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PREDICTION OF FRACTIONAL BROWNIAN MOTION
WITH HURST INDEX LESS THAN 1/2

V.V. ANH AND A. INOUE

We give a proof based on an integral equation for an explicit prediction formula for
fractional Brownian motion with Hurst index less than 1/2.

1. INTRODUCTION

A fractional Brownian motion with Hurst index H € (0,1) is a real centred Gaussian
process (BJJ(£) : t € R) with autocovariance

E[BH(t)BH(s)} =l(\t\™ + \8\™-\t-s\™) (t,8€R).

The case H = 1/2 corresponds to the ordinary Brownian motion. Starting from zero,

fractional Brownian motion has stationary increments satisfying E \{BH{t) — BH{s))

= \t — s\2H. For H € (0,1) \ {1/2}, fractional Brownian motion has the following

asymptotic behaviour:

E[{BH(t + 1) - BH(t)}{BH(s + 1) - BH(s)}]

~H(2H-l){t-s)2"-2 (t-j-KX5).

Fractional Brownian motion was discovered by Kolmogorov [4] but much of recent works
on fractional Brownian motion originate from the seminal paper [6] by Mandelbrot and
Van Ness. We refer to Samorodnitsky and Taqqu [9, Sections 7.2 and 14.7] for this back-
ground. Fractional Brownian motion has been widely used to model various phenomena
in hydrology, network traffic, finance et cetera, which exhibit long-range dependence.

Let to, t\, and T be real constants such that

- c o < - t 0 < 0 < tx < T < oo, t0 < t\.

The prediction of fractional Brownian motion is concerned with the computation of

(1.1) E\BH{T) I a(BH{s) : - t o ^ s ^
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322 V.V. Anh and A. Inoue [2]

and

(1-2)

and their representation using (BH(s) : -t0 < s ^ ti) and {BH(s) : - o o < s ^ ti),
respectively. The first problem is the prediction from a finite part of time, while the second
one is the prediction from an infinite part of time. The problem (1.2) with 0 < H < 1/2
was solved by Yaglom [10], while both problems (1.1) and (1.2) with 1/2 < H < 1
were solved by Gripenberg and Norros [3]. Nuzman and Poor [8] introduced a new
approach based on Lamperti's transformation, and considered all the cases including the
remaining problem (1.1) with 0 < H < 1/2. The present paper gives a new proof based
on an integral equation for (1.1) with 0 < H < 1/2.

The solution of Gripenberg and Norros [3] to (1.1) with 1/2 < H < 1 is of the form

(1.3) E[BH{T)\a(BH(s):-to^s^t1)^ = BH{h) + J' f{to,tuT,s)dBH(s).

In view of this solution in terms of a stochastic integral with respect to fractional Brow-
nian motion, one tends to believe that the solution to (1.1) with 0 < H < 1/2 would
also be of the form (1.3). However, this is not the case. The solution to (1.1) with
0 < H < 1/2 is of the form

(1.4) E[BH(T) I a(BH(s) : -t0 < s ̂  h)] = J ' f(t0,tuT, s)BH(s)ds,

that is, in terms of an elementary integral.

In our method for obtaining a solution to (1.1) with 0 < H < 1/2 of the form (1.4),
we reduce the problem to a manageable computation by the following equality for / in
(1.4):

(1-5) I' f(to,tl,T,s)ds=l.
J

It is found in [l] that the same equality as (1.5) holds for more general processes than
fractional Brownian motion with 0 < H < 1/2.

The solution to (1.1) in the case 0 < H < 1/2 is given by the following theorem.

