PREDICTION OF FRACTIONAL BROWNIAN MOTION WITH HURST INDEX LESS THAN $1 / 2$

V.V. Anh and A. Inoue

We give a proof based on an integral equation for an explicit prediction formula for fractional Brownian motion with Hurst index less than $1 / 2$.

1. Introduction

A fractional Brownian motion with Hurst index $H \in(0,1)$ is a real centred Gaussian process ($B_{H}(t): t \in \mathbf{R}$) with autocovariance

$$
E\left[B_{H}(t) B_{H}(s)\right]=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right) \quad(t, s \in \mathbf{R})
$$

The case $H=1 / 2$ corresponds to the ordinary Brownian motion. Starting from zero, fractional Brownian motion has stationary increments satisfying $E\left[\left(B_{H}(t)-B_{H}(s)\right)^{2}\right]$ $=|t-s|^{2 H}$. For $H \in(0,1) \backslash\{1 / 2\}$, fractional Brownian motion has the following asymptotic behaviour:

$$
\begin{aligned}
& E\left[\left\{B_{H}(t+1)-B_{H}(t)\right\}\left\{B_{H}(s+1)-B_{H}(s)\right\}\right] \\
& \sim H(2 H-1)(t-s)^{2 H-2} \quad(t-s \rightarrow \infty)
\end{aligned}
$$

Fractional Brownian motion was discovered by Kolmogorov [4] but much of recent works on fractional Brownian motion originate from the seminal paper [6] by Mandelbrot and Van Ness. We refer to Samorodnitsky and Taqqu [9, Sections 7.2 and 14.7] for this background. Fractional Brownian motion has been widely used to model various phenomena in hydrology, network traffic, finance et cetera, which exhibit long-range dependence.

Let t_{0}, t_{1}, and T be real constants such that

$$
-\infty<-t_{0} \leqslant 0 \leqslant t_{1}<T<\infty, \quad t_{0}<t_{1}
$$

The prediction of fractional Brownian motion is concerned with the computation of

$$
\begin{equation*}
E\left[B_{H}(T) \mid \sigma\left(B_{H}(s):-t_{0} \leqslant s \leqslant t_{1}\right)\right] \tag{1.1}
\end{equation*}
$$

Received 6th April, 2004

Partially supported by the Australian Research Council grant A10024117.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.
and

$$
\begin{equation*}
E\left[B_{H}(T) \mid \sigma\left(B_{H}(s):-\infty<s \leqslant t_{1}\right)\right] \tag{1.2}
\end{equation*}
$$

and their representation using ($B_{H}(s):-t_{0} \leqslant s \leqslant t_{1}$) and ($B_{H}(s):-\infty<s \leqslant t_{1}$), respectively. The first problem is the prediction from a finite part of time, while the second one is the prediction from an infinite part of time. The problem (1.2) with $0<H<1 / 2$ was solved by Yaglom [10], while both problems (1.1) and (1.2) with $1 / 2<H<1$ were solved by Gripenberg and Norros [3]. Nuzman and Poor [8] introduced a new approach based on Lamperti's transformation, and considered all the cases including the remaining problem (1.1) with $0<H<1 / 2$. The present paper gives a new proof based on an integral equation for (1.1) with $0<H<1 / 2$.

The solution of Gripenberg and Norros [3] to (1.1) with $1 / 2<H<1$ is of the form

$$
\begin{equation*}
E\left[B_{H}(T) \mid \sigma\left(B_{H}(s):-t_{0} \leqslant s \leqslant t_{1}\right)\right]=B_{H}\left(t_{1}\right)+\int_{-t_{0}}^{t_{1}} f\left(t_{0}, t_{1}, T, s\right) d B_{H}(s) \tag{1.3}
\end{equation*}
$$

In view of this solution in terms of a stochastic integral with respect to fractional Brownian motion, one tends to believe that the solution to (1.1) with $0<H<1 / 2$ would also be of the form (1.3). However, this is not the case. The solution to (1.1) with $0<H<1 / 2$ is of the form

$$
\begin{equation*}
E\left[B_{H}(T) \mid \sigma\left(B_{H}(s):-t_{0} \leqslant s \leqslant t_{1}\right)\right]=\int_{-t_{0}}^{t_{1}} f\left(t_{0}, t_{1}, T, s\right) B_{H}(s) d s \tag{1.4}
\end{equation*}
$$

that is, in terms of an elementary integral.
In our method for obtaining a solution to (1.1) with $0<H<1 / 2$ of the form (1.4), we reduce the problem to a manageable computation by the following equality for f in (1.4):

$$
\begin{equation*}
\int_{-t_{0}}^{t_{1}} f\left(t_{0}, t_{1}, T, s\right) d s=1 \tag{1.5}
\end{equation*}
$$

It is found in [1] that the same equality as (1.5) holds for more general processes than fractional Brownian motion with $0<H<1 / 2$.

