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Abstract

In this paper we are concerned with the equilibrium distribution �n of the nth element in a
sequence of continuous-time density-dependent Markov processes on the integers. Under
a (2 + α)th moment condition on the jump distributions, we establish a bound of order
O(n−(α+1)/2√log n) on the difference between the point probabilities of �n and those
of a translated Poisson distribution with the same variance. Except for the factor

√
log n,

the result is as good as could be obtained in the simpler setting of sums of independent,
integer-valued random variables. Our arguments are based on the Stein-Chen method
and coupling.
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1. Introduction

Density-dependent Markov population processes, in which the transition rates depend on
the density of individuals in the population, have proved widely useful as models in the social
and life sciences; see, for example, the monograph of Kurtz (1981), in which approximations
in terms of diffusions are extensively discussed, in the limit as the typical population size n

tends to ∞. In the present paper we consider local approximation to their equilibrium distri-
butions �n. In Socoll and Barbour (2009), a total variation approximation to �n by a suitably
translated Poisson distribution was shown to be accurate to order O(n−α/2), provided that
the jump distributions satisfy a (2 + α)th moment condition for some 0 < α ≤ 1. Here,
we examine the approximation of point probabilities by those of the same translated Poisson
distribution, and show in Theorem 1.1 that, under the same assumptions, the error is now of
order O(n−(α+1)/2√log n). This is only worse by the logarithmic factor than the best that
can be obtained under comparable conditions for sums of independent, integer-valued random
variables.

A key ingredient in the proof of the total variation approximation in Socoll and Barbour
(2009) was to show that the total variation distance between �n and its unit translate �n ∗ δ1 is
of order O(n−1/2). Here, we need to establish a local limit analogue of this theorem. We prove in
Section 2 that the differences between the point probabilities of �n and those of its unit translate
are uniformly bounded by a quantity of order O(n−1√log n). An important step in proving
this is to establish that, for some U ≥ 1, the difference between P[Zn(t) = k + 1 | Zn(0) = i]
and P[Zn(t) = k | Zn(0) = i − 1] is of order O(n−1√log n), uniformly for i in a set I such
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that �n(I
c) = O(n−1). This is achieved by a pathwise comparison of probability densities,

and using a martingale concentration inequality. Note that, for sums of independent random
variables, the corresponding difference is always 0, so that this problem does not arise there.

The proof of Theorem 1.1 is undertaken in Section 3. The argument relies on the Stein–Chen
method (see Chen (1975)) and Dynkin’s formula, exploiting the particularly nice properties of
the solutions to the Stein–Chen equation for one point subsets of Z+.

1.1. Preliminaries

For each n ∈ N, let Zn(t), t ≥ 0, be an irreducible, continuous-time pure-jump Markov
process taking values in Z, with transition rates given by

i → i + j at rate nλj

(
i

n

)
, i ∈ Z, j ∈ Z \ {0},

where the λj (·) are prescribed functions on R. We then define the ‘overall jump rate’ of the
process n−1Zn at z ∈ n−1

Z by

�(z) :=
∑

j∈Z\{0}
λj (z),

its ‘average growth rate’ by

F(z) :=
∑

j∈Z\{0}
jλj (z),

and its ‘quadratic variation’ function by n−1σ 2(z), where

σ 2(z) =
∑

j∈Z\{0}
j2λj (z),

assumed to be finite for all z ∈ R.
We make the following assumptions on the functions λj . The first requires a unique attractive

equilibrium for the deterministic drift process.

(A1) There exists a unique c satisfying F(c) = 0; furthermore, F ′(c) < 0 and, for any η > 0,
µη := inf |z−c|≥η |F(z)| > 0.

The next assumption controls the global behavior of the transition functions λj , limiting their
growth away from the equilibrium c, as well as bounding a moment of the jump distribution.
The condition on λ1 is sufficient to exclude, for instance, processes confined to the even integers,
for which our results would not hold.

(A2) (a) For each j ∈ Z \ {0}, there exists cj ≥ 0 such that

λj (z) ≤ cj (1 + |z − c|), z ∈ R,

where the cj are such that, for some 0 < α ≤ 1,
∑

j∈Z\{0} |j |2+αcj =: sα < ∞.

(b) For some λ0 > 0, λ1(z) ≥ 2λ0, z ∈ R.

We also require some smoothness and uniformity of the functions λj near c.
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692 S. N. SOCOLL AND A. D. BARBOUR

(A3) There exist ε > 0 and 0 < δ ≤ 1 and a set J ⊂ Z \ {0} such that

inf|z−c|≤δ
λj (z) ≥ ελj (c) > 0, j ∈ J ; λj (z) = 0 for all |z − c| ≤ δ, j /∈ J.

(A4) (a) For each j ∈ J , λj is of class C2 on |z − c| ≤ δ.

(b) For δ as in (A3),

L1 := sup
j∈J

‖λ′
j‖δ

λj (c)
< ∞, L2 := sup

j∈J

‖λ′′
j‖δ

|j |λj (c)
< ∞,

where ‖f ‖δ := sup|z−c|≤δ |f (z)|.
These assumptions imply in particular that the functions � and F are of class C2 on |z−c| ≤ δ,
that σ 2 is of class C1 there, and that their derivatives can be obtained by differentiating inside
their defining sums.

In Socoll and Barbour (2009), under assumptions (A1)–(A4), it was shown that the pro-
cess Zn has an equilibrium distribution �n, and that �̂n := �n ∗ δ−�nc� satisfies

dTV(�̂n, P̂o(nvc)) = O(n−α/2),

where vc := σ 2(c)/{−2F ′(c)} and P̂o(nvc) denotes the centered Poisson distribution

P̂o(nvc) := Po(nvc) ∗ δ−�nvc�;
here, δr denotes the point mass at r , and ‘∗’ denotes convolution. In this paper we prove the
complementary local limit approximation.

Theorem 1.1. Under assumptions (A1)–(A4), there exists a constant C > 0 such that

sup
k∈Z

|�̂n(k) − P̂o(nvc){k}| ≤ Cn−(α+1)/2
√

log n.

This theorem shows that, even at the level of point probabilities, the approximation to
�n ∗ δ−�nc� provided by the centered Poisson distribution P̂o(nvc) is almost exactly the best
that could be expected.

