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Sets of Uniqueness for Univalent Functions
Marius Overholt

Abstract. We observe that any set of uniqueness for the Dirichlet spaceD is a set of uniqueness for the class S
of normalized univalent holomorphic functions.

The class S consists of the injective holomorphic functions f : D → C normalized by
f (0) = 0 and f ′(0) = 1. Obrock [7] and Duren [4] asked which sequences Z = {zn} of
points in D are sets of uniqueness for S (that is, for any f , g ∈ S, if f (zn) = g(zn) we have
f ≡ g). Duren observed in [4] that the condition

∑
(1− |zn|) =∞

is sufficient, and Lappan [5] found necessary conditions. And for Z a Blaschke sequence
the necessary condition

∫ π
−π

log
1

dist
(
Z, exp(iθ)

) dθ =∞

is implicit in work of Stegbuchner [9].
In this note we improve on Duren’s sufficient condition. Suppose that Z is a sequence,

f , g ∈ S and f (zn) = g(zn) for zn ∈ Z, but f 	≡ g. Consider the function

h(z) =
1

f (z)
−

1

g(z)

in the unit disk. It is clearly holomorphic in D, and is zero on Z, except possibly at the
origin, but it is not identically zero. Now

h(z) =
∞∑

n=0

(bn − cn)zn,

where

1/ f (1/ζ) =
∞∑

n=−1

bnζ
−n,

and the coefficients cn are related to g in the same way. The Area Theorem of Gronwall, see
p. 29 of [3], implies that

∞∑
n=1

n|bn − cn|
2 ≤

∞∑
n=1

2n(|bn|
2 + |cn|

2) ≤ 4,
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and thus h is in the Dirichlet space D of holomorphic functions h in D satisfying

∫
D
|h ′(z)|2 dx dy <∞.

Hence there exists a nonzero function in D which is zero on Z, except possibly at the origin.
By an elementary argument, see p. 221 of [8], there exists a function in D having simple
zeros at the points of Z. Thus:

Any set of uniqueness for D is a set of uniqueness for S.

The sets of uniqueness for D have not been precisely characterized, but there is some
work bearing on this problem, usually formulated in terms of zero sets for functions in
D. Shapiro and Shields [8] showed that for any continuous function h with h(0) = 0 and
h(t) > 0 for t > 0 there exists a set of uniqueness for D satisfying

∑ 1

− log(1− |zn|)
h(1− |zn|) <∞.

Choosing in particular h(x) = −x log(x) near the origin, we deduce the existence of a set
of uniqueness for S satisfying the Blaschke condition

∑
(1− |zn|) <∞.

In fact, by a result originally due to Carleson, see [2], there is a set of uniqueness for D and
thus for S satisfying the Blaschke condition and with zn → 1. It was shown by Nagel, Rudin
and Shapiro [6] that for any sequence {rn} with 0 < rn < 1 and

∑ 1

− log(1− |rn|)
=∞,

there exists a sequence {θn} of angles such that {rn exp(iθn)} is a set of uniqueness for D,
hence for S. Bogdan [1] showed under the same conditions that if {Θn} are independent
random variables uniformly distributed on (−π, π] and {θn} are values of {Θn} then al-
most surely {rn exp(iθn)} is a set of uniqueness for D, hence for S.

The author thanks Peter Duren, Peter Lappan and Stefan Richter for supplying refer-
ences, and Pomor State University for its hospitality while this work was in progress.
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