
18

Quantum linear system solvers

The authors are grateful to Dong An for reviewing this chapter.

Rough overview (in words)

The goal is to solve linear systems of equations with quantum subroutines.

More precisely, a quantum linear system solver (QLSS) takes as input an N×N

complex matrix A together with a complex vector b of size N, and outputs a

pure quantum state |x̃⟩ that is an ε-approximation of the normalized solution

vector of the linear system of equations Ax = b. In basic versions, QLSSs do

so by loading the normalized entries of the matrix A and the normalized entries

of the vector b into a unitary quantum circuit, either from a quantum random

access memory (QRAM) data structure, or—if the structure of A and b allows

for this—by efficiently computing the corresponding entries on the fly.

Crucially, the number of algorithmic qubits of the linear system solver itself

is only roughly log2(N), which is exponentially smaller than the matrix size.

While for general systems the number of QRAM qubits still scales with the

matrix/vector size, QRAM encodings can be made more space efficient for

sparse systems or can even be avoided when the corresponding entries are

efficiently computable. The complexity of QLSSs depends on the condition

number κ(A) =
∥∥∥A−1

∥∥∥ · ∥A∥ of the matrix A, and one then aims to give circuits

with minimal quantum resource costs—such as ancilla qubits, total gate count,

circuit depth, etc.—in terms of κ(A) and the desired accuracy ε ∈ (0, 1).

Rough overview (in math)

There are different standard input models on how the classical data from (A, b)

is loaded into the quantum processing unit, which are equivalent up to small

polylogarithmic overhead for general matrices. We state the complexities in

270

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.021
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 09 Aug 2025 at 04:39:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.021
https://www.cambridge.org/core

18. Quantum linear system solvers 271

terms of query access of a unitary Ub preparing the n = ⌈log2(N)⌉-qubit pure

quantum state |b⟩ = ∥b∥−1 · ∑N
i=1 bi|i⟩ for b = (b1, . . . , bN), where ∥·∥ for vec-

tor arguments denotes the standard Euclidean norm, together with an (α, a, 0)-

block-encoding UA of the matrix A. The QLSS problem is then stated as fol-

lows: for a triple (UA,Ub, ε) as above, the goal is to create an n-qubit pure

quantum state |x̃⟩ such that ∥∥∥∥|x̃⟩ − |x⟩
∥∥∥∥ ≤ ε

with

|x⟩ =
∑N

i=1 xi|i⟩∥∥∥∑N
i=1 xi|i⟩

∥∥∥
defined by Ax = b with x = (x1, . . . , xN), (18.1)

by employing as few times as possible the unitary operators UA,Ub,U
†
A
,U
†
b
,

controlled versions of UA,Ub,U
†
A
,U
†
b
, and additional quantum gates on poten-

tially additional ancilla qubits. An alternative (and closely related) error metric

studied in some works is based on the trace norm, requiring 1
2
∥|x⟩⟨x|− |x̃⟩⟨x̃|∥1 ≤

ε.

One way to think of the QLSS problem is that we seek the matrix inverse

A−1, and that this can be implemented by, for example, quantum singular value

transformation (QSVT) acting on A (via its block-encoding) with a polyno-

mial approximation of the inverse function on the interval [∥A∥/κ(A), ∥A∥]. The

complexity of the corresponding scheme thereby depends on the degree of the

polynomial needed for a good approximation of the inverse function on the

relevant interval, and as such on the condition number κ(A), the normalization

factor α, and the approximation error ε of the resulting QLSS. In fact, it turns

out that the complexity of most quantum algorithms depends on the following

combined quantity

κ′(A) := κ(A) · α

∥A∥ = α · ∥A
−1∥,

which is no smaller than κ(A), because α ≥ ∥A∥ due to the unitarity of the

block-encoding. Note that in QRAM-based implementations for dense matri-

ces A, one naturally gets α = ∥A∥F , which then leads to linear complexity

dependence on the Frobenius norm ∥A∥F .

As noted in [1039, 248], in general, we need not assume that A is invertible

nor that it is a square matrix, but can instead use the Moore–Penrose pseu-

doinverse A+ of the matrix to solve the regression problem Eq. (18.1) in a

least-squares sense, in which case one needs to appropriately change the defi-

nition of κ(A) to ∥A+∥ · ∥A∥. In fact, the above QSVT-based approach directly

solves this more general version of the problem [431].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.021
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 09 Aug 2025 at 04:39:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.021
https://www.cambridge.org/core

272 18. Quantum linear system solvers

Dominant resource cost (gates/qubits)

The performance of different QLSSs is typically compared based on how their

query complexity (to UA and Ub) grows with the condition number, where a

lower bound of Ω(κ(A)) is known; see [500, 814]. Methods achieving O(κ′(A))

dependence are termed “optimal” and methods achieving κ′(A) polylog(κ′(A))

are termed “near-optimal.”1

The first optimal method was given in [313] (for invertible matrices), which

does not directly employ the QSVT for the inverse function. Instead, it is based

on discrete adiabatic methods together with quantum eigenstate filtering based

on the QSVT for a minimax polynomial [689]. In particular, the adiabatic por-

tion prepares an “ansatz” state |xans⟩ for which |⟨xans|x⟩|2 ≥ 1/2, using at most

