)) and

[τ ]|Ki (Z/kZ) = 0, i = 0, 1 and k = 2, 3, . . . .

Proof The “if only” part follows from Lemma 7.5. For the “if” part, we first assume

that A is an AF-algebra. We may write A =
⋃∞

n=1 An, where An ⊂ An+1 and each

An is a finite dimensional C∗-algebra. Let jn : An → A be the embedding. It follows
from Proposition 7.7 that it suffices to show that τ ◦ jn are quasidiagonal. Note that
(τ ◦ jn)∗0 ⊂ Aff(T)/ρB(K0(B)). It follows from Lemma 7.4 that each τ ◦ jn is in fact
trivial and therefore quasidiagonal (since An is finite dimensional).

For the general case, let C be a unital AF-algebra and j : A → C be an embed-
ding such that j∗0 induces an injective homomorphism from K0(A)/tor(K0(A)) into
K0(C). Let τ be as in the theorem. Since Aff(T)/ρB(K0(B)) is divisible, there exists
a homomorphism α : K0(C) → Aff(T)/ρB(K0(B)) such that α ◦ j∗0 = τ∗0. It fol-

lows from Theorem 4.6 that there is an essential extension t : C → M(B)/B such that
t∗0 = α. From what we have shown, t is quasidiagonal. Let τ0 = t ◦ j.

Since C is an AF-algebra, K0(C,Z/kZ) = K0(C)/kK0(C), k = 2, 3, . . . . On the
other hand, im t∗0 ⊂ Aff(T)/ρB(K0(B)) and Aff(T)/ρB(K0(B)) is divisible, so one
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computes that [t]|K0(C,Z/kZ) = 0 for all k, by using the six-term exact sequence in
Definition 3.5. Thus [τ0]|K0(A,Z/kZ) = 0 for all k. We also have (τ0)∗1 = 0.

Since C is an AF-algebra, K1(C,Z/kZ) = {0} for k = 2, 3, . . . . Since τ0 factors
through C , we conclude that [τ0]|K1(A,Z/kZ) = 0. Furthermore (τ0)∗0 = τ∗0. We
then conclude that

[τ ] = [τ0] in KL(A,M(B)/B).

Therefore, by Theorem 4.5, τ and τ0 are strongly approximately unitarily equivalent.

We have shown that t is a quasidiagonal extension. So is τ0, by Proposition 7.7. It
follows that τ is a quasidiagonal extension.

For the last theorem in this section, one should note that every strong NF-algebra

is an inductive limit of amenable residually finite dimensional C∗-algebras (see [BK,
6.16]).

Theorem 7.11 Let A be the closure of
⋃∞

n=1 An, where each An is a separable amenable

residually finite dimensional C∗-algebra in N. Let τ : A → M(B)/B be an essential

extension. Then τ is quasidiagonal if and only if τ∗1 = 0, im τ∗0 ⊂ Aff(T)/ρB(K0(B))
and [τ ]|Ki (A,Z/kZ) = 0, i = 0, 1 and k = 2, 3, . . . .

Proof It follows from Lemma 7.5 that we only need to prove the “if” part of the
theorem. Fix an integer n ≥ 1. Let φn : An → A be the embedding. Put τn = τ ◦ φn.
So τn is an essential extension. Then (τn)∗1 = 0, im(τn)∗0 ⊂ Aff(T)/ρB(K0(B)) and
[τn]|Ki (An,Z/kZ) = 0 for i = 0, 1 and for k = 2, 3, . . . . It follows from Theorem 7.10

that τn is quasidiagonal. Therefore the theorem follows from Proposition 7.7.

8 Approximately Trivial Extensions

Let
0→ K→ E→ A→ 0

be an essential extension for a amenable quasidiagonal C∗-algebra A. It is shown that
the extension is quasidiagonal if and only if it is approximately trivial (see [Br2] and
[Sc2]).