The proof is based on exploiting the equation

E{Anh}(Zn) = 0, (1.1)

where An denotes the infinitesimal generator of Zn:

(Anh)(i) :=
∑

j∈Z\{0}
nλj

(
i

n

)
(h(i + j) − h(i)), i ∈ Z, (1.2)

and where, here and subsequently, the quantity Zn, when appearing without a time argument,
is to be interpreted in such expressions as being a random variable having equilibrium distri-
bution �n. Equation (1.1) is a manifestation of Dynkin’s formula, and it holds under rather
mild conditions on h; see Hamza and Klebaner (1995). The first step is to approximate Anh

by replacing h(i + j) − h(i) with the first terms of its Newton expansion:

h(i + j) − h(i) ≈ j	h(i) + 1
2j2	2h(i), (1.3)
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where 	f (i) := f (i + 1) − f (i) and 	2f := 	(	f ). Substituting (1.3) into (1.2) gives

(Anh)(i) ≈ nF

(
i

n

)
gh(i) + 1

2
nσ 2

(
i

n

)
	gh(i),

where we write gh for 	h; a precise version is given in Lemma 3.1, below. Then, considering
arguments i = �nc� + j with j/n small—the values to be expected in equilibrium—and
approximating F(i/n) and σ 2(i/n) near c (where F(c) = 0), we obtain

(Anh)(i) ≈ jF ′(c)gh(j + �nc�) + 1
2nσ 2(c)	gh(j + �nc�).

Dividing through by |F ′(c)| yields the Stein operator for the centered Poisson distribution
P̂o(nvc), applied to the function gh(· + �nc�). This indicates that P̂o(nvc) is the appropriate
approximation for the centered equilibrium distribution �̂n. The rest of the paper gives the
argument necessary to dispose of the errors involved in this chain of approximations.

2. Differences of point probabilities

As an essential step in proving Theorem 1.1, we first need to show that the differences
between the successive point probabilities of �n are suitably small. The bound that we achieve
is of order O(n−1√log n). In order to prove this result, we begin with two lemmas. The first
states that, for any U ≥ 1, the distribution of Zn(U) has point probabilities which are uniformly
of order O(n−1/2), if Zn(0) is close enough to nc.

Lemma 2.1. Under assumptions (A1)–(A4), for any U ≥ 1, there exists C2.1(U) < ∞ such
that

sup
k∈Z

sup
|i−nc|≤nδ/2

P[Zn(U) = k | Zn(0) = i] ≤ C2.1(U)n−1/2.

Proof. Note that, for any integer-valued random variable X,

sup
k∈Z

P[X = k] = sup
k∈Z

{P[X ≤ k] − P[X + 1 ≤ k]} ≤ dTV{L(X), L(X) ∗ δ1}, (2.1)

where L(X) denotes the distribution of X. Taking X = Zn(U) and applying Lemma A.2,
below, completes the proof.

The next lemma shows that the differences between successive point probabilities of Zn(U)

are uniformly close, to order O(n−1√log n), for a large range of values of Zn(0) and for a
particular choice of U ≥ 1. This is the result that we shall then be able to extend to the
equilibrium distribution �n. For �∗ := sup|z−c|≤δ/2 �(z), we set

U := max

{
1,

1

2�∗

}
and δ′

1 := δ exp{−U‖F ′‖δ}
4

. (2.2)

Lemma 2.2. Under assumptions (A1)–(A4), and for U and δ′
1 defined above, there exists

C2.2 < ∞ such that

sup
k∈Z

sup
|i−nc|≤nδ′

1/2
|P[Zn(U) = k | Zn(0) = i − 1] − P[Zn(U) = k + 1 | Zn(0) = i]|

≤ C2.2n
−1

√
log n.
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Proof. We compare the probability measures L((Zn(u), 0 ≤ u ≤ U) | Zn(0) = i −1)∗ δ1
and L((Zn(u), 0 ≤ u ≤ U) | Zn(0) = i) by examining the likelihood ratio of the processes
Z

(1)
n

d= {Zn | Zn(0) = i − 1} and Z
(2)
n

d= {Zn | Zn(0) = i} along paths with the same set of
jumps (jl, l ≥ 1) occurring at the same times (tl, l ≥ 1). (Here ‘

d=’ denotes equality in
distribution.) The process Z

(1)
n starts from the state i−1; we write zl := n−1(i − 1 + ∑l

s=1 js)

for the value of n−1Z
(1)
n at time tl , l ≥ 0, and z(u) := zl if tl ≤ u < tl+1. The process Z

(2)
n

starts from the state i, and, thus, has the same paths as Z
(1)
n + 1. Then, using the notation

v[0, ∞) to denote the function (v(t), t ≥ 0), the likelihood ratio of the two processes along
the first m steps of the path is given by

Sm := Sm(z[0, ∞))

:= Sm(z0, z1 . . . , zm; t1, . . . , tm)

:=
m−1∏
l=0

(
λjl+1(zl + n−1)

λjl+1(zl)
exp{−n(�(zl + n−1) − �(zl))(tl+1 − tl)}

)

=:
m−1∏
l=0

Vl.

Note that, since |(1 + x)(1 + y) − 1| ≤ 3|x| + |y| if |y| ≤ 2, and since |et − 1| ≤ 2|t | if t ≤ 1,
it follows that

|Vl − 1| ≤ 3

∣∣∣∣λjl+1(zl + n−1)

λjl+1(zl)
− 1

∣∣∣∣ + 2n|�(zl + n−1) − �(zl)|(tl+1 − tl),

provided that n{�(zl) − �(zl + n−1)}(tl+1 − tl) ≤ 1.
Now, if |z − c| ≤ δ/2 and n−1 ≤ δ/2, it follows from assumptions (A3) and (A4) that∣∣∣∣λj (z + n−1)

λj (z)
− 1

∣∣∣∣ ≤ ‖λ′
j‖δ

nελj (c)
≤ L1

nε
,

∣∣∣∣�(z + n−1)

�(z)
− 1

∣∣∣∣ ≤ ‖�′‖δ

nε�(c)
≤ L1

nε
. (2.3)

Hence, for all n ≥ 2/δ, writing el+1 := n�(zl)(tl+1 − tl), we have

|Vl − 1| ≤ L1

nε
(3 + 2el+1),

as long as

|zl − c| ≤ δ

2
and either �(zl) ≤ �(zl + n−1) or el+1 ≤ nε

L1
.