The solution to (1.1) in the case $0<H<1 / 2$ is given by the following theorem.
Theorem 1. Let t_{0}, t_{1} and T be as above. We assume $0<H<1 / 2$. Then

$$
\begin{align*}
& E {\left[B_{H}(T) \mid \sigma\left(B_{H}(s):-t_{0} \leqslant s \leqslant t_{1}\right)\right] } \tag{1.6}\\
&=\frac{\sin (\pi((1 / 2)-H))}{\pi} \int_{-t_{0}}^{t_{1}}\left(\frac{T-t_{1}}{t_{1}-s}\right)^{(1 / 2)+H}\left(\frac{t_{0}+s}{T+t_{0}}\right)^{(1 / 2)-H} \frac{1}{T-s} B_{H}(s) d s \\
&+\frac{((1 / 2)-H) \sin (\pi((1 / 2)-H))}{\pi\left(t_{0}+t_{1}\right)} {\left[\int_{0}^{\left(T-t_{1}\right) /\left(T+t_{0}\right)} u^{H-(1 / 2)}(1-u)^{-2 H} d u\right] } \\
& \times \int_{-t_{0}}^{t_{1}}\left[\left(\frac{t_{0}+t_{1}}{t_{0}+s}\right)\left(\frac{t_{0}+t_{1}}{t_{1}-s}\right)\right]^{H+(1 / 2)} B_{H}(s) d s .
\end{align*}
$$

The solution to (1.1) with $0<H<1 / 2$ was first obtained by Nuzman and Poor [8], and the theorem above is essentially the same as their result (Theorem 4.4 in [8]) except for one point. Unlike the theorem above, they do not assume that the interval corresponding to $\left[-t_{0}, t_{1}\right]$ includes the origin. However, their argument on this point does not seem to be complete. In our notation, they claimed that observation of $B_{H}(t)$ on $\left[-t_{0}, t_{1}\right]$ is equivalent to that of $B_{H}\left(t-t_{0}\right)-B_{H}\left(-t_{0}\right)$ on $\left[0, t_{0}+t_{1}\right]$ (see Section 3.3 in [8]). However, this is true only if $B_{H}\left(-t_{0}\right)$ is a priori known, that is, $t_{0}=0$, and thus $B_{H}\left(-t_{0}\right)=0$. We also remark that, in $\left[8\right.$, Theorem 4.4], the factor $\pi^{-1} \sin (\pi((1 / 2)-H))$ or $\pi^{-1} \cos (\pi H)$ is missing.

In [3], the solution to (1.1) with $1 / 2<H<1$ is obtained by reducing the problem to the following type of singular integral equation for the prediction kernel:

$$
\begin{equation*}
\int_{0}^{1} F(t)|s-t|^{-\alpha} d t=f(s) \quad(0<s<1), \quad 0<\alpha<1 . \tag{1.7}
\end{equation*}
$$

In this paper, we obtain (1.6) by reducing the problem to the following type of equation (that is, (2.9) below) for the prediction kernel:

$$
\begin{equation*}
\int_{0}^{1} F(t)|s-t|^{-\alpha} \operatorname{sgn}(s-t) d t=f(s) \quad(0<s<1), \quad 0<\alpha<1 \tag{1.8}
\end{equation*}
$$

It is interesting to note that both (1.7) and (1.8) were solved in the same paper by Lundgren and Chiang [5] (though the solution to the first equation (1.7) had already been given by Carleman [2]).

2. Proof of Theorem 1

As stated in Section 1, we look for a nonnegative measurable function $h(t)$ $=h\left(t ; t_{2}, t_{3}\right)$ on ($0, t_{2}$) satisfying

$$
\begin{gather*}
\int_{0}^{t_{2}} h(t) d t=1 \tag{2.1}\\
E\left[B_{H}(T) \mid \sigma\left(B_{H}(s):-t_{0} \leqslant s \leqslant t_{1}\right)\right]=\int_{-t_{0}}^{t_{1}} h\left(t+t_{0}\right) B_{H}(t) d t \tag{2.2}
\end{gather*}
$$

where the positive constants t_{2} and t_{3} are defined by

$$
t_{2}:=t_{0}+t_{1}, \quad t_{3}:=T-t_{1}
$$

These facts are essential in deriving the manageable form (1.8), hence finally obtaining (1.6).