In this section, we will show that there are quasidiagonal extensions that are not
approximately trivial. The obstruction of a quasidiagonal extension to be approxi-
mately trivial can be computed. We will also discuss when an essential extension is
approximately trivial.

Throughout this section B is always a non-unital but σ-unital simple C∗-algebra with

real rank zero, stable rank one, weakly unperforated K0(B) and a continuous scale.

If A is a unital separable quasidiagonal C∗-algebra then A admits at least one tra-
cial state. Let TA denote the tracial state space. Let ρA : K0(A) → Aff(TA) be defined

by ρA([p])(t) = t(p) for projection p ∈ Mk(A), k = 1, 2, . . . . This map ρA is a
positive homomorphism. In general, ker ρA is not zero.

Theorem 8.1 Let A be a unital separable amenable C∗-algebra in N. Let τ : A →
M(B)/B be an essential extension of A by B. If τ is approximately trivial, then τ∗1 = 0,
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im τ∗0 ⊂ Aff(T)/ρB(K0(B)), τ∗0|kerρA
= 0 and [τ ]|Ki (A,Z/kZ) = 0 for i = 0, 1 and for

k = 2, 3, . . . .

Proof Suppose that there are monomorphisms tn : A→ M(B) such that

lim
n→∞

π ◦ tn(a) = τ (a) for all a ∈ A,

where π : M(B) → M(B)/B is the quotient map. We obtain a positive homomor-
phism from K0(A) into Aff(T). This implies that

(tn)∗0

(
ker ρA)

)
= 0.

Since K0(B) = Aff(T) is a torsion free divisible group and K1(M(B)) = 0, we com-
pute that, by using the six-term exact sequence in Definition 3.5,

Ki(M(B),Z/kZ) = {0}, i = 0, 1, k = 2, 3, . . . .

Thus

(tn)∗1 = 0 and [tn]|Ki (A,Z/kZ) = 0, i = 0, 1, k = 2, 3, . . . , n = 1, 2, . . . .

For any finite subset P ⊂ K(A), there is an integer n0 ≥ 1 such that

[τn]|P = [τ ]|P for all n ≥ n0.

Thus

(π ◦ tn)∗0(ker ρA) = 0, (π ◦ tn)∗1 = 0

and

[π ◦ tn]|Ki (A,Z/kZ) = 0, i = 0, 1, k = 2, 3, . . . , n = 1, 2, . . . .

Therefore

τ∗0(ker ρA) = 0, τ∗1 = 0

and

[τ ]|Ki (A,Z/kZ) = 0, i = 0, 1, k = 2, 3, . . . , n = 1, 2, . . . .

We also have im(π ◦ tn∗0) ⊂ Aff(T)/ρB(K0(B)). It follows that

im τ∗0 ⊂ Aff(T)/ρB(K0(B)).

Corollary 8.2 Let A be a unital separable AF-algebra such that ker ρA 6= 0. Then

there are quasidiagonal extensions of A by B that are not approximately trivial.
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Proof Let g0 ∈ ker ρA be a nonzero element. Take any nonzero

x ∈ Aff(T)/ρB(K0(B))

and define a nonzero homomorphism α0 : Zg0 → Zx ∈ Aff(T)/ρB(K0(B)) by

α0(mg0) = mx for m ∈ Z.

Since Aff(T)/ρB(K0(B)) is divisible, we obtain a homomorphism α : K0(A) →
Aff(T)/ρB(K0(B)) such that α(g0) = α0(g0). It follows from Lemma 5.2 that there is
a monomorphism τ : A→ M(B)/B such that τ∗0 = α. It follows from Theorem 7.10
that τ is quasidiagonal. But by Theorem 8.1 τ is not approximately trivial.

Remark 8.3 From Corollary 8.2, one sees that it is typical rather than unusual that
quasidiagonal extensions are different from approximately trivial extensions. The
assumption that A is AF is certainly not necessary.