Now consider the random likelihood ratio process

(Sm(n−1Z0, n
−1Z1, . . . , n

−1Zm; τ1, . . . , τm), m ≥ 0),

where (τl, l ≥ 0) denote the jump times of the process Z
(1)
n , and Zl := Z

(1)
n (τl), l ≥ 0, the

sequence of states that it visits; also define El := n�(n−1Zl−1)(τl − τl−1). Then S :=
(Sm, m ≥ 0) is a martingale with mean 1 with respect to the filtrationGm := σ(Z0, Z1, . . . , Zm;
τ1, . . . , τm), m ≥ 0. We shall, for technical reasons, work rather with another martingale S̃,
which typically agrees with S for a long time, but which satisfies the inequality

|S̃m+1 − S̃m| ≤ 2L1

nε
(3 + 2Em+1) for all m ≥ 0. (2.4)
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This we achieve by defining σ := min{σr, 1 ≤ r ≤ 3}, where

σ1 := inf{l ≥ 0 : n|�(n−1[Zl−1 + 1]) − �(n−1Zl−1)|(τl − τl−1) > 1}, (2.5)

σ2 := inf{l ≥ 0 : Sl > 2}, and σ3 := inf

{
l ≥ 0 : |n−1Zl − c| >

δ

2

}
,

and then setting
S̃m := Sm∧σ Cm,σ1 ,

where

Cm,l :=
⎧⎨⎩

e

Vl−1
if l ≤ min{m, σ2, σ3} and �(zl−1) > �(zl−1 + n−1);

1 otherwise.

Note that the only effect of the factor Cm,σ1 is to multiply S̃ by e instead of by Vσ1−1 at time σ1,
if σ1 ≤ min{σ2, σ3} and �(zσ1−1) > �(zσ1−1 + n−1). The value e is chosen so that the
martingale property is preserved; and the modification also ensures that (2.4) is still satisfied at
time σ1, since 2(e − 1) is no larger that 4L1Eσ1/(nε), because, at time σ1,

1 < n|�(zσ1−1 + n−1) − �(zσ1−1)|(τσ1 − τσ1−1)

= Eσ1

∣∣∣∣�(zσ1−1 + n−1)

�(zσ1−1)
− 1

∣∣∣∣
≤ Eσ1

L1

nε
,

in view of (2.3).
Now, from (2.4), and since also, by the strong Markov property, the conditional distribution

L(El+1 | Gl ) is the standard exponential exp(1) distribution for each l, the process S̃ satisfies
the conditions of the variant of the bounded differences inequality for martingales given in
Barbour (2008, Lemma 4.1), from which it follows that

P

[
|S̃m − 1| > C

L1
√

m log m

nε

∣∣∣∣ Zn(0) = i − 1

]
≤ 2 exp

{
−3C log m

928

}
for any m such that

√
m/ log m ≥ 135C/236. In particular, recalling (2.2), for m = m(n) :=

�2n�∗U�, we have

P

[
|S̃m(n) − 1| > C

L1
√

m(n) log m(n)

nε

∣∣∣∣ Zn(0) = i − 1

]
≤ 2n−3, (2.6)

if we take C := 928, as long as n ≥ e and

n

log n
≥ 5402. (2.7)

Introducing the notation Ps to denote P[· | Zn(0) = s]; defining Mn(U) := min{l : τl > U},
we would now like to use the equation

Pi[Zn(U) = k + 1] − Pi−1[Zn(U) + 1 = k + 1] = Ei−1((SMn(U) − 1) 1[Zn(U) = k]),
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together with the control over |S̃m(n) − 1| from (2.6), to establish the inequality that we are
looking for. However, the fact that SMn(U) may be unbounded makes this complicated. Instead,
we argue from

Ei{1[Zn(U) = k + 1]g(Zn[0, ∞))} − Ei−1{1[Zn(U) + 1 = k + 1]g((Zn + 1)[0, ∞))}
= Ei−1{(SMn(U) − 1) 1[Zn(U) + 1 = k + 1]g((Zn + 1)[0, ∞))}, (2.8)

where

g((Z + 1)[0, ∞)) := 1[Smn(U,tN0 )(n
−1Z[0, ∞)) ≤ s̄] 1[mn(U, tN0) ≤ m(n)]

for suitably chosen s̄, with mn(U, tN0) := min{l : tl > U}. More explicitly, we have

g((Zn + 1)[0, ∞)) = 1[SMn(U) ≤ s̄] 1[Mn(U) ≤ m(n)]. (2.9)

We start by showing that the value of g((Zn +1)[0, ∞)) is 1 with high probability, so that (2.8)
closely approximates the difference that we wish to bound.

First, if

max
1≤l≤mn(U,tN0 )

|zl − c| ≤ δ

2
, mn(U, tN0) ≤ m(n) and tmn(U,tN0 ) − U ≤ 1,

it follows from (2.3) and the definition of m(n) that

Sm ≤
(

1 + L1

nε

)m

exp{‖�′‖δtm} ≤ exp

{
1 + 2�∗U

(
L1

ε

)
+ ‖�′‖δ(U + 1)

}
=: s̄

for all m ≤ mn(U, tN0). Hence, with this definition of s̄, g((Zn+1)[0, ∞)) = 1 on A3∩A4∩A5,
where A3 := {σ3 ≥ Mn(U)}, A4 := {Mn(u) ≤ m(n)}, and A5 := {tMn(U) − U ≤ 1}. Now,
from Lemma A.1, for all |i − nc| ≤ nδ′

1, as defined in (2.2), we have

Pi−1[Ac
3] = Pi−1

[
sup

0≤u≤U

|n−1Zn(u) − c| >
δ

2

]
≤ n−1KU,δ/2. (2.10)

Then, by the Chernoff inequality (see Chung and Lu (2006, Theorem 4)),

Pi−1[Ac
4 ∩ A3] = Pi−1[{τm(n) ≤ U} ∩ A3]

≤ Po(n�∗U){(2n�∗U, ∞)}
≤ exp

{
−n�∗U

3

}
,

and Pi−1[Ac
5] ≤ exp{−2nλ0} is immediate from assumption (A2). Hence, we have proved that

Pi−1[g((Zn + 1)[0, ∞)) = 0] ≤ η1(n),

where η1(n) ≤ Cn−1 for some C < ∞. The same bound also holds for the probability
Pi[g(Zn[0, ∞)) = 0], if we restrict i further to the set |i − nc| ≤ nδ′