O(κ′(A)) (controlled) queries to UA and Ub. Then, the eigenstate filtering step

refines this state by approximately projecting it onto |x⟩: one obtains the state

|x̃⟩ that is ε-far from |x⟩ at additional query cost O(κ′(A) log(1/ε)). The pro-

jection succeeds with probability p ≥ 1/2, so the whole procedure must be re-

peated no more than twice on average. Overall, the expected number of queries

made by the algorithm is Q controlled queries to each of UA and U
†
A

and 2Q

queries to each of Ub and U
†
b
, where

Q = κ′(A)
(
C + D ln(2ε−1)

)
+ o(κ′(A)) = O

(
κ′(A) log(ε−1)

)
. (18.2)

Here, o(κ′(A)) denotes terms growing sublinearly in κ′(A), and C,D are con-

stants. The algorithm operates on n + O(1) qubits (n + 5 in the case of [313]),

plus the additional qubits used for the block-encoding, discussed in more de-

tail below. There is an additional constant quantum gate complexity for each

query to UA and Ub. For the discrete adiabatic method in [313], the constant C

can be rigorously bounded as C ≤ 117,2352 and the constant D is at most 2.

Note that when C is this large, the corresponding term will actually dominate

the Dκ′(A) log(ε−1) term for practical scenarios.

Subsequent work has given alternative methods that achieve optimal asymp-

totic complexity [325, 327]. Reference [325] achieves this by a small modifica-

tion to and improved analysis of the adiabatic path-following method of [964].

Meanwhile, [327] replaces the step of ansatz state preparation via adiabatic

methods with a simpler norm-estimation step, where one seeks a constant-

1 Regarding the optimal ε dependence, it has additionally been claimed [313] that a complexity
of O(κ log(1/ε)) is jointly optimal in both κ and ε, based on forthcoming work by Harrow and
Kothari; see also [314, Appendix A].

2 This number is derived from applying [313, Theorem 9] with

√
2 −
√

2 × 44,864 × κ steps,
each of which incurs one call to the block-encoding, such that the output is guaranteed to have

overlap at least 1/
√

2 with the ideal state. Eigenstate filtering then succeeds with probability at
least 1/2; accounting for the need to repeat twice on average, one arrives at a constant
117,235, matching [572, Eq. (L2)].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.021
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 09 Aug 2025 at 04:39:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.021
https://www.cambridge.org/core

18. Quantum linear system solvers 273

factor approximation of the Euclidean norm ∥x∥, following that with an eigen-

state filtering–like step. An optimized version of this approach was reported to

have complexity following Eq. (18.2) with C = 56 and D = 1.05. Additionally,

this method does not require A to be invertible, but does require b to be in the

column space of A [327].

Other known QLSSs with suboptimal asymptotic complexities are based

on other versions of adiabatic ansatz state preparation [964, 31, 689], QSVT

[431, 744], linear combination of unitaries (LCU) [282], or variable-time am-

plitude amplification (VTAA) [26, 29, 248]. While the known bounds on the

asymptotic complexities of these methods are slightly worse, it remains open

if finite-size performance could be competitive (see, e.g., [572, 327]). More-

over, to date, the VTAA-based algorithms are the only variants that are proven

to solve the generic least-squares (pseudoinverse) problem while achieving a

near-optimal asymptotic scaling [248].

Note that if the matrix A is given in a classical data structure in the compu-

tational basis, then standard ways to create the block-encoding UA make use

of a QRAM structure. For general (dense) matrices A, the requirement is then

size O(N2) (number of qubits) with circuit depth O(n) for each query—or al-

ternatively, as few as O(n) ancilla qubits could suffice, but at the expense of us-

ing O(N2) circuit depth [496, 296]. Initializing the depth-efficient QRAM data

structure will in general also take O(N2) time. However, if A is sparse, either

in the computational basis [349], Pauli basis [1011], or any orthonormal basis

with efficiently implementable basis transformation, there are more efficient

direct constructions for block-encoding A. Moreover, for Pauli basis access,

there exist randomized QLSSs with complexity scaling as the ℓ1-norm of the

Pauli coefficients [1022], completely avoiding the use of block-encodings (and

as such QRAM and ancilla qubits).

Caveats

QLSSs are an important subroutine for a variety of application areas of quan-

tum algorithms. However, it is crucial to keep track of all the quantum and

classical resources required and to compare these to state-of-the-art classical

methods. In particular, the following factors should be taken into account:

• The classical precomputation complexities for the eigenstate filtering rou-

tine are neglected, but can be kept efficient in practice [356].

• The rigorous upper bound on the size of the complexity constant C has been

reduced by several orders of magnitude [327] since the first optimal QLSS

was given in [313], but nevertheless remains larger than ideal for usage in

applications where QLSS plays a heavy role. However, numerical investiga-

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.021
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 09 Aug 2025 at 04:39:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.021
https://www.cambridge.org/core

274 18. Quantum linear system solvers

tions of two adiabatic methods on small random matrices gave evidence that

the empirical performance of those methods is significantly better than the

rigorous upper bounds [314].