Lemma 8.4 Let G be an unperforated ordered group with the Riesz interpolation prop-

erty. Suppose that G0 ⊂ G is a countable ordered subgroup. Then there exists a countable

subgroup G1 ⊃ G0 which satisfies the Riesz interpolation property and is unperforated.

If G is simple, we may further assume that G1 is also simple.

Proof Since G0 is countable, there exists a countable ordered subgroup F1 of G such
that G0 ⊂ F1 and if g1, g2, g3, g4 ∈ G0 with g1, g2 ≤ g3, g4 then there is g ∈ F1 such
that

g1, g2 ≤ h ≤ g3, g4.

If a countable ordered subgroup Fn has been constructed, we have a countable or-

dered subgroup Fn+1 such that if x1, x2 ≤ y1, y2 are in Fn there exists g ∈ Fn+1 such
that

x1, x2 ≤ g ≤ y1, y2.

Set G1 =
⋃∞

n=1 Fn. Then G1 is a countable ordered subgroup of G containing G0.
From the construction, it is also clear that G1 has the Riesz interpolation property.

Now we further assume that G is simple. Let g ∈ (G1)+ be a nonzero positive

element and f ∈ G1. Since G is simple there is an integer n ≥ 1 such that ng ≥ f .
This implies that G1 is also simple. Since G is unperforated, it follows that G1 is also
unperforated.

Lemma 8.5 Let A be a unital separable commutative C∗-algebra. Then there exists a

monomorphism h : A → M(B) such that π ◦ h is an essential extension and im h∗0 ⊂
ρB(K0(B)).

Proof Let G ⊂ ρB(K0(B)) be a countable simple ordered group with the Riesz in-
terpolation property. We may also assume that G 6∼= Z. It follows [EHS] that there
is a unital non-elementary simple AF-algebra C such that K0(C) is order isomorphic
to G. Thus we obtain an order isomorphism α : K0(C)→ G ⊂ ρB(K0(B)) ⊂ Aff(T).
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It follows from [AS, p. 67] that there is monomorphism j : A → C . It follows from
Lemma 5.2 that there is a homomorphism φ : C → M(B) such that φ(A) ∩ B = {0}
and φ∗0 = α. Define h = φ ◦ j.

Theorem 8.6 Let A be a separable unital commutative C∗-algebra. Then τ : A →
M(B)/B is approximately trivial if and only if τ∗1 = 0, τ∗0(ker ρA) = 0, im τ∗0 ⊂
Aff(T)/ρB(K0(B)) and [τ ]|Ki (A,Z/kZ) = 0, i = 0, 1, k = 2, 3, . . . .

Proof We may write A = C(X), where X is a compact metric space. There are finite
CW complexes Xn such that X = lim←n Xn. We also write C(X) = limn→∞C(Xn)

andψn : C(Xn)→ C(X) is the induced homomorphism. We will show that if τ∗1 = 0,
τ∗0(ker ρA) = 0, im τ∗0 ⊂ Aff(T)/ρB(K0(B)) and [τ ]|Ki (A,Z/kZ) = 0, i = 0, 1 and

k = 2, 3, . . . , then τ is approximately trivial. Let e(n)
1 , e(n)

2 , . . . , e(n)

k(n)
be projections

corresponding to each summand of C(Xn) which corresponds to each connected
component of Xn. So K0(C(Xn))/ ker ρC is generated by {e(n)

1 , e(n)
2 , . . . , e(n)

k(n)
}. Denote

by Gn the subgroup of K0(C(X)) generated by [ψn(e(n)
1 )], [ψn(e(n)

2 )], . . . , [ψn(e(n)

k(n)
)].