1/2, provided that
δ′

1/2 ≥ n−1, because S(z) is now computed with arguments shifted by n−1. Thus, and from
(2.8) and (2.9), we conclude that

|Pi[Zn(U) = k + 1] − Pi−1[Zn(U) = k]|
≤ |Ei−1{(SMn(U) − 1) 1[Zn(U) = k] 1[SMn(U) ≤ s̄] 1[A4]}| + 2η1(n).
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However, it is immediate that

|Ei−1{(SMn(U) − 1) 1[Zn(U) = k] 1[SMn(U) ≤ s̄] 1[A4]}|
≤ |Ei−1{(S̃Mn(U) − 1) 1[Zn(U) = k] 1[SMn(U) ≤ s̄] 1[A4] 1[S̃Mn(U) = SMn(U)]}|

+ s̄ Pi−1[{S̃Mn(U) �= SMn(U)} ∩ A4],
and, since Zn(U) is GMn(U)-measurable, it follows from the martingale property that

|Ei−1{(S̃Mn(U) − 1) 1[Zn(U) = k] 1[SMn(U) ≤ s̄] 1[A4] 1[S̃Mn(U) = SMn(U)]}|
= |Ei−1{(S̃m(n) − 1) 1[Zn(U) = k] 1[SMn(U) ≤ s̄] 1[A4] 1[S̃Mn(U) = SMn(U)]}|
≤ CL1

nε

√
m(n) log m(n) Pi−1[Zn(U) = k] + (2e − 1)n−3,

the last inequality holding for all n ≥ e satisfying (2.7), by (2.6).
It remains now first to bound

Pi−1[{S̃Mn(U) �= SMn(U)} ∩ A4] ≤ Pi−1

[
A4 ∩

{ 3⋃
l=1

Ac
l

}]
,

where A1 := {σ1 > Mn(U)} and A2 := {σ2 > Mn(U)}. We already have a bound for
Pi−1[Ac

3], (2.10). Then, from (2.5) and the definition of El , and using (2.3), we have

Ac
1 ∩ A3 ∩ A4 ⊂

m(n)⋃
l=1

{
L1El

nε
> 1

}
,

so that

Pi−1[Ac
1 ∩ A3 ∩ A4] ≤ m(n) exp

{
− nε

L1

}
.

Finally, on the set Ac
2 ∩ A1 ∩ A3 ∩ A4, we then note that

|S̃m(n) − 1| > C
L1

√
m(n) log m(n)

nε

for all n ≥ max{3, 2�∗} such that n/ log n > 3(L1/ε)
2, implying that, for n that also

satisfy (2.7),
Pi−1[Ac

2 ∩ A1 ∩ A3 ∩ A4] ≤ 2n−3,

from (2.6). Combining these bounds, and also noting that, from Lemma 2.1,

Pi−1[Zn(U) = k] ≤ C2.1(U)√
n

for all |i − nc| ≤ nδ′
1, the lemma is proved.

Theorem 2.1. Under assumptions (A1)–(A4), there exists a constant C�
2.1 > 0 such that

sup
k∈Z

|�n(k) − �n(k + 1)| ≤ C�
2.1n

−1
√

log n.
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Proof. Fix U as in (2.2). Since �n is the equilibrium distribution of Zn, it is in particular
true that

|�n(k) − �n(k + 1)| =
∣∣∣∣ ∑

i∈Z

�n(i) Pi[Zn(U) = k] −
∑
i∈Z

�n(i) Pi[Zn(U) = k + 1]
∣∣∣∣

≤
∑
i∈Z

�n(i − 1)|Pi−1[Zn(U) = k] − Pi[Zn(U) = k + 1]|

+
∑
i∈Z

|�n(i − 1) − �n(i)|Pi[Zn(U) = k + 1].

With δ′
1 as in (2.2), note that we can write∑

i∈Z

�n(i − 1)|Pi−1[Zn(U) = k] − Pi[Zn(U) = k + 1]|

≤ �n(|Zn + 1 − nc| > nδ′
1) + sup

|i−nc|≤nδ′
1

|Pi−1[Zn(U) = k] − Pi[Zn(U) = k + 1]|,

and that ∑
i∈Z

|�n(i − 1) − �n(i)|Pi[Zn(U) = k + 1]

≤ �n(|Zn + 1 − nc| > nδ′
1) + �n(|Zn − nc| > nδ′

1)

+ sup
|i−nc|≤nδ′

1

Pi[Zn(U) = k + 1]2dTV{�n, �n ∗ δ1}.

By applying the result of Corollary A.1 three times we obtain

sup
k∈Z

|�n(k) − �n(k + 1)|

≤ O(n−1) + sup
k∈Z

sup
|i−nc|≤nδ′

1

|Pi−1[Zn(U) = k] − Pi[Zn(U) = k + 1]|

+ sup
k∈Z

sup
|i−nc|≤nδ′

1

Pi[Zn(U) = k + 1]2dTV{�n, �n ∗ δ1}

=: O(n−1) + η1n + η2n.

The quantity η1n is of order O(n−1√log n), in view of Lemma 2.2; and Lemma 2.1 and
Theorem A.2 together give the bound

η2n ≤ C2.1(U)n−1/2CA.2n
−1/2 = O(n−1).

This completes the proof of the theorem.

3. Local limit approximation for the equilibrium distribution

As outlined at the end of the preliminaries, we start from the fact that E{Anh}(Zn) = 0
for many functions h, and transform it using Stein’s method into a statement concerning the
closeness of �n to a suitably translated Poisson distribution. The first step is to recall a result
from Socoll and Barbour (2009), which shows that An can be expressed in a form which is
closer to that of the desired Stein operator.
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Lemma 3.1. (Socoll and Barbour (2009, Lemma 1.1).) Suppose that σ 2(z) < ∞ for all z ∈ R.
Then, for any function h : Z → R with bounded differences, we have

(Anh)(i) = n

2
σ 2

(
i

n

)
� gh(i) + nF

(
i

n

)
gh(i) + En(gh, i),

where �f (i) := f (i) − f (i − 1) and gh(i) := �h(i + 1), and, for any i ∈ Z,

En(g, i) := −n

2
F

(
i

n

)
� g(i) +

∑
j≥2

aj (g, i)nλj

(
i

n

)
−

∑
j≥2

bj (g, i)nλ−j

(
i

n

)
,

with

aj (g, i) := −
(

j

2

)
� g(i) +

j−1∑
k=1

k � g(i + j − k) =
j∑

k=2

(
k

2

)
�2 g(i + j − k + 1),

bj (g, i) :=
(

j

2

)
� g(i) −

j−1∑
k=1

k � g(i − j + k) =
j∑

k=2

(
k

2

)
�2 g(i − j + k).