THEOREM 1 . Let t0, tx and T be as above. We assume 0 < H < 1/2. Tien

(1.6) \ {

f- (T -sin(7r((l/2) - H)) f- (T - U\W)+(tQ + n W ) i

((l/2)g)rinfr((l/2)H)) f f uH_{l/2) _ „
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The solution to (1.1) with 0 < H < 1/2 was first obtained by Nuzman and Poor

[8], and the theorem above is essentially the same as their result (Theorem 4.4 in [8])

except for one point. Unlike the theorem above, they do not assume that the interval

corresponding to [—t0, ti] includes the origin. However, their argument on this point does

not seem to be complete. In our notation, they claimed that observation of Bn(t) on

[-*o,*i] is equivalent to that of Bn(t — t0) - Bn{-t0) on [0, t0 + ti] (see Section 3.3 in

[8]). However, this is true only if Bn(-to) is a priori known, that is, t0 = 0, and thus

BH{-to) = 0. We also remark that, in [8, Theorem 4.4], the factor n'1 s in(7r(( l /2)-H))

or 7T"1 cos(nH) is missing.

In [3], the solution to (1.1) with 1/2 < H < 1 is obtained by reducing the problem

to the following type of singular integral equation for the prediction kernel:

(1.7) f F(t)\s-t\-adt =
Jo

In this paper, we'obtain (1.6) by reducing the problem to the following type of equation

(that is, (2.9) below) for the prediction kernel:

(1.8) I F(t)\s-t\-asgn{s-t)dt = f{s) (0 < s < 1), 0 < a < 1.
Jo

It is interesting to note that both (1.7) and (1.8) were solved in the same paper by

Lundgren and Chiang [5] (though the solution to the first equation (1.7) had already

been given by Carleman [2]).

2. P R O O F OF THEOREM 1

As stated in Section 1, we look for a nonnegative measurable function h(t)

= h(t; t2, ts) on (0, t2) satisfying

(2.1) / h{t)dt = l,
Jo

(2.2) E\BH(T) I tr(BH{s) : -*„ ^ * < *i)l = / '* (« + to)BH(t) dt,
1 J ./-to

where the positive constants t2 and t3 are defined by

t2 .— Eo + ' l i ' 3 •— •* — *1-

These facts are essential in deriving the manageable form (1.8), hence finally obtaining

(1.6).

The equality (2.2) implies

(2.3) E \{B{T) - f1 h(t + to)BH(t) dt\BH(s)] = 0 (-*„< a <
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or

(2.4) r h(t + to) (\t\2H + \s\2H - |s - t\2H) dt
J-U>

= T2H + \s\2H - (T - s)2H {-t0 < s < <i).

From this and (2.1), we obtain

(2.5) / h(t + to)(\t\
2H-\s-t\2H)dt = T2H-{T-s)2H (-to<s<ti).

J-to

Since we have, for —to < s < ti,

rt\ ra /•«!

J-U> J-to Js

formal differentiation of both sides of (2.5) with respect to s yields

pt\
(2.6) / h{t + to)\s-t\2H'1sga(s-t)dt = -(T-s)2M~1 {-t0 < s < U)

J-to

(the validity of this formal calculation should not be of concern at this stage). We define
a 6 (0,1), a £ (0,oo), and g(t) = g{t;t2,t3), respectively, by

(2.7) a := 1 - 2# , a := t3/t2,

(2.8) g(t) := t2h(t2{\ -t)) {0 < t < 1).

Then, by the substitutions t' = (t\ — t)/t2 and s' — (ti — s)/t2, we obtain

(2.9) f g{t)\s - t |-°sgn(s -t)dt = (a + s)~a (0 < s < 1).
Jo

By [5, (18)], the general solution g(t) to (2.9) is given by

(2.10) g(t) = Clt
{a/2)-l(l - *)(°/2>-1 + go(t) (0 < t < 1),

where c\ is an arbitrary constant and go{t) is given by, for 0 < t < 1,

By the change of variables v = u/s, we have

o \ a
F(a/2)2

a
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where F(a, b; c; z) — 2-^1(0, b\ c; z) is the hypergeometric function. Thus, for 0 < t < 1,