Let fn : X → Xn denote the continuous map induced by the inverse inductive limit
X = lim←n Xn. Let ξ(n)

1 , ξ(n)
2 , . . . , ξ(n)

k(n)
be points in Xn which lie in different compo-

nents. Let x(n)
1 , x(n)

2 , . . . , x(n)

k(n)
be points in X such that fn(x(n)

i ) = ξ(n)
i . Since ρB(K0(B))

is dense in Aff(T), we can find mutually orthogonal projections p(n)
1 , p(n)

2 , . . . , p(n)

k(n)

in M(B) such that
∑k(n)

i=1 p(n)
i ≤ 1M(B), 1M(B) −

∑k(n)

i=1 p(n)
i /∈ B and [π(p(n)

i )] =

[τ ◦ ψn(p(n)
i )], i = 1, 2, . . . , k(n). Define a homomorphism φn : C(X)→ M(B) by

φn( f ) =

k(n)∑

i=1

f (x(n)
i )p(n)

i for f ∈ C(X).

Let Pn ≤ 1M(B) −
∑k(n)

i=1 p(n)
i be a projection in M(B) \ B such that [Pn] ∈ ρB(K0(B)).

It follows from Lemma 8.5 that there is a monomorphism h(0)
n : C(X) → PnM(B)Pn

such that im(h(0)
n )∗0 ⊂ ρB(K0(B)) and π ◦h(0)

n is injective. Now define hn = φn + h(0)
n .

Then hn : C(X) → M(B) give an essential trivial extension of C(X) by B. Note that
(π ◦ hn)∗1 = 0, [π ◦ hn]|Ki (Z/kZ) = 0, i = 0, 1, k = 2, 3, . . . , and

(π ◦ hn)∗0|Gn
= τ∗0|Gn

, n = 1, 2, . . . ,

and im(π ◦ hn)∗0) ⊂ Aff(T)/ρB(K0(B)). Since
⋃∞

n=1 Gn = K0(C(X)), one checks
that, for any finite subset P ⊂ K(C(X)), there exists an integer n, such that

[π ◦ hn]|P = [τ ]P.

It follows from Theorem 3.9 that there exists a sequence of unitaries un ∈ M(B)/B

such that
lim

n→∞
ad un ◦ π ◦ hn(a) = τ (a) a ∈ C(X).

This implies that τ is approximately trivial.
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Definition 8.7 Let Pl
(

K0(A),Aff(T)/ρB(K0(B))
)

be the set of those elements α
in Hom(K0(A),Aff(T)/ρB(K0(B)) such that there exists a positive homomorphism

β : K0(A) → Aff(T) such that Φ ◦ β = α, where Φ : Aff(T) → Aff(T)/ρB(K0(B)) is
the quotient map.

Denote by Apl
(

K0(A),Aff(T)/ρB(K0(B))
)

the set of those elements α in

Hom(K0(A),Aff(T)/ρB(K0(B))

satisfying the following: there exists an increasing sequence of finitely generated sub-
groups {Gn} ⊂ K0(A) such that

⋃∞
n=1 Gn = K0(A) and a sequence of homomor-

phism αn ∈ Pl(K0(A),Aff(T)/ρB(K0(B))) such that

(αn)|Gn
= α|Gn

, n = 1, 2, . . . .

One should note that if α ∈ Apl
(

K0(A),Aff(T)/ρB(K0(B)
)

then α|ker ρA
= 0. In

fact, if x ∈ ker ρA, then x ∈ Gn for some n. But αn(x) = 0 for all n. Therefore
α(x) = 0.

Proposition 8.8 Let A be a separable amenable C∗-algebra and let τ : A→ M(B)/B

be an essential approximately trivial extension. Then

τ∗1 = 0, [τ ]|Ki (A,Z/kZ) = 0

and

τ∗0 ∈ Apl
(

K0(A),Aff(T)/ρB(K0(B))
)
.

Proof Suppose that tn : A→ M(B)/B be a sequence of trivial extensions such that

lim
n→∞

tn(a) = τ (a) for all a ∈ A.

There is a sequence of monomorphism hn : A → M(B) such that π ◦ hn = tn, where

π : M(B) → M(B)/B is the quotient map, n = 1, 2, . . . . Since K1(M(B)) = 0 and
K0(M(B)) has no torsion, we conclude (by using the six-term exact sequence in Def-
inition 3.5) that

[tn]|K1(A) = 0 and [tn]|Ki (A,Z/kZ) = 0 i = 0, 1, k = 1, 2, . . . .