Since F(c) = 0, we note that, for small i/n, {−F ′(c)}−1(Anh)(i + �nc�) is close to

1

−F ′(c)
n

2
σ 2(c)	g∗

h(i) − (i − 〈nvc〉)g∗
h(i) = nvc	g∗

h(i) − (i − 〈nvc〉)g∗
h(i)

for g∗
h(i) := gh(i + �nc�), where 〈nvc〉 = nvc − �nvc� denotes the fractional part of nvc. This

is the Stein operator for the centered Poisson distribution P̂o(nvc) (see Röllin (2005)), acting
on the function g∗

h. Combining this observation with (1.1) and writing Yn = Zn − �nc� yields

0 = {−F ′(c)}−1 E{(Anh)(Yn + �nc�)}
= E{nvc	g∗

h(Yn) − (i − 〈nvc〉)g∗
h(Yn)} + E{H(g∗

h, Yn)}, (3.1)

say. If the error term E{H(g∗
h, Yn)} can be controlled, then Stein’s method leads easily to

the approximation of L(Yn) = �n ∗ δ−�nc� by P̂o(nvc). For the approximation of point
probabilities, (3.1) needs to be analyzed for functions g∗

h that are translates of the solutions to
the Stein–Chen equation corresponding to single-point sets.

Carrying out this recipe, and examining the form of H(g∗
h, Yn), yields

sup
r∈Z

|(�n − �nc�)(r) − P̂o(nvc)(r)|

≤ 1

−F ′(c)
sup
r∈Z

|E{R(n, r; Yn)}| + sup
r∈Z

nvc|E{�2g̃nvc,r (Yn + 1)}|

+ sup
r∈Z

P̂o(nvc){r} P[Yn < −�nvc�]
:= Rn1 + Rn2 + Rn3, (3.2)

say, where

R(n, r; Yn) := n

2

[
σ 2

(
Yn + �nc�

n

)
− σ 2(c)

]
� g̃nvc,r (Yn)

+ n

[
F

(
Yn + �nc�

n

)
− F(c) − Yn

n
F ′(c)

]
g̃nvc,r (Yn)

+ F ′(c)〈nvc〉g̃nvc,r (Yn) + En(g̃nvc,r , Yn + �nc�), (3.3)
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and the function g̃nvc,r is given by

g̃nvc,r (l) :=
{

0 if l < −�nvc�;
gnvc,{r+�nvc�}(l + �nvc�) if l ≥ −�nvc�. (3.4)

Here, for A ⊂ Z+, gµ,A denotes the solution to the Stein–Chen equation

1A(i) − Po(µ){A} = µ gµ,A(i + 1) − i gµ,A(i), i ≥ 0. (3.5)

We further split the last term of (3.3) into

En(g̃nvc,r , Yn + �nc�) =
7∑

l=1

Enl(g̃nvc,r , Yn + �nc�),

with

En1(g̃nvc,r , Yn + �nc�) := −n

2

(
F

(
Yn + �nc�

n

)
− F(c)

)
� g̃nvc,r (Yn), (3.6)

En2(g̃nvc,r , Yn + �nc�) :=
�√n�∑
j=2

( j∑
k=2

(
k

2

)
�2 g̃nvc,r (Yn + j − k + 1)

)
nλj (c), (3.7)

En3(g̃nvc,r , Yn + �nc�) :=
�√n�∑
j=2

(
−

(
j

2

)
� g̃nvc,r (Yn) +

j−1∑
k=1

k � g̃nvc,r (Yn + j − k)

)

× n

{
λj

(
Yn + �nc�

n

)
− λj (c)

}
, (3.8)

En4(g̃nvc,r , Yn + �nc�) :=
∑

j≥�√n�

(
−

(
j

2

)
� g̃nvc,r (Yn) +

j−1∑
k=1

k � g̃nvc,r (Yn + j − k)

)

× nλj

(
Yn + �nc�

n

)
, (3.9)

En5(g̃nvc,r , Yn + �nc�) := −
�√n�∑
j=2

( j∑
k=2

(
k

2

)
�2 g̃nvc,r (Yn − j + k)

)
nλ−j (c), (3.10)

En6(g̃nvc,r , Yn + �nc�) := −
�√n�∑
j=2

((
j

2

)
� g̃nvc,r (Yn) −

j−1∑
k=1

k � g̃nvc,r (Yn − j + k)

)

× n

{
λ−j

(
Yn + �nc�

n

)
− λ−j (c)

}
, (3.11)

En7(g̃nvc,r , Yn + �nc�) := −
∑

j≥�√n�

((
j

2

)
� g̃nvc,r (Yn) −

j−1∑
k=1

k � g̃nvc,r (Yn − j + k)

)

× nλ−j

(
Yn + �nc�

n

)
. (3.12)
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Our strategy for proving Theorem 1.1 is now to show that each of the terms Rn1, Rn2, and
Rn3 in (3.2) is of the desired order, O(n−(α+1)/2√log n); clearly, the treatment of Rn1, which
involves all the detail of En(g̃nvc,r , Yn + �nc�), is to be the most laborious.

We begin by collecting some of the properties of the functions g̃nvc,r , defined in (3.4), that
appear frequently. We write ‖f ‖∞ := supi∈Z |f (i)| and ‖f ‖l1 := ∑

i∈Z
|f (i)|.

Lemma 3.2. We have the following estimates:

1. ‖g̃nvc,r‖∞ ≤ ‖	g̃nvc,r‖∞ ≤ 1/(nvc);

2. ‖	g̃nvc,r (i)‖l1 ≤ 2/(nvc);

3. ‖	2g̃nvc,r (i)‖l1 ≤ 4/(nvc);

5. |(i − 〈nvc〉)g̃nvc,r (i)| ≤ h(i) + Po(nvc){r + �nvc�};
6. |(i − 〈nvc〉)	g̃nvc,r (i)| ≤ h(i + 1) + h(i) + 1/(nvc),

where, in parts 4 and 5 we have h(i) ≥ 0 for all i and ‖h(i)‖l1 ≤ 3.