The equality (2.2) implies

$$
\begin{equation*}
E\left[\left\{B(T)-\int_{-t_{0}}^{t_{1}} h\left(t+t_{0}\right) B_{H}(t) d t\right\} B_{H}(s)\right]=0 \quad\left(-t_{0}<s<t_{1}\right) \tag{2.3}
\end{equation*}
$$

or

$$
\begin{align*}
\int_{-t_{0}}^{t_{1}} h\left(t+t_{0}\right)\left(|t|^{2 H}+|s|^{2 H}-\mid s-\right. & \left.\left.t\right|^{2 H}\right) d t \tag{2.4}\\
& =T^{2 H}+|s|^{2 H}-(T-s)^{2 H} \quad\left(-t_{0}<s<t_{1}\right)
\end{align*}
$$

From this and (2.1), we obtain

$$
\begin{equation*}
\int_{-t_{0}}^{t_{1}} h\left(t+t_{0}\right)\left(|t|^{2 H}-|s-t|^{2 H}\right) d t=T^{2 H}-(T-s)^{2 H} \quad\left(-t_{0}<s<t_{1}\right) \tag{2.5}
\end{equation*}
$$

Since we have, for $-t_{0}<s<t_{1}$,

$$
\int_{-t_{0}}^{t_{1}} h\left(t+t_{0}\right)|s-t|^{2 H} d t=\int_{-t_{0}}^{s} h\left(t+t_{0}\right)(s-t)^{2 H} d t+\int_{s}^{t_{1}} h\left(t+t_{0}\right)(t-s)^{2 H} d t
$$

formal differentiation of both sides of (2.5) with respect to s yields

$$
\begin{equation*}
\int_{-t_{0}}^{t_{1}} h\left(t+t_{0}\right)|s-t|^{2 H-1} \operatorname{sgn}(s-t) d t=-(T-s)^{2 H-1} \quad\left(-t_{0}<s<t_{1}\right) \tag{2.6}
\end{equation*}
$$

(the validity of this formal calculation should not be of concern at this stage). We define $\alpha \in(0,1), a \in(0, \infty)$, and $g(t)=g\left(t ; t_{2}, t_{3}\right)$, respectively, by

$$
\begin{align*}
\alpha & :=1-2 H, \quad a:=t_{3} / t_{2}, \tag{2.7}\\
g(t) & :=t_{2} h\left(t_{2}(1-t)\right) \quad(0<t<1) . \tag{2.8}
\end{align*}
$$

Then, by the substitutions $t^{\prime}=\left(t_{1}-t\right) / t_{2}$ and $s^{\prime}=\left(t_{1}-s\right) / t_{2}$, we obtain

$$
\begin{equation*}
\int_{0}^{1} g(t)|s-t|^{-\alpha} \operatorname{sgn}(s-t) d t=(a+s)^{-\alpha} \quad(0<s<1) \tag{2.9}
\end{equation*}
$$

By [5, (18)], the general solution $g(t)$ to (2.9) is given by

$$
\begin{equation*}
g(t)=c_{1} t^{(\alpha / 2)-1}(1-t)^{(\alpha / 2)-1}+g_{0}(t) \quad(0<t<1) \tag{2.10}
\end{equation*}
$$

where c_{1} is an arbitrary constant and $g_{0}(t)$ is given by, for $0<t<1$,

$$
\frac{\Gamma(\alpha) \sin (\pi \alpha / 2)}{\pi \Gamma(\alpha / 2)^{2}} \frac{d}{d t} t^{\alpha / 2} \int_{t}^{1} s^{-\alpha}(s-t)^{(\alpha / 2)-1}\left\{\int_{0}^{s} u^{\alpha / 2}(s-u)^{(\alpha / 2)-1}(a+u)^{-\alpha} d u\right\} d s
$$