It follows that

[τ ]|K1(A) = 0 and [t]|Ki (A,Z/kZ) = 0, i = 0, 1, k = 1, 2, . . . .

Let {Gn} be a sequence of finitely generated groups of K0(A) such that
⋃∞

n=1 Gn =

K0(A). For each n, there is m(n) such that

(tm)|Gn
= τ |Gn

for all m ≥ m(n), since limn→∞ tn(a) = τ (a) for all a ∈ A. However, (tm)∗0 ∈
Pl

(
K0(A),Aff(T)/ρB(K0(B))

)
. Therefore τ∗0 ∈ Apl

(
K0(A),Aff(T)/ρB(K0(B))

)
.
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Theorem 8.9 Let A be a separable amenable C∗-algebra in N which can be em-

bedded into a unital AF-algebra C such that K0(A)/ ker ρA = K0(C)/ ker ρC (as or-

dered groups). Let τ : A → M(B)/B be an essential extension. Then τ is approxi-

mately trivial if and only if τ∗1 = 0, [τ ]|Ki (A,Z/kZ) = 0, i = 0, 1, k = 1, 2, . . . , and

τ∗0 ∈ Apl(K0(A),Aff(T)/ρB(K0(B))).

Proof The “only if” part follows from Proposition 8.8. Suppose that

αn ∈ Pl
(

K0(A),Aff(T)/ρB(K0(B))
)

is such that

(αn)|Gn
= τ∗0|Gn

,

where
⋃∞

n=1 Gn = K0(A) and Gn is finitely generated. Suppose also hn : K0(A) →
K0(M(B)) = Aff(T) is a positive homomorphism such that Φ ◦ hn = αn. Note
that hn|ker ρA

= 0. Let h̃n : K0(A)/ ker ρA → K0(M(B)) denote the induced positive
homomorphism. Let C be the unital simple AF-algebra such that there exists an em-
bedding j : A → C such that j∗0 induces an order isomorphism from K0(A)/ ker ρA

onto K0(C)/ ker ρC with K0(C) = K0(A)/ ker ρA and [1C ] = [1A]. There is a homo-
morphism ψn : C → M(B) such that (ψn)∗0 = h̃n. Put φn = ψn ◦ j. Let tn = π ◦ φn.
It is clear that [tn]K1(A) = 0 and (tn)∗0 = αn. We note that since K0(M(B)) = Aff(T)
is divisible, K0(M(B))/kK0(M(B)) = 0. We also have K1(M(B)) = 0. This implies

that K0(M(B),Z/kZ) = 0 for all k. Therefore

[tn]|K0(A,Z/kZ) = 0 k = 1, 2, . . . .

Since (φn)∗1 = 0 and K0(M(B)) has no torsion, we compute that

[tn]|K1(A) = 0 and [tn]|K1(A,Z/kZ) = 0

for all k. For τ , we note that τ∗0 ∈ A Pl
(

K0(A),Aff(T)/ρB(K0(B))
)

implies that

τ∗0|ker ρA
= 0. In particular, τ∗0|tor(K0(A)) = 0. Since τ∗1 = 0, it follows that

[τ ]|Ki (A,Z/kZ) = 0 i = 0, 1 k = 1, 2, . . . .

Therefore, for any finite subset P ⊂ K(A), there exists n such that

[τ ]|P = [tm]|P

for all m ≥ n. It follows from Theorem 3.9 that there are unitaries un ∈ M(B)/B

such that

lim
n→∞

ad un ◦ tn(a) = τ (a)

for all a ∈ A.
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Example 8.10 There are many examples where a homomorphism α : K0(A) →
Aff(T)/ρB(K0(B)) can not be lifted to a positive homomorphismβ : K0(A)→ Aff(T).