Proof. For i ≤ −�nvc�, g̃nvc,r (i) = 0; for i > −�nvc�, we have g̃nvc,r (i) = gµ,s(j), where
j = i + �nvc�, µ = nvc, and s = r + �nvc�, and g = gµ,s satisfies the Stein–Chen equation

µg(j + 1) − jg(j) = 1{s}(j) − Po(µ){s}, j ≥ 0. (3.13)

Parts 1 and 2 now follow from the proof of Lemma 1.1.1 of Barbour et al. (1992), in which it
was shown that the function gµ,s is negative and strictly decreasing in {1, 2, . . . , s}, and positive
and strictly decreasing in {s +1, s +2, . . .}, with 	gµ,s(s) ≤ 1/(nvc). Part 3 is then immediate
from part 2.

For part 4, using the notation above and (3.13), we have

(i − 〈nvc〉)g̃nvc,r (i) = (j − µ)gµ,s(j)

= µ(gµ,s(j + 1) − gµ,s(j)) − 1{s}(j) + Po(µ){s}. (3.14)

This implies that

|(i − 〈nvc〉)g̃nvc,r (i)| ≤ {µ|	g(j)| + 1{s}(j)} + Po(µ){s},
which, with part 2, proves part 4. It also follows immediately from (3.14) that

|(i − 〈nvc〉)	g̃nvc,r (i)| ≤ h(i + 1) + h(i) + |g̃nvc,r (i + 1)|,
for the same function h(i) := {µ|	g(j)| + 1{s}(j)}, and part 5 follows on applying part 1.

As a result of these bounds, combined with Theorems 2.1 andA.2, we can establish two useful
bounds on expectations of differences of the g̃nvc,r (Yn + ·), under the equilibrium distribution.

Lemma 3.3. For any r, l ∈ Z, we have

1. E | � g̃nvc,r (Yn + l)| ≤ 2CA.2

n3/2vc

;

2. |E{�2g̃nvc,r (Yn + l)}| ≤ 2C�
2.1

n2vc

√
log n.
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Proof. For the first part, it is immediate that

E | � g̃nvc,r (Yn + l)| ≤ sup
i′∈Z

�n(i
′)

∑
i∈Z

| � g̃nvc,r (i)|.

By part 2 of Lemma 3.2 and (2.1), this is bounded in turn by dTV{�n, �n ∗ δ1} 2/(nvc), and
part 1 follows from Theorem A.2. For the second part,

|E{�2g̃nvc,r (Yn + l)}| =
∣∣∣∣ ∑

i∈Z

�g̃nvc,r (i − �nc� + s)(�n(i + 1) − �n(i))

∣∣∣∣
≤

(
sup
i′∈Z

|�n(i
′ − 1) − �n(i

′)|
) ∑

i∈Z

| � g̃nvc,r (i − �nc�)|

≤ sup
i∈Z

|�n(i − 1) − �n(i)|2(nvc)
−1,

where the last line uses part 2 of Lemma 3.2. Part 2 of the lemma now follows from Theorem 2.1.

Bounding a further set of expectations that appear repeatedly in the estimates first needs
another, technical lemma.

Lemma 3.4. Let µ be any probability distribution on Z. Suppose that s, f , and h are real
functions on Z such that ‖f ‖∞ < ∞, ‖	s‖∞ < ∞, and ‖h‖l1 < ∞, which also satisfy the
inequality

|s(i)f (i)| ≤ |h(i)| + k, I1 ≤ i < I2, (3.15)

for some integers I1 < I2 and some k < ∞. Then∣∣∣∣ I2∑
i=I1

µis(i) � f (i)

∣∣∣∣ ≤ ‖f ‖(I1,I2) ‖	s‖(I1,I2) + ‖h‖l1 sup
I1≤i<I2

|µi − µi+1| + kdTV(µ, µ ∗ δ1)

+ |µI1s(I1)f (I1 − 1)| + |µI2s(I2)f (I2)|,
where ‖g‖(I1,I2) := supI1≤i<I2

|g(i)|.
Proof. It is immediate that∣∣∣∣ I2∑

i=I1

µis(i) � f (i)

∣∣∣∣
≤

∣∣∣∣ I2−1∑
i=I1

{µi+1s(i + 1) − µis(i)}f (i)

∣∣∣∣ + |µI1s(I1)f (I1 − 1)| + |µI2s(I2)f (I2)|

≤
∣∣∣∣ I2−1∑

i=I1

{µi+1 − µi}s(i)f (i)

∣∣∣∣ +
∣∣∣∣ I2−1∑

i=I1

µi+1{s(i + 1) − s(i)}f (i)

∣∣∣∣
+ |µI1s(I1)f (I1 − 1)| + |µI2s(I2)f (I2)|.

Clearly, the second term is bounded by‖f ‖(I1,I2)‖	s‖(I1,I2). For the first term, in view of (3.15),
we have at most

I2−1∑
i=I1

{|µi+1 − µi | |h(i)|} + k

I2−1∑
i=I1

|µi+1 − µi |,

which is easily bounded by ‖h‖l1 supI1≤i<I2
|µi − µi+1| + kdTV(µ, µ ∗ δ1), in view of (2.1).
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Note that the argument also goes through for I1 = −∞ and I2 = ∞, in which case the final
two elements in the bound disappear.

Lemma 3.4 is combined with parts 4 and 5 of Lemma 3.2 to give the next corollary, which
is used as an ingredient in many of the estimates to be made.

Corollary 3.1. Suppose that |s(i)| ≤ |i − �nc�| for all |i| ≤ nδ. Then, for any 0 < δ′ ≤ δ and
all l ∈ Z such that |l| ≤ n(δ − δ′), we have

1. |E{s(Yn + l) � g̃nvc,r (Yn + l) 1[|Yn| ≤ nδ′]}|
≤ 1

nvc

sup
|i|≤nδ

|	s(i)| + 3C�
2.1

n

√
log n + CA.2

2n
√

vc

+ 2(C{A.1,1} + C{A.1,2}/δ′)
nvc

;

2. |E{s(Yn + l) �2 g̃nvc,r (Yn + l) 1[|Yn| ≤ nδ′]}|
≤ 2

nvc

sup
|i|≤nδ

|	s(i)| + 6C�
2.1

n

√
log n + CA.2

n3/2vc

+ 4(C{A.1,1} + C{A.1,2}/δ′)
nvc

.