, ,„ , sM . * t o f f l | ^ jf S-(S - „ '— (*) V(* f +.;. + .; -1) *.
/•I r«,

From (2.11), we easily find that / go(t)dt = 0. Since we have / h(t)dt
/•1 Jo Jo

= / g(t) dt, the condition (2.1) implies
Jo

We now obtain an explicit expression for go(t) using (2.11). By the formulas

£ [zaF(a, b; c; z)] = aza~lF{a + 1,6; c; z),

F(a, 6; c; z) = (1 - z)c"a-6F(c - a, c - 6; c; z),

we see that

X \ [ - ) F(a,- + l ;o + l ; — ) = - ( - ) (1 + - )

On the other hand, by the change of variables v — (u — t)/t, we have

t°/2 J° u-°(u - t )^ 2 ' - 1 du = / ( ^ ) , (*< ^ 1),

where
/(x) := / (1 + ^ - V 0 ' 2 ) - 1 ^ (1 ^ 0).

Jo
/
o

We have
£ — ) = -t(«/2)-lSl-«(S - f)(°/2)-l (0

t )
Hence, by integration by parts, we obtain, for 0 < t < 1,

(2.13) go(t) = _ ^ £ ) O - F ( a i £ + l; a + 1; -

where

J t \ t ) a \ a
sin(7ra/2) Z"1 r d , / s - t\> a /s\<*~1 / s\-(a/2)-i

—27— / \dif\-r)fc\i) v1 + J ds

By the change of variables u = ( l - s ) / ( l - t ) and the equality

/•1
/ t"-l(l-t)"-l(c-t)-"-/dt = c-''(c-l)-'1B(fi,u) (M,I/>0, O l )
Jo
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(see [7, Lemma 2.2 (i)]), we see that, for 0 < t < 1,

sin(7TQ/2) / t t \ H

)
TQ/2) /tt\H«ffl/l -t\°/2 1

w \l) \a+V a+T

From this as well as (2.10) and (2.13), the general solution g(t) to the equation (2.9) is
given by

S(t) - «,«•">-(! - «)<•>«-, + SfeS
7T

for 0 < t < 1, where C2 is an arbitrary constant.

By (2.12), under the condition (2.1), c2 is given by

sin(

However, since we have, f o r O < / z < l , i > > 0 and c > 1,

/" f - l ( l - t ) " " 1 ^ - f ) -" -" + 1 dt
o

ic)v)

(see [7, Lemma 2.2 (iii)]), we see that

Jo

Thus, using (2.7) and (2.8), we finally obtain, for -t0 < t < ti,

_ sin(7r((l/2) -H)),T-U\('/»)+g / < V 1 / 2 ' ^ 1

+ (d/2) -H) ^(,((1/2) - g ) ) r /•er-w/erH*) ^_( i / ? ) _ ^ i
Trt2 [JQ J

which implies (1.6).

Now, for a rigorous proof, we may start with (2.14). Then we have (2.6) and (2.1)
by the arguments given above. From (2.6), we see (rigorously this time) that
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where

(j>{s) := f \ ( t + to)(\t\
2H - \ s - t\2H) dt (s € R ) .

J-to
Since 0(0) = 0, we get (2.5). Finally, from (2.5) and (2.1), we obtain (2.4) or (2.3) or
(1.6). This completes the proof of Theorem 1.

3. REMARKS

1. From the proof in Section 2, we see that

I I

gi{t)\s - t|-asgn(s -t)dt={a + s)~a (0 < s < 1).
Jo

This implies the following equality: for a > 0, 0 < a < 1 and 0 < s < 1,

rl t(a/2)-l(1_t\a/2

L '• - 1 - * * -> * - ra°W2)-'<°+1»-/2<«+•>-*•
2. Since E \BH(s)2] = \s\H, we easily find that the second term on the right-hand

side of (1.6) tends to zero, as t0 -» oo, in L2(Q, T, P), where (f2, T, P) is the probability
space on which (BH(t)) is defined. Hence, by letting t0 -> oo in (1.6), we obtain the
following prediction formula for fractional Brownian motion with H £ (0,1/2) from the
infinite past:

(3.1) E[BH(T)\a(BH(s):-oo<s^t1)]

This result was given in Yaglom [10, (3.41)].
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