In Example 5.4, where, even if α = 0, one can not get a nonzero positive homomor-
phism β : K0(A) → Aff(T) such that Φ ◦ β = α. To show other complications,
let ρB(K0(B)) = Z[1/2] and let K0(A) = Z ⊕ Z

√
2. Define a homomorphism

α : K0(A) → Aff(T)/ρB(K0(B)) = R/Z[1/2] so that α(1) = 1 and α(
√

2) = π.

If there is a nonzero homomorphism β : K0(A)→ R such that Φ ◦ β(1) = α(1) and
Φ ◦β(

√
2) = α(

√
2), then β(1) = x and β(

√
2) = y with x ∈ Z[1/2] and y = π + z,

where z ∈ Z[1/2]. If, in addition, β were positive, then β(
√

2) = x
√

2. But that
would imply that x

√
2 = π + z. This is impossible since x, z ∈ Z[1/2]. Therefore

α /∈ Apl
(

K0(A),Aff(T)/ρB(K0(B))
)

.

This example also shows that there are very few elements in

A Pl
(

K0(A),Aff(T)/ρB(K0(B))
)

or in Pl
(

K0(A),Aff(T)/ρB(K0(B))
)

.

Nevertheless, we have the following:

Theorem 8.11 Let A be a unital separable C∗-algebra with K0(A) = Z[1/p], where p

is a prime number. Suppose that τ∗0 : K0(A)→ Aff(T)/ρB(K0(B)) is a homomorphism.

Then the following hold:

(1) τ∗0 ∈ Apl(K0(A),Aff(T)/ρB(K0(B)) if τ∗0 6= 0,

(2) if ρB(K0(B)) is divisible by p, then every such nonzero τ∗0 is in

Pl(K0(A),Aff(T)/ρB(K0(B)).

(3) if ρB(K0(B)) is finitely generated (such as Z ⊕ Zθ for some irrational number θ),

then

Apl(K0(A),Aff(T)/ρB(K0(B)) 6= Pl(K0(A),Aff(T)/ρB(K0(B)),

(4) τ∗0 = 0 is in Apl(K0(A),Aff(T)/ρB(K0(B))) if and only if there is a sequence of

nonzero positive elements ηn ∈ ρB(K0(B)) such that ηn ≤ 1̂M(B) and ηn is divisible

by pn, n = 1, 2, . . . .

Proof To prove (1), let τ∗0 : K0(A) → Aff(T)/ρB(K0(B)) be a nonzero homomor-
phism. There exists N such that ξn = τ∗0(1/pn) 6= 0 for all n ≥ N . Since ρB(K0(B))
is dense in Aff(T), one can choose rn ≫ 0 in Aff(T) such that Φ(rn) = τ∗0(1/pn),
where Φ : Aff(T) → Aff(T)/ρB(K0(B)) is the quotient map. Since ρB(K0(B)) is

dense, it is easy to find rn ≫ 0 in Aff(T) such that pnrn ≤ 1M(B). Define βn(z) =

pnrnz for z ∈ K0(A) (n ≥ N). Here we identify z with the real number z (so
rz ∈ Aff(T)). Write

Gn = {m/pn+N : m ∈ Z}, n = 1, 2, . . . .
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Then Gn is finitely generated and
⋃∞

n=1 Gn = K0(A). Moreover,

(Φ ◦ βn)|Gn
= τ∗0|Gn

, n = 1, 2, . . . .

This proves (1).

To prove (2), we first note that Aff(T)/ρB(K0(B)) has no p-torsion. Suppose x ∈
Aff(T)/ρB(K0(B)) is a nonzero element so that px = 0. Let y ∈ Aff(T) so that
Φ(y) = x. Then py ∈ ρB(K0(B)). Since ρB(K0(B)) is divisible by p, there is z ∈
ρB(K0(B)) such that p(y − z) = 0. Since Aff(T) is torsion free, y = z, or x = 0.