Proof. We take �n ∗ δ−l for µ and either g̃nvc,r or �g̃nvc,r for f in Lemma 3.4, noting
that parts 4 and 5 of Lemma 3.2 give the appropriate counterparts of (3.15). The first three
elements appearing in the bound given by Lemma 3.4 are in turn bounded by using part 1 of
Lemma 3.2, Theorem 2.1, and Theorem A.2. The last two are bounded by part 1 of Lemma 3.2
and Theorem A.1.

Proof of Theorem 1.1. We are now in a position to undertake the proof of Theorem 1.1, for
which we need to bound the terms R1n, R2n, and R3n in (3.2) to order O(n−(α+1)/2√log n).
First, we show thatR3n is as small asO(n−3/2). This is because, from Barbour and Jensen (1989,
remark to Lemma 2.1), if X ∼ Po(µ) then

sup
k∈Z

P(X = k) ≤ 1

2
√

µ
.

Hence, and from Corollary A.1, it easily follows that

R3n = sup
k∈Z

P̂o(nvc){k} P[Yn < −�nvc�] = O

(
1

n
√

n

)
.

For the quantity R2n in (3.2), we just use part 2 of Lemma 3.3 to give

R2n := nvc sup
r∈Z

|E{�2g̃nvc,r (Yn + 1)}| ≤ 2C�
2.1n

−1
√

log n.

It thus remains to bound R1n. To do so, we consider in turn the expectations of the quantities
appearing in (3.3) and in (3.6)–(3.12).

Beginning with the elements of E{R(n, r; Yn)}, we first have

E

{
n

2

[
σ 2

(
Yn + �nc�

n

)
− σ 2(c)

]
� g̃nvc,r (Yn)

}
, (3.16)

which is of the form considered in part 1 of Corollary 3.1, with l = 0 and

s(i) := n

2

[
σ 2

(
i + �nc�

n

)
− σ 2(c)

]
.
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For |i| ≤ nδ/2 and n ≥ 2/δ, we have

|s(i)| ≤ 1
2 |i − 〈nvc〉|‖(σ 2)′‖δ and |s(i) − s(i − 1)| ≤ 1

2‖(σ 2)′‖δ,

whereas, for |i| > nδ/2, we have the simple bound

|s(i)| ≤ n

2

[
σ 2(c) +

∑
j∈Z

j2cj (1 + n−1|i|)
]
,

using assumption (A2). By Theorem A.1 and Corollary A.1, it follows that the latter element
contributes at most O(n−1) to |E{R(n, r; Yn)}|; for the former, Corollary 3.1 gives a bound of
order O(n−1√log n).

For the next term,

E

{
n

[
F

(
Yn + �nc�

n

)
− F(c) − Yn

n
F ′(c)

]
g̃nvc,r (Yn)

}
,

|g̃nvc,r (Yn)| is bounded by 1/(nvc), using part 1 of Lemma 3.2. The contribution from the part
|Yn| ≤ nδ is thus easily bounded by

1

vc

[‖F ′′‖δ n−2 E{Y 2
n 1[|Yn ≤ nδ]} + ‖F ′‖δn

−1],

and E{Y 2
n 1[|Yn ≤ nδ]} = O(n) by Theorem A.1, so that the whole contribution is of order

O(n−1). If |Yn| > nδ, assumption (A2) and Theorem A.1 guarantee a contribution of the same
order. The third term immediately yields

E |F ′(c)〈nvc〉g̃nvc,r (Yn)| ≤ |F ′(c)|
nvc

,

again of order O(n−1). All of these elements are of order O(n−1√log n), at least as small as
the order O(n−(1+α)/2√log n) stated in the theorem, and it thus remains to bound

|E{Enl(g̃nvc,r , Yn + �nc�)}| for 1 ≤ l ≤ 7.

For the term arising from (3.6), we have

E

{
n

2

[
F

(
Yn + �nc�

n

)
− F(c)

]
� g̃nvc,r (Yn)

}
,

which is of the form considered in part 1 of Corollary 3.1, with l = 0 and

s(i) := n

2

[
F

(
i + �nc�

n

)
− F(c)

]
,

and can be treated very much as (3.16) was, yielding a bound of the same order. For the term
arising from (3.7),

E

{�√n�∑
j=2

[ j∑
k=2

(
k

2

)
�2 g̃nvc,r (Yn + j − k + 1)

]
nλj (c)

}
,
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we can use part 2 of Lemma 3.3 to bound the expectations E{�2g̃nvc,r (Yn + j − k +1)}, giving
a contribution of at most

�√n�∑
j=2

1

6
j3cj n

2C�
2.1

n2vc

√
log n ≤ C�

2.1 sα

3vc

n−(1+α)/2
√

log n,

where we have also used assumption (A2).
The next term is from (3.8), and is more complicated. For its summands, we write[
−

(
j

2

)
� g̃nvc,r (Yn) +

j−1∑
k=1

k � g̃nvc,r (Yn + j − k)

]
n

{
λj

(
Yn + �nc�

n

)
− λj (c)

}
= −

(
j

2

)
� g̃nvc,r (Yn)n

{
λj

(
Yn + �nc�

n

)
− λj (c)

}

+
j−1∑
k=1

k � g̃nvc,r (Yn + j − k)n

{
λj

(
Yn + �nc� + j − k

n

)
− λj (c)

}

+
j−1∑
k=1

k � g̃nvc,r (Yn + j − k)n

{
λj

(
Yn + �nc�

n

)
− λj

(
Yn + �nc� + j − k

n

)}
=: E

(1)
n3 (Yn, j) + E

(2)
n3 (Yn, j) + E

(3)
n3 (Yn, j),

say. The term E
(1)
n3 (Yn, j) is of the form considered in part 1 of Corollary 3.1, with l = 0 and

s(i) := −n

(
j

2

){
λj

(
i + �nc�

n

)
− λj (c)

}
.

For |i| ≤ nδ/2,

|s(i)| ≤
(

j

2

)
|i − 〈nvc〉|‖λ′

j‖δ and |s(i) − s(i − 1)| ≤
(

j

2

)
‖λ′

j‖δ,

whereas, for |i| > nδ/2, we have the direct bound

|s(i)| ≤ ncj

(
j

2

)
(2 + n−1|i|),

using assumption (A2). From Corollary 3.1 and assumption (A4), the contribution from the
first part is of order

O

(
cj

(
j

2

)
n−1

√
log n

)
; (3.17)

the second part is also at most of this order, in view of Theorem A.1, Corollary A.1, and
part 2 of Lemma 3.2. Adding over j ≤ �√n�, this gives a total contribution to the quantity
|E{En3(g̃nvc,r , Yn + �nc�)}| of order O(n−1√log n).