By the change of variables $v=u / s$, we have

$$
\begin{aligned}
\int_{0}^{s} u^{\alpha / 2}(s-u)^{(\alpha / 2)-1}(a+u)^{-\alpha} d u=\left(\frac{s}{a}\right)^{\alpha} & \int_{0}^{1} v^{\alpha / 2}(1-v)^{(\alpha / 2)-1}\left(1+\frac{s}{a} v\right)^{-\alpha} d v \\
& =\frac{\Gamma(\alpha / 2)^{2}}{2 \Gamma(\alpha)}\left(\frac{s}{a}\right)^{\alpha} F\left(\alpha, \frac{\alpha}{2}+1 ; \alpha+1 ;-\frac{s}{a}\right)
\end{aligned}
$$

where $F(a, b ; c ; z)={ }_{2} F_{1}(a, b ; c ; z)$ is the hypergeometric function. Thus, for $0<t<1$,

$$
\begin{equation*}
g_{0}(t)=\frac{\sin (\pi \alpha / 2)}{2 \pi} \frac{d}{d t} t^{\alpha / 2} \int_{t}^{1} s^{-\alpha}(s-t)^{(\alpha / 2)-1}\left(\frac{s}{a}\right)^{\alpha} F\left(\alpha, \frac{\alpha}{2}+1 ; \alpha+1 ;-\frac{s}{a}\right) d s \tag{2.11}
\end{equation*}
$$

From (2.11), we easily find that $\int_{0}^{1} g_{0}(t) d t=0$. Since we have $\int_{0}^{t_{2}} h(t) d t$ $=\int_{0}^{1} g(t) d t$, the condition (2.1) implies

$$
\begin{equation*}
c_{1}=\frac{\Gamma(\alpha)}{\Gamma(\alpha / 2)^{2}} \tag{2.12}
\end{equation*}
$$

We now obtain an explicit expression for $g_{0}(t)$ using (2.11). By the formulas

$$
\begin{aligned}
\frac{d}{d z}\left[z^{a} F(a, b ; c ; z)\right] & =a z^{a-1} F(a+1, b ; c ; z) \\
F(a, b ; c ; z) & =(1-z)^{c-a-b} F(c-a, c-b ; c ; z)
\end{aligned}
$$

we see that

$$
\frac{d}{d s}\left[\left(\frac{s}{a}\right)^{\alpha} F\left(\alpha, \frac{\alpha}{2}+1 ; \alpha+1 ;-\frac{s}{a}\right)\right]=\frac{\alpha}{a}\left(\frac{s}{a}\right)^{\alpha-1}\left(1+\frac{s}{a}\right)^{-(\alpha / 2)-1}
$$

On the other hand, by the change of variables $v=(u-t) / t$, we have

$$
t^{\alpha / 2} \int_{t}^{s} u^{-\alpha}(u-t)^{(\alpha / 2)-1} d u=f\left(\frac{s-t}{t}\right), \quad(t \leqslant s \leqslant 1)
$$

where

$$
f(x):=\int_{0}^{x}(1+v)^{-\alpha} v^{(\alpha / 2)-1} d v \quad(x \geqslant 0) .
$$

We have

$$
\frac{d}{d t} f\left(\frac{s-t}{t}\right)=-t^{(\alpha / 2)-1} s^{1-\alpha}(s-t)^{(\alpha / 2)-1} \quad(0<t<s)
$$

Hence, by integration by parts, we obtain, for $0<t<1$,

$$
\begin{equation*}
g_{0}(t)=-\frac{\sin (\pi \alpha / 2)}{2 \pi} a^{-\alpha} F\left(\alpha, \frac{\alpha}{2}+1 ; \alpha+1 ;-\frac{1}{a}\right) t^{(\alpha / 2)-1}(1-t)^{(\alpha / 2)-1}+g_{1}(t) \tag{2.13}
\end{equation*}
$$

where

$$
\begin{aligned}
g_{1}(t) & =-\frac{\sin (\pi \alpha / 2)}{2 \pi} \frac{d}{d t} \int_{t}^{1} f\left(\frac{s-t}{t}\right) \frac{\alpha}{a}\left(\frac{s}{a}\right)^{\alpha-1}\left(1+\frac{s}{a}\right)^{-(\alpha / 2)-1} d s \\
& =-\frac{\sin (\pi \alpha / 2)}{2 \pi} \int_{t}^{1}\left\{\frac{d}{d t} f\left(\frac{s-t}{t}\right)\right\} \frac{\alpha}{a}\left(\frac{s}{a}\right)^{\alpha-1}\left(1+\frac{s}{a}\right)^{-(\alpha / 2)-1} d s \\
& =\frac{\alpha \sin (\pi \alpha / 2)}{2 \pi}\left(\frac{a}{t}\right)^{1-(\alpha / 2)} \int_{t}^{1}(s-t)^{(\alpha / 2)-1}(a+s)^{-(\alpha / 2)-1} d s
\end{aligned}
$$