We will show that Φ(pN
N z) = τ∗0(z) for z ∈ K0(A) = Z[1/p]. Note we have shown

above that for any z ∈ Z(1/pN ), Φ(pN rNz) = τ∗0(z). Suppose that x = τ∗0(1/pN+1).
Then px = τ∗0(1/pN ) = Φ(rN ). Thus px = pΦ ◦ βN (1/pN+1). This implies that
p(x − ξN ) = 0 in Aff(T)/ρB(K0(B)). Since Aff(T)/ρB(K0(B)) has no p-torsion,

x = ξN . Therefore Φ ◦ βN(z) = τ∗0(z) for all z ∈ Z(1/pN+1). By induction, we verify
that Φ ◦ βN = τ∗0. It is clear that βN is positive.

For (3), we note that extZ(Z[1/p],Z) 6= {0} (see [Fu, Theorem 99.1; p 179],

and also [Rot]). Therefore, since ρB(K0(B)) is a finite sum of Z, we conclude that
extZ(Z[1/p], ρB(K0(B))) 6= {0}. Consider the following exact sequence:

· · ·Hom(Z[1/p],Aff(T))→ Hom(Z[1/p],Aff(T)/ρB(K0(B)))

→ ext(Z[1/p], ρB(K0(B)))→ ext(Z[1/p],Aff(T))

→ ext(Z[1/p],Aff(T)/ρB(K0(B)))→ · · · .

Since Aff(T) is divisible, ext(Z[1/p],Aff(T)) = {0}. This implies that the map from
Hom(Z[1/p],Aff(T)/ρB(K0(B))) to ext(Z[1/p], ρB(K0(B))) is surjective. Thus we
obtain τ∗0 : Z[1/p]→ Aff(T)/ρB(K0(B)) such that it gives a non-splitting extension
of Z[1/p] by ρB(K0(B)). This τ∗0 cannot be lifted to a homomorphism from K0(A)

into Aff(T). In particular τ∗0 /∈ Pl(K0(A),Aff(T)/ρB(K0(B)). It follows from (1) that
τ∗0 ∈ Apl(K0(A),Aff(T)/ρB(K0(B)). Thus (3) follows.

To see (4), suppose that there exists a sequence of nonzero positive elements ηn ∈
ρB(K0(B)) such that ηn ≤ 1̂M(B) and ηn = pnζn for some ζn ∈ ρB(K0(B)), n =

1, 2, . . . . Since ρB(K0(B)) is weakly unperforated, ζn ≫ 0. Fix n, define

βn : Z[1/p]→ Aff(T)

by βn(z) = pnzζn for all z ∈ Z[1/p] ( ⊂ R). Then βn is a positive homomorphism.
Let Gn be as in the proof of (1). Then βn(Gn) ⊂ ρB(K0(B)), n = 1, 2, . . . . So

(Φ ◦ βn)|Gn
= 0, n = 1, 2, . . . .

Therefore τ∗0 = 0 is in Apl
(

K0(A),Aff(T)/ρB(K0(B))
)

.

Conversely, if τ∗0 = 0 is in Apl
(

K0(A),Aff(T)/ρB(K0(B))
)

. Suppose that Fn ⊂
Z[1/p] is an increasing sequence of finitely generated subgroups such that

⋃∞
n=1 Fn =

Z[1/p] and there is a sequence of positive homomorphisms αn : Z[1/p] → Aff(T)
such that αn(Fn) ⊂ ρB(K0(B)), n = 1, 2, . . . . Replacing αn by tnαn for some positive
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real numbers tn, we may assume that αn(1) ≤ 1̂M(B), n = 1, 2, . . . . Without loss of

generality, we may also assume that 1, 1/pn ⊂ Fn, n = 1, 2, . . . . Let ηn = αn(1).
Since αn(1/pn) ⊂ ρB(K0(B)), ηn is divisible by pn, n = 1, 2, . . . .