For E
(2)
n3 (Yn, j), we now have a sum of terms of the form considered in part 1 of Corollary 3.1,

with l = j − k and

s(i) := nk

{
λj

(
i + �nc�

n

)
− λj (c)

}
.
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Supposing n to be large enough that
√

n ≤ nδ/2, we have

|s(i)| ≤ k‖λ′
j‖δ |i − 〈nvc〉| and |s(i) − s(i − 1)| ≤ k‖λ′

j‖δ

for |i| ≤ nδ/2, whereas, for |i| > nδ/2, we have the bound

|s(i)| ≤ nkcj (2 + n−1|i|).
Arguing very much as for (3.17), it thus follows that the total contribution to the quantity
|E{En3(g̃nvc,r , Yn + �nc�)}| is again of order O(n−1√log n).

Finally, for E
(2)
n3 (Yn, j), we again have a sum of terms. We first note that∣∣∣∣λj

(
i + �nc�

n

)
− λj

(
i + �nc� + j − k

n

)∣∣∣∣ ≤ n−1|j − k|‖λ′
j‖δ

for |i| ≤ nδ/2, and this leads to a contribution to |E{E(2)
n3 (Yn, j)}| of at most

j−1∑
k=1

k(j − k)‖λ′
j‖δ

nvc

≤ L1j
3cj

6nvc

, (3.18)

in view of part 1 of Lemma 3.2. For |i| > nδ/2, there is the bound

|E(2)
n3 (i, j)| ≤

j−1∑
k=1

k

vc

cj {2 + n−1(2|i| + j − k)},

giving∣∣∣∣E{
E

(2)
n3 (Yn, j) 1

[
|Yn| >

nδ

2

]}∣∣∣∣ ≤ j2cj

{
7

6
P

[
|Yn| >

nδ

2

]
+ n−1 E

{
|Yn| 1

[
|Yn| >

nδ

2

]}}
,

(3.19)
because j ≤ �√n�. Adding (3.18) and (3.19) over j ≤ �√n� gives a total contribution to
|E{E(2)

n3 (Yn, j)}| of order O(n−(1+α)/2), because of assumption (A2).
The term from (3.9) is much easier. For |i| ≤ nδ, we have the bound

λj

(
i + �nc�

n

)
≤ cj (1 + δ),

by assumption (A2), and E | � g̃nvc,r (Yn + l)| ≤ 2(CA.2/vc)n
−3/2 for any l, by Lemma 3.3.

Hence,

E

∣∣∣∣[−
(

j

2

)
� g̃nvc,r (Yn) +

j−1∑
k=1

k � g̃nvc,r (Yn + j − k)

]
nλj

(
Yn + �nc�

n

)
1[|Yn| ≤ nδ]

∣∣∣∣
≤ j2cj (1 + δ)

2CA.2

vc

n−1/2,

and summing over j ≥ �√n� gives a total contribution to (3.9) of at most

sα
2CA.2

vc

(1 + δ)n−(1+α)/2,
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in view of assumption (A2). For |Yn| > nδ, the j -contribution is bounded by

j2cj‖ � g̃nvc,r‖∞ E{(n + |Yn|) 1[|Yn| ≥ nδ]} ≤ 2j2cj (C{A.1,1} + C{A.1,2})
nvc

,

in view of part 1 of Lemma 3.2 and Theorem A.1, and summing over j ≥ �√n� gives a
contribution of order O(n−1−α/2). Hence, the complete contribution from (3.9) is of order
O(n−(1+α)/2).

The remaining terms (3.10)–(3.12) are treated in exactly the same way as those in (3.7)–(3.9).
In all, the largest order of any of the terms in (3.6)–(3.12) is O(n−(1+α)/2√log n), and since
the other terms were of order O(n−1√log n), Theorem 1.1 is proved.

Appendix A

The following results from Socoll and Barbour (2009) are used in the proofs.

Theorem A.1. (Socoll and Barbour (2009, Theorem 2.1).) Under assumptions (A1)–(A4), for
all large enough n, the process Zn has an equilibrium distribution �n, and

E{|n−1Zn − c| 1[|n−1Zn − c| > δ]} ≤ C{A.1,1}n−1,

E{(n−1Zn − c)2 1[|n−1Zn − c| ≤ δ]} ≤ C{A.1,2}n−1,

for δ as in assumption (A3) and constants C{A.1,1} and C{A.1,2}; as before, in such expressions,
Zn is used to denote a random variable having equilibrium distribution �n.

Corollary A.1. (Socoll and Barbour (2009, Corollary 2.5).) Under assumptions (A1)–(A4),
for any fixed δ′ such that 0 < δ′ ≤ δ, there exists CA.1(δ

′) < ∞ such that

P[|n−1Zn − c| > δ′] ≤ CA.1(δ
′)n−1.

Lemma A.1. (Socoll and Barbour (2009, Lemma 3.1).) Under assumptions (A1)–(A4), for
any U > 0 and 0 < η ≤ δ, there exists a constant KU,η < ∞ such that

P
[

sup
t∈[0,U ]

|Zn(t) − nc| > nη
∣∣ Zn(0) = i

]
≤ n−1KU,η,

uniformly in |i − nc| ≤ (nη/2) exp{−‖F ′‖δU}.
Theorem A.2. (Socoll and Barbour (2009, Theorem 3.2).) Under assumptions (A1)–(A4),
there exists a constant CA.2 > 0 such that

dTV{�n, �n ∗ δ1} ≤ CA.2n
−1/2,

where �n ∗ δ1 denotes the unit translate of �n.

Finally, we shall use the following result, which was used in Socoll and Barbour (2009)
to prove the previous theorem; see, for example, Equation (3.7) in the proof of Socoll and
Barbour (2009, Theorem 3.2).

Lemma A.2. Under assumptions (A1)–(A4), for any U ≥ 1, there exists a constant KU < ∞
such that

dTV{L(Zn(U) | Zn(0) = i), L(Zn(U) | Zn(0) = i) ∗ δ1} ≤ KUn−1/2,

uniformly in |i − nc| ≤ nδ/2.
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