By the change of variables $u=(1-s) /(1-t)$ and the equality

$$
\int_{0}^{1} t^{\mu-1}(1-t)^{\nu-1}(c-t)^{-\mu-\nu} d t=c^{-\nu}(c-1)^{-\mu} B(\mu, \nu) \quad(\mu, \nu>0, c>1)
$$

(see [7, Lemma 2.2 (i)]), we see that, for $0<t<1$,

$$
\begin{aligned}
g_{1}(t) & =\frac{\alpha \sin (\pi \alpha / 2)}{2 \pi}\left(\frac{a}{t}\right)^{1-(\alpha / 2)} \frac{1}{1-t} \int_{0}^{1}(1-u)^{(\alpha / 2)-1}\left(\frac{a+1}{1-t}-u\right)^{-(\alpha / 2)-1} d u \\
& =\frac{\sin (\pi \alpha / 2)}{\pi}\left(\frac{a}{t}\right)^{1-(\alpha / 2)}\left(\frac{1-t}{a+1}\right)^{\alpha / 2} \frac{1}{a+t}
\end{aligned}
$$

From this as well as (2.10) and (2.13), the general solution $g(t)$ to the equation (2.9) is given by

$$
g(t)=c_{2} t^{(\alpha / 2)-1}(1-t)^{(\alpha / 2)-1}+\frac{\sin (\pi \alpha / 2)}{\pi}\left(\frac{a}{t}\right)^{1-(\alpha / 2)}\left(\frac{1-t}{a+1}\right)^{\alpha / 2} \frac{1}{a+t}
$$

for $0<t<1$, where c_{2} is an arbitrary constant.
By (2.12), under the condition (2.1), c_{2} is given by

$$
c_{2}:=\frac{\Gamma(\alpha)}{\Gamma(\alpha / 2)^{2}}-\frac{\sin (\pi \alpha / 2)}{2 \pi} a^{-\alpha} F\left(\alpha, \frac{\alpha}{2}+1 ; \alpha+1 ;-\frac{1}{a}\right) .
$$

However, since we have, for $0<\mu<1, \nu>0$ and $c>1$,

$$
\begin{aligned}
& \int_{0}^{1} t^{\mu-1}(1-t)^{\nu-1}(c-t)^{-\mu-\nu+1} d t \\
&=\frac{\pi}{\sin (\pi \mu)}-(\mu+\nu-1) B(\mu, \nu) \int_{0}^{1-(1 / c)} s^{-\mu}(1-s)^{\mu+\nu-2} d s
\end{aligned}
$$

(see [7, Lemma 2.2 (iii)]), we see that

$$
\begin{aligned}
c_{2} & =\frac{\Gamma(\alpha)}{\Gamma(\alpha / 2)^{2}}\left[1-\frac{\sin (\pi \alpha / 2)}{\pi} \int_{0}^{1} s^{(\alpha / 2)-1}(1-s)^{\alpha / 2}(a+1-s)^{-\alpha} d s\right] \\
& =\frac{\alpha \sin (\pi \alpha / 2)}{2 \pi} \int_{0}^{a /(1+a)} s^{-\alpha / 2}(1-s)^{\alpha-1} d s
\end{aligned}
$$

Thus, using (2.7) and (2.8), we finally obtain, for $-t_{0}<t<t_{1}$,

$$
\begin{align*}
& h(t)=\frac{\sin (\pi((1 / 2)-H))}{\pi}\left(\frac{T-t_{1}}{t_{2}-t}\right)^{(1 / 2)+H}\left(\frac{t}{T+t_{0}}\right)^{(1 / 2)-H} \frac{1}{T+t_{0}-t} \tag{2.14}\\
& +\frac{((1 / 2)-H) \sin (\pi((1 / 2)-H))}{\pi t_{2}}\left[\int_{0}^{\left(T-t_{1}\right) /\left(T+t_{0}\right)} u^{H-(1 / 2)}(1-u)^{-2 H} d u\right] \\
& \times\left[\left(\frac{t_{2}}{t}\right)\left(\frac{t_{2}}{t_{2}-t}\right)\right]^{H+(1 / 2)}
\end{align*}
$$

which implies (1.6).
Now, for a rigorous proof, we may start with (2.14). Then we have (2.6) and (2.1) by the arguments given above. From (2.6), we see (rigorously this time) that

$$
\frac{d}{d s} \phi(s)=2(T-s)^{2 H-1} H \quad\left(-t_{0}<s<t_{1}\right)
$$

where

$$
\phi(s):=\int_{-t_{0}}^{t_{1}} h\left(t+t_{0}\right)\left(|t|^{2 H}-|s-t|^{2 H}\right) d t \quad(s \in \mathbf{R}) .
$$