• When needed, the QRAM cost can be prohibitive, if it requires the full over-

head of quantum error correction and fault tolerance [496], especially for

QRAMs of maximum size O(N2) qubits, required for general (dense) matri-

ces.

• In the formulation of the QLSS problem, the pure quantum state |x⟩ corre-

sponds to the normalized solution vector of the linear system Ax = b. While

the normalization factor ∥x∥ can be obtained as well, this comes at the price

of added query complexity scaling as O(κ′(A)ε−1 log(ε−1)) [327] (see also

[248, Corollary 32]). This nearly achieves the lower bound of Ω(κ(A)ε−1)

[327] (note that norm estimation necessarily has worse ε dependence than

the QLSS itself).

• QLSSs do not produce a classical description of the solution vector x

or an approximation thereof, but rather the pure quantum state |x̃⟩. In

order to obtain a classical approximation of the vector x, one needs to

combine QLSSs with pure state quantum tomography, which can be

performed using O(Nε−2) samples. If poly(n) query-cost QRAM is also

available, then the complexity can be quadratically improved in terms of the

precision using optimized pure state tomography [49], or alternatively the

overall complexity may be further improved using iterative refinement to

O(Ns2 + Nsκ2(A)/∥A∥) · polylog(N/ε), as described in [772], where s is the

maximum number of nonzero elements of A in any row or column. In the

special case of Laplacian, or more generally symmetric, weakly diagonally

dominant (SDD) matrices, [50] gives a quantum algorithm with complexity

Õ(
√

Ns/ε) that outputs an ε-approximate solution x̃ with respect to the

A-induced norm. (Measuring error in this norm enables their algorithm

not to have a condition number dependence.) The algorithm uses QRAM

and provides a subquadratic speedup compared to the classical complexity

O(N log(1/ε)), but uses rather different techniques compared to standard

QLSS algorithms [500].

• The overall complexities Õ(Nκ′(A)ε−1) and O(Ns2 + Nsκ2(A)/∥A∥) ·
polylog(N/ε) (where we generously allow poly(n) query-cost QRAM) to

obtain a classical description of the solution can be compared to classical

textbook Gaussian elimination–based computation, which leads to complex-

ity O(N3) or more precisely O(Nω) with ω ∈ [2, 2.372) denoting the matrix

multiplication exponent. Further, QLSSs should also be compared with

state-of-the-art randomized solvers. For example, the randomized Kaczmarz

method [959] with standard classical access to the matrix elements returns

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.021
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 09 Aug 2025 at 04:39:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.021
https://www.cambridge.org/core

18. Quantum linear system solvers 275

an ε-approximation of the vector x, while scaling as O(sκ2
F

(A) log(ε−1)) for

s row-sparse matrices and κF(A) =
∥∥∥A−1

∥∥∥ · ∥A∥F . Moreover, if A is s-sparse

and positive semidefinite (PSD), then using the conjugate gradient method

one can obtain a solution in time Õ(Ns
√
κ(A) log(ε−1)) [481, Chapter

10.2], which can be generalized to the least-squares problem (and thus

non-Hermitian matrices) at the cost of a quadratically worse condition

number dependence O(Nsκ log(κ(A)/ε)) by considering the modified

equation A†Ax = A†b. As such, it seems that the QLSS may not provide

a superquadratic speedup when a full classical solution is to be extracted,

and even subquadratic speedups seem to be limited to a narrow parameter

regime.

• Quantum-inspired methods [271, 433] that start from a classical data struc-

ture intended to mimic QRAM—allowing one to sample from probability

distributions with probabilities proportional to the squared magnitudes of

elements in a given row of A—give samples from an ε-approximation to

the solution vector in (N-independent) complexity O(κ4
F

(A)κ2(A)ε−2) [924,

433], and can be used to compute an approximate solution by repeated sam-

pling. Note that while the required data structure is classical, it might still

be prohibitively expensive to build when the matrix A is huge.

• When it comes to classical methods, solvers that depend on the condition

number are useful in practice whenever combined with preconditioners

[888]. However, the performance of preconditioners in the quantum setting

(see, e.g., [295, 925, 990, 83]) is often only heuristic, or applies only to

restricted situations. This topic would benefit from further exploration.

Example use cases

• Quantum interior point methods in convex optimization and corresponding

applications [610, 771].

• Quantum machine learning applications [1039, 866].

• Solving differential equations and corresponding applications, for example,

for the finite element method that does not require a tomography step [777].

Further reading

• Original QLSS (termed HHL) [500].

• For an overview discussion of QLSS, see [31].

• Optimal-in-κ QLSSs are given in [313, 327, 325].

• There are also known (polynomial) speedups in case one needs a full clas-

sical description of the output vector in linear equation solving and in some

regression variants [772, 266].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.021
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 09 Aug 2025 at 04:39:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.021
https://www.cambridge.org/core