Remark 8.12 Note that ρB(K0(B)) may not have any nonzero elements to be di-

vided by p. In these cases, the condition in (4) in the previous theorem and the next
corollary never holds. In other words, when [τ ] = 0 in KL(A,M(B)/B), τ is never
approximately trivial.

Corollary 8.13 Let A be a unital separable amenable C∗-algebra in N. Suppose that

there is a monomorphism j : A → C for some unital simple AF-algebra C with C =

Z[1/p]. Suppose also that j∗0 maps K0(A)/ ker ρA injectively to Z[1/p]. Let τ : A →
M(B)/B be an essential extension.

(1) If [τ ] 6= 0, τ∗1 = 0, τ∗0|ker ρA
= 0, im τ∗0 ⊂ Aff(T)/ρB(K0(B)) and

[τ ]|Ki (A,Z/kZ) = 0, i = 0, 1

and k = 2, 3, . . . . Then τ is approximately trivial.

(2) If there is no positive homomorphism from K0(A) into ρB(K0(B)), then no essential

extension with [τ ] = 0 in KL(A,M(B)/B) can be trivial. Furthermore, if A = C,

then there exists an essential trivial extension τ with [τ ] = 0 in KL(A,M(B)/B) if

and only if there is a positive homomorphism α : K0(A)→ ρB(K0(B)).

(3) Suppose further that K0(A)/ ker ρA = Z[1/p]. Then [τ ] = 0 implies that τ is ap-

proximately trivial if and only if there exists a sequence of nonzero positive elements

ηn ∈ ρB(K0(B)) such that ηn ≤ 1̂M(B) and ηn is divisible by pn, n = 1, 2, . . . .

Proof Suppose j : A → C is the embedding. Since Aff(T)/ρB(K0(B)) is divisible,
there exists a homomorphism α : K0(C)→ Aff(T)/ρB(K0(B)) such that

α| j∗0(K0(A)) = τ∗0

which is nonzero. Let ψ : C → M(B)/B be an essential extension such that ψ∗0 = α.
Since Aff(T)/ρB(K0(B)) is divisible and K1(C) = {0}, one computes that

[τ ]|K0(C,Z/kZ) = 0 for all k.

Since K0(C) has no torsion and K1(C) = 0, [τ ]|K1(C,Z/kZ) = 0 for all k. It follows that

[τ ] = [ψ ◦ j] in KL(A,M(B)/B).

So τ and ψ ◦ j are strongly approximately unitarily equivalent. Thus it suffices to
show that ψ ◦ j is approximately trivial. It follows from Theorem 8.11 that

ψ∗0 ⊂ Apl(K0(C),Aff(T)/ρB(K0(B)).

It follows from Theorem 8.9 that ψ is approximately trivial. Hence ψ ◦ j is approxi-
mately trivial.
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For (2), we assume that [τ ] = 0. Suppose that τ is trivial and h : A → M(B) is a
monomorphism such that π ◦h = τ . Then h∗0 gives a positive homomorphism from

K0(A) into ρB(K0(B)).

Suppose now that A = C . If there is a α : K0(A) → ρB(K0(B)) ⊂ Aff(T), then
by Lemma 5.2 there exists a monomorphism h : A → M(B) such that h∗0 = α and
h(A) ∩ B = {0}. Thus τ = π ◦ h is trivial and [τ ] = 0.

Now consider (3). Suppose that [τ ] = 0 in KL(A,M(B)/B) and suppose also that
there is a homomorphism hn : A→ M(B) such that

lim
n→∞

π ◦ hn(a) = τ (a) for all a ∈ A.

Then τ∗0 ∈ Apl(K0(A),Aff(T)/ρB(K0(B))). Thus the “if only” part follows from
(4) in Theorem 8.11. On the other hand, if those ηn exists, by (4) in Theorem 8.11,

τ∗0 ∈ Apl(K0(A),Aff(T)/ρB(K0(B))). Thus the “if” part follows from Theorem 8.9.
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