Since $\phi(0)=0$, we get (2.5). Finally, from (2.5) and (2.1), we obtain (2.4) or (2.3) or (1.6). This completes the proof of Theorem 1.

3. Remarks

1. From the proof in Section 2, we see that

$$
\int_{0}^{1} g_{1}(t)|s-t|^{-\alpha} \operatorname{sgn}(s-t) d t=(a+s)^{-\alpha} \quad(0<s<1)
$$

This implies the following equality: for $a>0,0<\alpha<1$ and $0<s<1$,

$$
\int_{0}^{1} \frac{t^{(\alpha / 2)-1}(1-t)^{\alpha / 2}}{a+t}|s-t|^{-\alpha} \operatorname{sgn}(s-t) d t=\frac{\pi}{\sin (\pi \alpha / 2)} a^{(\alpha / 2)-1}(a+1)^{\alpha / 2}(a+s)^{-\alpha} .
$$

2. Since $E\left[B_{H}(s)^{2}\right]^{1 / 2}=|s|^{H}$, we easily find that the second term on the right-hand side of (1.6) tends to zero, as $t_{0} \rightarrow \infty$, in $L^{2}(\Omega, \mathcal{F}, P)$, where (Ω, \mathcal{F}, P) is the probability space on which $\left(B_{H}(t)\right)$ is defined. Hence, by letting $t_{0} \rightarrow \infty$ in (1.6), we obtain the following prediction formula for fractional Brownian motion with $H \in(0,1 / 2)$ from the infinite past:

$$
\begin{align*}
E\left[B_{H}(T) \mid \sigma\left(B_{H}(s):\right.\right. & \left.\left.-\infty<s \leqslant t_{1}\right)\right] \tag{3.1}\\
& =\frac{\sin (\pi((1 / 2)-H))}{\pi} \int_{-\infty}^{t_{1}}\left(\frac{T-t_{1}}{t_{1}-s}\right)^{(1 / 2)+H} \frac{1}{T-s} B_{H}(s) d s
\end{align*}
$$

This result was given in Yaglom [10, (3.41)].

References

[1] V.V. Anh and A. Inoue, 'Prediction of fractional Brownian motion-type processes: the case $0<H<1 / 2$ ', (submitted).
[2] T. Carleman, 'Über die Abelsche Intergralgleichung mit konstanten Integrations-grenzen', Math. Z. 15 (1922), 111-120.
[3] G. Gripenberg and I. Norros, 'On the prediction of fractional Brownian motion', J. Appl. Probab. 33 (1996), 400-410.
[4] A.N. Kolmogorov, 'Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen raum', Compres Rendus (Doklady) de l'Académie des Sciences de l'USSR (N.S.) 26 (1940), 115-118.
[5] T. Lundgren and D. Chiang, 'Solution of a class of singular integral equations', Quart. Appl. Math. 24 (1967), 303-313.
[6] B.B. Mandelbrot and J.W. Van Ness, 'Fractional Brownian motions, fractional noises and applications', SIAM Rev. 10 (1968), 422-437.
[7] I. Norros, E. Valkeila, and J. Virtamo, 'An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions', Bernoulli 5 (1999), 571-587.
[8] C.J. Nuzman and H.V. Poor, 'Linear estimation of self-similar processes via Lamperti's transformation', J. Appl. Probab. 37 (2000)), 429-452.
[9] G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian random processes: stochastic models with infinite variance (Chapman and Hall, New York, 1994).
[10] A.M. Yaglom, 'Correlation theory of processes with random stationary nth increments', (Russian), Mat. Sb. N.S. 37 (1955), 141-196. English translation: Amer. Math. Soc. Trans. Ser. (2) 8 (1958), 87-141.

School of Mathematical Sciences
Queensland University of Technology
GPO Box 2434, Brisbane, Queensland 4001
Australia
e-mail: v.anh@qut.edu.au

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810
Japan
e-mail: inoue@math.sci.hokudai.ac.jp

